# Question:Moving tangent portion between 2 fixed tangents on an ellipse

## Question:Moving tangent portion between 2 fixed tangents on an ellipse

Maple 2021

How to show that the angle QF2P remains constant when M moves on the ellipse ? Perhaps with Explore ?
restart;
with(plots);
with(geometry);
_EnvHorizontalName := 'x';
_EnvVerticalName := 'y';
x0 := 100;
y0 := 40;
a := 7;
b := 5;
c := sqrt(a^2 - b^2);
ellipse(el, x^2/a^2 + y^2/b^2 - 1);
point(F1, -c, 0);
point(F2, c, 0);
eq := simplify((a^2 - x0^2)*(y - y0)^2 + (b^2 - y0^2)*(x - x0)^2 + 2*x0*y0*(x - x0)*(y - y0)) = 0;
sol := solve({eq}, {y});
line(tang1, op(sol[1]));
line(tang2, op(sol[2]));
sol2 := op(solve({op(sol[1]), x^2/a^2 + y^2/b^2 - 1 = 0}, {x, y}));
xM2 := rhs(sol2[1]);
yM2 := rhs(sol2[2]);
point(A, xM2, yM2);
sol3 := op(solve({op(sol[2]), x^2/a^2 + y^2/b^2 - 1 = 0}, {x, y}));
xM3 := rhs(sol3[1]);
yM3 := rhs(sol3[2]);
point(B, xM3, yM3);
line(Pol, [A, B]);
simplify(Equation(Pol));
isolate(%, y);
xM := 4;
sol := solve({subs(x = xM, x^2/a^2 + y^2/b^2 - 1 = 0)}, {y});
yM := rhs(op(sol[1]));
point(M, xM, yM);
line(Tang, x*xM/a^2 + y*yM/b^2 - 1 = 0);
intersection(P, tang1, Tang);
intersection(Q, tang2, Tang);
line(PF2, [P, F2]);
line(QF2, [Q, F2]);
alpha := FindAngle(PF2, QF2);
arctan(alpha);
evalf(%);
display(textplot([[-c, 0, "F1"], [c, 0, "F2"], [coordinates(B)[], "B"], [coordinates(A)[], "A "], [coordinates(M)[], "M "], [coordinates(P)[], "P "], [coordinates(Q)[], "Q "]], align = {"above", 'right'}), draw([el(color = red), A(color = black, symbol = solidcircle, symbolsize = 16), PF2(color = brown), QF2(color = brown), B(color = black, symbol = solidcircle, symbolsize = 16), M(color = black, symbol = solidcircle, symbolsize = 16), P(color = black, symbol = solidcircle, symbolsize = 16), tang1(color = green), tang2(color = green), Tang(color = green), F1(color = blue, symbol = solidcircle, symbolsize = 16), Q(color = blue, symbol = solidcircle, symbolsize = 16), F2(color = red, symbol = solidcircle, symbolsize = 16)]), axes = none, view = [-7 .. 15, -7 .. 12]);

﻿