MaplePrimes Questions

restart:with(LinearAlgebra):with(plots):with(geometry):with(plottools): On appelle alpha la moitié de l'angle de rotation de la roue menée par tour de roue menante. alpha=Pi/n en radians? soit Pi/8 pour 8 rainures.. On a alors les relations suivantes entre l'entaxe E, le rayon de la roue ùenante R1 et le rayon de la roue menée R2 : R1=E.sin(alpha), R2=E*cos(alpha) Intersection du cercle (O,R2) avec la droite tan(phi)x-r/cos(phi), on obtient les coordonnées de P3 sol:=allvalues(solve([tan(phi)*x-r/cos(phi)=y,y^2+x^2=R2^2],[x,y])): Intersection de 2 cercles sol1:=allvalues(solve([(x-E)^2+y^2=(R-a)^2,y^2+x^2=R2^2],[x,y])): Coordonnées des points du pourtour de l'élément de croix Oo:=point([0,0]): phi:=Pi/8:R2:=5:r:=1/4:E:=R2/cos(phi):evalf(%):R:=R2*tan(phi):evalf(%):a:=0.5: P1:=point([(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)]): P2:=point([(R2/2)*cos(phi)+r*sin(phi),(R2/2)*sin(phi)-r*cos(phi)]): xP2:=(R2/2)*cos(phi)+r*sin(phi):yP2:=(R2/2)*sin(phi)-r*cos(phi): xP1:=(R2/2-r)*cos(phi):yP1:=(R2/2-r)*sin(phi): Equation paramétrique du segment OP1 (t varie de 0 à 1) ; x1:=t*(0-xP1)+xP1: y1:=t*(0-yP1)+yP1: n1:=5: dt:=1/(n1-1):#t varie entre 0 et 1 for i to n1 do tau:=(i-1)*dt: xx[i]:=evalf(subs(t=tau,x1)): yy[i]:=evalf(subs(t=tau,y1)): #print(i,xx[i],yy[i]); od: Equation paramétrique du quart de cercle P1P2 de la rainure (t varie de 0 à 1) x2:=R2/2*cos(phi)+r*cos(t):#attention au sens de rotation du parcours de l'objet y2:=R2/2*sin(phi)+r*sin(t): n2:=6: dt:=Pi/2/(n2-1):#arc de Pi/2 for i to n2 do tau:=phi-Pi+(i-1)*dt: xx[i]:=evalf(subs(t=tau,x2)): yy[i]:=evalf(subs(t=tau,y2)): od: for i to n2 do Vector[row]([i,xx[i],yy[i]]) od: droite:=plot((tan(phi)*x-r/cos(phi),x=0..3),linestyle=dot,color=blue): sol[1]: xP3:=evalf(subs(op(1,sol[1]),x)):yP3:=evalf(subs(op(1,sol[1]),y)): xP2:yP2: xP4:=evalf(subs(op(1,sol1[1]),x)):yP4:=evalf(subs(op(1,sol1[1]),y)): xP5:=E-(R-a):yP5:=0: x3:=t*(xP3-xP2)+xP2: y3:=t*(yP3-yP2)+yP2: n3:=10: dt:=1/(n3-1):#t varie entre 0 et 1 for i to n3 do tau:=(i-1)*dt: xx[i+n2]:=evalf(subs(t=tau,x3)): yy[i+n2]:=evalf(subs(t=tau,y3)): od: for i to n3 do Vector[row]([i,xx[i],yy[i]]) od: x4:=xP5+R-a+(R-a)*cos(t):#attention au sens de rotation du parcours de l'objet y4:=(R-a)*sin(t): n4:=11: eta:=arcsin(yP4/(R-a)): dt:=(-eta)/(n2-1)/2:#arc de Pi/2 for i to n4 do tau:=(Pi+eta)+(i-1)*dt:#recherche de tau ? xx[i+n2+n3]:=evalf(subs(t=-tau,x4)): yy[i+n2+n3]:=evalf(subs(t=-tau,y4)): od: for i to n4 do Vector[row]([i,xx[i],yy[i]]) od: n:=n2+n3+n4; n := 27 for i to n do Vector[row]([i,xx[i],yy[i]]) od: figure:=NULL: for i from 0 to n do xx[0]:=0:yy[0]:=0: figure:=figure,[xx[i],yy[i]]: #print(i,xx[i],yy[i]); od: polygonplot([figure],scaling=constrained,color=yellow,view=[-0.1..5,-0.1..3]): for i to n do X[i]:=xx[i]: Y[i]:=yy[i] od: d1:=plottools[disk]([xP1,yP1],0.05,color=blue): d2:=plottools[disk]([xP2,yP2],0.05,color=red): d3:=plottools[disk]([xP3,yP3],0.05,color=green): d4:=plottools[disk]([xP4,yP4],0.05,color=green): d5:=plottools[disk]([xP5,yP5],0.05,color=green): fig:=pointplot([figure],scaling=constrained): Po:=pointplot([[xP1,yP1],[xP2,yP2],[xP3,yP3]],color = blue, symbol = asterisk): Cir:=plot([R2*cos(t),R2*sin(t),t=0..Pi/2],color=black): Arc:=plot([E+(R-a)*cos(t),(R-a)*sin(t),t=3*Pi/4..Pi],linestyle=dot,color=blue): textplot({[1, 2, "one point in 2-D"], [3, 2, "second point in 2-D"]}): texte:=textplot([[xP1-0.2,yP1,"P1"],[xP2,yP2-0.3,"P2"],[xP3+0.2,yP3+0.2,"P3"], [xP4+0.2,yP4+0.1,"P4"],[xP5-0.2,yP5+0.2,"P5"]]): display({Arc,Cir,d1,d2,d3,d4,d5,Po,fig,droite,texte},scaling=constrained,view=[-1..7,-1..6]): with(plottools): printlevel:=3: Miroir : symétrie par rapport à l'axes des x for i from 0 to n/2 do tt:=yy[i]: yy[i]:=yy[n-i+1]: yy[n-i+1]:=tt: tt:=xx[i]: xx[i]:=xx[n-i+1]: xx[n-i+1]:=tt od: for i from 0 to n-1 do xx[2*n-i]:=xx[i]: yy[2*n-i]:=-yy[i]: #print(i,xx[i],yy[i]) od: Poly:=NULL: for i from 0 to 2*n-1 do xx[0]:=0:yy[0]:=0: Poly:=Poly,[xx[i],yy[i]]:od: polygonplot([Poly],color=yellow,scaling=constrained): pointplot([Poly],color = blue, scaling=constrained,symbol = asterisk,view=[-1..5,-3..3]): Rotation unassign('xt','yt'): #gc(): zt:=8:#8 rainures ou faisceaux xt:=Vector(63,[]): yt:=Vector(63,[]): xt:=Vector((2*n-1),zt,[]): yt:=Vector((2*n-1),zt,[]): j:=0: for k from 0 to zt-1 do j:=0: phi:=2*Pi*k/zt: cs:=cos(phi): sn:=sin(phi): for kk from 1 to 2*n-1 do j:=j+1: xt[j][k]:=evalf(xx[kk]*cs-yy[kk]*sn): yt[j][k]:=evalf(xx[kk]*sn+yy[kk]*cs): od: od: N1:=j: points:=seq(seq([xt[i][j], yt[i][j]], j=0..zt-1), i=1..2*n-1): p_cross:= pointplot([points], scaling = constrained, color = black,linestyle=solid, filled=[yellow]): polygonplot([points], color = yellow, scaling = constrained); NULL; display([p_cross]);#How to draw this cross with a line without points. Thank you.

