MaplePrimes Questions

Hi

I have a solution obtained using

sol:=pdsolve(PDE,BC);

"sol" is a function depend on variable x,

how can I differentiate this sol ( which a function ) then plot it

many thanks

 

How to find 

a:=[8, 9 ,9 ,7 ,9 ,10 ,5]-1 mod 11

Hello I want to multiply two vectors like

X=[x,x2,...x10]

G=[g1,g2,...g10]

y=[x1*g1,x2*g2, ........, x10*g10]

How to perform this transformation in maple?

Thanks

 

with(Maplets);
with(Elements);
with(plots);
with(DocumentTools);

 I use GetProperty("d", value) = "true"  to check if checkbox is checked but it does not work. How can I check if checkbox is checked?

 


workk := proc(g)

if GetProperty("d", value) = "true" then

print("true");

else print("False");

end if;

end proc;

 

 

mpt := Maplet(Window("aaaa", [[Plotter[f]()],

["Scalar", CheckBox[d]()],

[Button("Add", Evaluate(f = 'workk(1)')),

Button("OK", Shutdown())]]));

Display(mpt);
 

Hey,

Is anyone of you capable of simplifying this expression

f1:=(-3*sin(8*x) + 3*sin(8*x + 2*y) - 3*sin(8*x + 6*y) + 3*sin(8*y + 8*x) + 3*sin(8*y + 6*x) + 3*sin(8*y) - 18*sin(8*y + 4*x) + 3*sin(8*y + 2*x) - 45*sin(6*y + 6*x) + 87*sin(4*y + 6*x) - 3*sin(6*x - 2*y) - 87*sin(6*x + 2*y) + 18*sin(4*x - 4*y) - 93*sin(4*x + 4*y) + 93*sin(4*x + 6*y) - 51*sin(2*x - 4*y) - 342*sin(2*x + 4*y) - 3*sin(-6*y + 2*x) + 51*sin(6*y + 2*x) - 93*sin(-2*y + 4*x) + 342*sin(-2*y + 2*x) + 639*sin(2*x + 2*y) - 639*sin(2*x) + 45*sin(6*x) + 93*sin(4*x) + 231*sin(4*y) - 225*sin(2*y) - 63*sin(6*y) - 57*sqrt(3)*cos(2*x) - 375*sqrt(3)*cos(2*y) + sqrt(3)*cos(8*y + 8*x) - 5*sqrt(3)*cos(8*x + 6*y) - 7*sqrt(3)*cos(8*y + 6*x) + sqrt(3)*cos(8*x) + 192*sqrt(3)*cos(2*y + 4*x) + 43*sqrt(3)*cos(-2*y + 4*x) - 7*sqrt(3)*cos(6*x + 2*y) + 7*sqrt(3)*cos(-6*y + 2*x) - 5*sqrt(3)*cos(6*y) - 149*sqrt(3)*cos(4*x + 4*y) - 149*sqrt(3)*cos(4*x) - 65*sqrt(3)*cos(6*y + 2*x) + 126*sqrt(3)*cos(2*x + 4*y) - 65*sqrt(3)*cos(2*x - 4*y) - 5*sqrt(3)*cos(8*x + 2*y) - sqrt(3)*cos(8*y) + 7*sqrt(3)*cos(8*y + 2*x) + 6*sqrt(3)*cos(8*x + 4*y) - 57*sqrt(3)*cos(2*x + 2*y) + 125*sqrt(3)*cos(4*y) + 126*sqrt(3)*cos(-2*y + 2*x) - 7*sqrt(3)*cos(6*x - 2*y) + 19*sqrt(3)*cos(6*x) + 43*sqrt(3)*cos(4*x + 6*y) + 19*sqrt(3)*cos(6*y + 6*x) - 7*sqrt(3)*cos(4*y + 6*x) + 246*sqrt(3))/(2*(-261*sin(4*x + y) - 297*sin(2*x + 3*y) - 48*sin(5*y + 6*x) + 126*sin(5*y + 2*x) + 9*sin(5*y + 8*x) + 12*sin(7*y + 6*x) - 9*sin(7*y + 4*x) - 36*sin(5*y + 4*x) + 261*sin(3*y + 4*x) + 9*sin(-3*y + 4*x) + 297*sin(-y + 2*x) - 135*sin(3*y) - 21*sin(5*y) - 147*cos(y)*sqrt(3) - 9*sqrt(3)*cos(7*y + 4*x) - 3*sqrt(3)*cos(5*y + 8*x) - 3*sqrt(3)*cos(3*y + 8*x) + 54*sqrt(3)*cos(6*x + 3*y) + 5*sqrt(3)*cos(-5*y + 2*x) + 5*sqrt(3)*cos(7*y + 2*x) - 2*sqrt(3)*cos(6*x - y) - 20*sqrt(3)*cos(6*x + y) - 69*sqrt(3)*cos(4*x + y) + 68*sqrt(3)*cos(4*x - y) + 2*sqrt(3)*cos(8*x + y) + 2*sqrt(3)*cos(7*y + 8*x) - 20*sqrt(3)*cos(5*y + 6*x) - 2*sqrt(3)*cos(7*y + 6*x) + 68*sqrt(3)*cos(5*y + 4*x) - 9*sqrt(3)*cos(-3*y + 4*x) - 69*sqrt(3)*cos(3*y + 4*x) - 171*sqrt(3)*cos(2*x + 3*y) - 35*sqrt(3)*cos(5*y) + 171*sqrt(3)*cos(3*y) - 171*sqrt(3)*cos(-y + 2*x) + 354*sqrt(3)*cos(2*x + y) + sqrt(3)*cos(7*y) + 639*sin(y) - 9*sin(3*y + 8*x) - 12*sin(6*x - y) + 3*sin(7*y) - 9*sin(7*y + 2*x) + 9*sin(-5*y + 2*x) + 48*sin(6*x + y) + 36*sin(4*x - y) - 126*sin(2*x - 3*y)))