Hello everyone . I wish you all a happy new year and a great 2022.

i have a project in Maplesim and i just began working with it .

my project is about the creation of an umbrella using maple sim . I tried my best to create one of the mechanic system of the revolute system . But in an umbrella there are 8 system of a revolute , and it depends of the orientation . I don't knew how to create the other 7 system 

Can you please help me ?

Oussama

Hi!

I need your help!

I have a function denoting the Kinetic energy.

I tried to derive a governing equation using  "Eulerlagrange" comment.

It is successful to obtain the equation at the coordinate of "Y(t)", but it fails to derive "w(Y(t),t)".

The associated file has been patched, please find it.

I'm forward to your response.

Thank you very much!

EulerLagrange_of_functional.mw

I have a 3d matrix A(i.j.k), how is it possible to transpose it in maple to A(j,i,k)?

Hello there, 

Is there any API that would translate the numerical information to a more informative string?

Or, is there the implementation of the original CoolProp API, 'PhaseSI()', which comes up with a string, instead of the numerical value?

Thank you, 

In Kwon Park  

How is possible to plot two functions in one coordinate system but with different domains?

For example I want to see the both functions f1=x*exp(-x^2-y^2) and f2=exp(-x^2-y^2) in one coordinate system but with different domans as below:
f1: -3<x<3, -2<y<2

f2: -1<x<1, -1<y<2

It's sad when a bug is found for such a simple problem!

sys := [x*y*z = 0, x*y*z + x*z + z = 0, x*y*z + x*y + x = 0]:
solve(sys, {x,y,z});    # OK
#         {x = 0, y = y, z = 0}, {x = x, y = -1, z = 0}

solve(sys, [x,y,z]);    # ???
#                               []

 

Under certain special circumstances it seems that Maple is converting floats to rationals - I noticed this in Maple 2021 when a^0.5 evaluated to sqrt(a). Prior to Maple 2017, a^0.5, evaluates to a^0.5.

Can anyone think of a reason for this change?

I'm not quite sure why it bothers me, but it does

See the attached for Maple 2016 and Maple 2017.

  restart;
  interface(version);
  a^0.5;
  a^(-0.5);

`Standard Worksheet Interface, Maple 2016.2, Windows 7, January 13 2017 Build ID 1194701`

 

a^.5

 

1/a^.5

(1)

 

 

  restart;
  interface(version);
  a^0.5;
  a^(-0.5);

`Standard Worksheet Interface, Maple 2017.3, Windows 7, September 13 2017 Build ID 1262472`

 

a^.5

 

1/a^.5

(1)

 

Download odd2017.mw

Download odd2016.mw

 

Dear Sir/Madam,

Greetings of the day.

If I am considering the value of "gam=0.5,0.7,0.9" in the code other than 1, I am unbale to draw figure using this code. Also, I can not evaluate the values of  A1[200]; A1[400]; A1[600]; A1[800]; A1[1000]. It is showing float undefined.

Please help me in this regard. Thanks in advance

restart 

 

   

f1 := proc (y, t) options operator, arrow; y*sin(t) end proc

NULL

y[0] := .3678794412

h := 0.1e-2; alpha := proc (t) options operator, arrow; .97+0.3e-1*cos((1/10)*t) end proc; gam := .5
NULLNULL

 
for n from 0 to 999 do t[n] := n*h end do

for n from 0 to 0 do y[n+1] := y[n]+h^alpha(t[n])*f1(y[n], t[n])/GAMMA(alpha(t[n])+1) end do

.3678794412

(1)

for n to 999 do y[n+1] := y[0]+gam*h^alpha(t[n])*(sum(t[j]^(gam-1)*((n+1-j)^alpha(t[n])*(n-j+2+alpha(t[n]))-(n-j)^alpha(t[n])*(n-j+2+2*alpha(t[n])))*f1(y[j], t[j])-t[j-1]^(gam-1)*((n+1-j)^(alpha(t[n])+1)-(n-j)^alpha(t[n])*(n-j+1+alpha(t[n])))*f1(y[j-1], t[j-1]), j = 1 .. n))/GAMMA(2+alpha(t[n])) end do

A1[1] := .3678794412

for i to 1000 do A1[i+1] := y[i] end do

NULL

NULL

L := [seq((i-1)*h, i = 1 .. 1001)]NULLNULLNULLNULL

  A1 := [seq(A1[i], i = 1 .. 1001)] 

plot(L, A1, color = red)

 

NULL

A1[200]; A1[400]; A1[600]; A1[800]; A1[1000]

Float(undefined)

 

Float(undefined)

 

Float(undefined)

 

Float(undefined)

 

Float(undefined)

(2)

NULL

``

Download Plot_undefined.mw

The system of equations x*y*z + y*z + y = 21, x*y*z + x*z + z = 30, x*y*z + x*y + x = 12

has three solutions, one of them is not an integer solution.

solve({x*y*z + y*z + y = 21, x*y*z + x*z + z = 30, x*y*z + x*y + x = 12}, {x, y, z})

How can I find three numbers a, b, c so that the system of equations

x*y*z + y*z + y = a, x*y*z + x*z + z = b, x*y*z + x*y + x = c

has three  solutions (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), where x1, y1, z1, x2, y2, z2, x3, y3, z3 are nine integer numbers.