 

into

 

cos(y-Pi/3).

 

PS: Actually I managed by expanding the thing out and converting to exp then expanding again and using radnormal. In essence I leave the question, because maybe somebody can explain to me why radnormal seems to be superior (sometimes) to simplify which I thought of as the USEALL choice. Thanks


 

StringTools['Explode']("1≤ n≤m")

["1", "&", "l", "e", ";", " ", "n", "&", "l", "e", ";", "m"]

(1)

``


 

Download q1stringtool.mw

Does Maplesoft provide success percentage of this toolbox on benchmark functions?. I cannot see much options in the global solve command (from maple help page) other than population size etc. 

I recieved the following error:

Error, (in ifactor/QuadraticSieve:-SieveCube) sieving failure

But when I review the procedure ifactor, it doesnt tell me anything about A Quadratic Sieve algorithm, and it's really long and looks dodgey and suspicious, like line 24 for example, why is it computing the greatest integer divisor of a local variable and a random enormous square free number? and then another with an additional factor a few lines later? 

Hello

I need to solve or reduce (similar to the command Reduce in Mathematica) sets of nonlinear equations.  One such example is shown below:

eqns := {-1+theta[3, 6] = 0, 1-theta[3, 6] = 0, alpha+rho-theta[2, 2]+theta[3, 3] = 0, -theta[3, 6]^2+1 = 0, theta[2, 2]*theta[3, 6]-alpha = 0, theta[2, 2]*theta[3, 6]^2-alpha = 0, -2*theta[3, 3]*theta[3, 6]-2*rho = 0, theta[1, 2]*theta[2, 1]*theta[3, 6]^2+1 = 0, -alpha^2+rho^2+theta[2, 2]^2-theta[3, 3]^2 = 0, -theta[2, 2]^2*theta[3, 6]+2*theta[2, 2]*theta[3, 3]*theta[3, 6]+alpha^2+2*alpha*rho = 0, -theta[1, 3]*theta[2, 2]^2*theta[3, 0]+theta[1, 3]*theta[2, 2]*theta[3, 0]*theta[3, 3]-alpha^2*beta-alpha*beta*rho = 0, -theta[1, 2]*theta[2, 1]*theta[2, 2]*theta[3, 6]+2*theta[1, 2]*theta[2, 1]*theta[3, 3]*theta[3, 6]-alpha-2*rho = 0, -theta[1, 2]*theta[2, 1]*theta[2, 2]*theta[3, 3]+theta[1, 2]*theta[2, 1]*theta[3, 3]^2+theta[1, 3]*theta[2, 2]*theta[3, 0]*theta[3, 6]+alpha*beta+alpha*rho+rho^2 = 0, -alpha^2*rho-alpha*rho^2+theta[1, 2]*theta[2, 1]*theta[2, 2]-theta[1, 2]*theta[2, 1]*theta[3, 3]+theta[1, 3]*theta[3, 0]*theta[3, 6]-theta[2, 2]^2*theta[3, 3]+theta[2, 2]*theta[3, 3]^2+alpha+beta+rho = 0}

 and the indeterminates are:

fc := {theta[1, 2], theta[1, 3], theta[2, 1], theta[2, 2], theta[3, 0], theta[3, 3], theta[3, 6]}

Since I do know the solution, I issued the following command to check for typos.

seq(subs(theta[1,2]=-1,theta[1,3]=-1,theta[2,1]=1,theta[2,2]=alpha,theta[3,0]=beta,theta[3,3]=-rho,theta[3,6]=1,eqns[i]),i=1..nops(eqns))

and the outcome is zero for all equations.

When I try the command solve as follows:

solve(eqns,fc);

the result is

{theta[1, 2] = theta[1, 2], theta[1, 3] = theta[1, 3], theta[2, 1] = -1/theta[1, 2], theta[2, 2] = alpha, theta[3, 0] = -beta/theta[1, 3], theta[3, 3] = -rho, theta[3, 6] = 1}

that should be right but it is not what I am expecting.  

How can maple return the solution needed?

 

Some sets of solutions do not have a solution as the one above.  Some indeterminates cannot be found, is there a way maple returns the solution of the ones that can be solved and reduced the set of equations into two parts, solved ones e non solved ones?  I can provide an example if needed.

 

Many thanks.

Ed

 

Non-Linear overdetermined equations - which is best method? with less number of iterations

When I use Jacobi it takes 25 iterations.

Any other method which takes less iterations?

I would like to know whether a local optimizer is combined with the present global optimization toolbox?. I read that toolbox has differential evolution and surrogate optimization techniques etc. These methods guarantee near-optimal solutions and it is often recommended to use a local optimization technique in conjunction with global optimization techniques. 

I search saveplot and sleep function here

i had kept close filename function and move plot setup default to first line

but thread no sleep in maple 12

then I remove sleep and can save image file

but after I call it in a function and run a for loop for this function

the file is not updated after sleep 3 seconds 

how to run a for loop call it and it can refresh 

Is anyone accessing the https://www.mapleprimes.com/questions redirected to this page https://www.mapleprimes.com/errors/500.aspx?aspxerrorpath=/questions/default.aspx ?

https://www.mapleprimes.com/errors/500.aspx?aspxerrorpath=/questions/default.aspx

I tried to control z-axes by writing

plot3d(sech((1/2)*sqrt(3/5)*(x-2*t)), x = -10 .. 10, t = -10 .. 10, scaling = constrained, style = patchnogrid)

plot3d(sech((1/2)*sqrt(3/5)*(x-2*t)), x = -10 .. 10, t = -10 .. 10, scaling = constrained, style = patchnogrid)

 

but I could not change the height of z axes. I want to change the dimensions like in the following figure.

example-graph.pdfexample-graph.pdf

Although the range of z-axix is small but it appears very clear. Can anyone help me, please.

 

First 633 634 635 636 637 638 639 Last Page 635 of 2431