Hi,

Happy New Years All

Can anyone explain two document formating features I am trying to implement?

1.)  Sections.  I select numbering with follow previous selected and I get three sections with a 1. in front of them vs 1, 2, 3.  

 

I would expect Technical to become 3.1 when properly following Section 3. header.   Also, I have seen how to manually type the section number, but that seems to defeat the document layout and formatting if it gets "jumbled up". 

2.)  Headers.   Can you suppress headers on pages 2 through X to have a unique cover page header?   This would be similar to word (headers and footers linked to previous section, or not(?) with section breaks as new pages)

Thanks,
Bill

I am translating old Maple code to run on Maple 2021.2. This code from 1985. I think it was Maple 3 then. I'll put a link to the paper and page number.

It uses this syntax

Btw, the " above is meant to be % in new Maple. I do not know what w='@W' is supposed to translate to.

The paper is

A DISCUSSION AND IMPLEMENTATION OF KOVACICS ALGORITHM FOR ORDINARY DIFFERENTIAL EQUATIONS

by  Carolyn J. Smith.

Here is the link

https://cs.uwaterloo.ca/research/tr/1984/CS-84-35.pdf

The above is at page 67. Near the end.  The code also uses some old functions, which are not given in the listing, I searched but could not find these.. One is called Lsolve (to solve linear equations, but I can replace this with solve) and  on page 77 it uses these 

           Functions required: scanmap, expcontract, lncontract, explnsimp

These are not given in the source code in the paper. I assume these are old Maple function which no longer exist?. But I can just use simplify for now in their place.

My question is on the use of `@W` and what it could mean? This syntax @ is used in many places in this old Maple code.

Hey all! I recently reinstalled my PC and therefore had to reinstall Maple. I did so and it worked out great, however, minor problem. My PC doesn't recognise .mw files as associated to Maple. I have tried a few different files, but I don't know which one to select as standard program for opening .mw files. Would anyone by chance know which file is the "opener" file, if that´s what that's called.
Thank you for the help in advance :D

(PS: I do know that I can just open the file through Maple by clicking files -> open and locating the file. But I'd rather access them by just doubleclicking from the directory.

Try to prove those two expressions : a sum and product 
First to know if they are correct defined for some values ?

Eulers productformule in Maple

 

 

Eerst de Euler identiteit in Maple opschrijven
via info over series

 

p-Series

sum(1/n^p, n = 1 .. infinity)

Absolute convergence for p > 1

Diverges for p <= 1 

 

 

restart;

sum(1/n^p, n = 1 .. infinity) = product(1/(1-p^(-s)), i = k .. p)

product(f,i=k..n);

product(1/(1 - p^(-s)), i = 1 .. p);

(1-p^(-s))*(-1/(-1+p^(-s)))^(p+1)

(1.1)

sum(1/n^p, n = 1 .. infinity);

sum(1/n^p, n = 1 .. infinity)

(1.2)

sum(1/n^p, n = 1 .. 4);

1+1/2^p+1/3^p+1/4^p

(1.3)

product(1/(1 - p^(-s)), i = 1 .. 4);
            

1/(1-p^(-s))^4

(1.4)

Product(1/(1 - p^(-s)), i = 1 .. 4)= product(1/(1 - p^(-s)), i = 1 .. 4);

Product(1/(1-p^(-s)), i = 1 .. 4) = 1/(1-p^(-s))^4

(1.5)

sum(1/n^p, n = 1 .. infinity) = product(1/(1 - p^(-s)), i = k .. p);

sum(1/n^p, n = 1 .. infinity) = (-1/(-1+p^(-s)))^(p+1)/(-1/(-1+p^(-s)))^k

(1.6)

 

 How to prove this sum(1/n^p, n = 1 .. infinity) = product(1/(1-p^(-s)), i = k .. p)

For the sum i got some terms , but for the product i don't see factors as i use the commands  

Download the_golden_key_in_Maple.mw

First 352 353 354 355 356 357 358 Last Page 354 of 2430