MaplePrimes Questions

Hello, i am experiencing some problems when trying to open the maple 2018 software*
I have tried unistalling and download it again.
I have tried to search for sollution but there is very ittle intel
When i open Maple 2018 it just lingeres on the start up (pic below) and just disappears after 10 seconds

Can someone please help i have a very important examination upcoming

how we can get matrix of p[2],p[0] and p[1] when p[2]=1,p[0]=1 and  p[1]=-x and x[0]=-1,x[1]=-2/3 ,x[3]=0 when the general matrices of p are given below.....and answer should be p[2]=p[0]= identity matrix and p[1]= only diagonal values are 1,2/3,1/3,0..

Diff.(u(x,t), t$alpha) = 1/2. x^2. Diff(u(x,t),x$2), 0 <x <1, t >0, alpha =1.5  or  1.75

Bcs: u(0,t) = 0, u(1,t) = 1 + sinh t,

Ics: u(x,0) = x, ut(x,0) = x^2 

restart;
F0:=proc(sigma__xx,N)
local  x,y,Fx,Fy,:
assume (w,real,w>0):assume (h,real,h>0):

for n from 0 by 2 to N do Fx:=integrate(sigma__xx*cos(w*Zeta*h),Zeta=0..infinity):
end do;
for n from 1 by 2 to N do Fx:=integrate(sigma__xx*sin(w*Zeta*h),Zeta=0..infinity):
end do;
return [Fx]:
end proc;

sigma__xx := -(sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n^2+sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n-2*sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h)))*Zeta^2*h^2/(Zeta^2*h^2+h^2)^2+(sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n^2-3*sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n;

F0(sigma__xx,N);

In Maple we can assign single named variables to values.  I was just wondering if it would be worthwhile if Maple could be set up to work with a multivariable assignment.  Not sure if my wording is understandable but hopefully someone can understand my point, or deter me from even thinking that way. 

Would it ever help in calculations in Maple if we were to make an assignment something like this :

v2:= a2 + b2

or

a * b := 3*x + 5*y2

Haven't looked into it too hard, I'd like to know if there might be a situation where this type of assignment would be helpful.  I mean, does it make sense to do this kind of thing.  I wonder if there is a situation where this type of thing is useful, or maybe it's just impossible to work right anyway.  Maybe it's already been tried?  Thoughts?

I am using external library function but it shows following error. please help.

 

dll.mw

Hi

i want solve under equations but maple cannot. what i should do? please help

Hi,

I have a numeric method for solving differential equations. You can find the Maple code.

 numeric_method.mw

 Question: In the method, we have 10^(-6) decimal error. How to quickly find the which decimal error by Maple? What are your suggestions? 

Hi:
 I use the following codes:
with(GraphTheory):
Graphs_data3:=[NonIsomorphicGraphs(6,restrictto =[connected], output
= graphs, outputform =graph)]:
Diameter2_select:=select[flatten](t->Diameter(t)=2,Graphs_data3):
map(DrawGraph,Diameter2_select);
nops(Diameter2_select);

Since  59 graphs are not many, so,I want to display  it. But the list show that
[Length of output exceeds limit of 1000000]`
How do I do?

If I use DrawGraph(Diameter2_select), the output is to large, and it is  not convenient to print it out .

 

i have a assignment problem to optimize with 1200 variables and almost 1000 constraints. but maple couldnt solve it. anyone who can help me is welcome

or may i try another app?

thanks

this is the my model
tam2.mw

 

restart;

 

 

we:=[1,2,8,9,15,16,22,23,29,30];

(1)

wd:=[3,4,5,6,7,10,11,12,13,14,17,18,19,20,21,24,25,26,27,28];

(2)

#printlevel :=3;

for j from 1 to 30 do
#her gündüz vardiyasında en az 4 hemşire bulunsun
a[j]:=sum(x[i][j][1], i=1..20)>=4:
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

A := [seq(a[j],j=1..30)];

(4)

#her gece vardiyasında en az 4 hemşire bulunsun
for j from 1 to 30 do
b[j]:=sum(x[i][j][2], i=1..20)>=4:
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5)

 

B := [seq(b[j],j=1..30)];

(6)

#her hemşire ayda en az 4 hafta içi gündüz vardiyasında çalışsın
for i from 1 to 20 do
c[i]:=sum(x[i][wd[k]][1], k=1..20)>=4:
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7)

C := [seq(c[i],i=1..20)];

(8)

#her hemşire ayda en az 4 hafta içi gece vardiyasında çalışsın
for i from 1 to 20 do
d[i]:=sum(x[i][wd[k]][2], k=1..20)>=4:
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(9)

dd:= [seq(d[i],i=1..20)];

(10)

#her hemşire ayda en az 2 hafta sonu gündüz vardiyasında çalışsın
for i from 1 to 20 do
e[i]:=sum(x[i][we[k]][1], k=1..10)>=2;
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(11)

E:= [seq(e[i],i=1..20)];

(12)

#her hemşire ayda en az 2 hafta sonu gece vardiyasında çalışsın
for i from 1 to 20 do
f[i]:=sum(x[i][we[k]][2], k=1..10)>=2;
end do;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(13)

F:= [seq(f[i],i=1..20)];

(14)

#gece vardiyasında çalışan hemşire ertesi gündüz ve gece vardiyalarında izinlidir
for i from 1 to 20 do
for j from 1 to 29 do
g[i][j]:=2*x[i][j][2]+x[i][j+1][1]+x[i][j+1][2]<=2
end do;
end do;

for i from 1 to 20 do
g[i] := seq(g[i][j],j=1..29)
end do;

g:= [seq(g[i],i=1..20)];

with(Optimization);

Minimize( sum(t[m], m=1..20),{A[],B[],C[],dd[],E[],F[],g[]}, assume = binary );


 

Download tam2.mw

 

Even for very common functions Maple has trouble calculating a series expansion if the center is not zero.

series(sin(x),x=0);

works as expected. But choosing x = 1 as center yields

series(sin(x),x=1);

This strange behavior also happens with other standard functions like cos, cosh, sinh.

 

Hi all,

I am trying to find numerical integration of a complex function (Bessel+ trigonometric function) in (r, theta). MAPLE is unable to solve it due to high memory allocation issues. Function is like this f(r.theta)=Bessel(1,r)+cos(theta)*f(r)+....50 terms.

I am using  evalf( Int(f(r,theta), [r=0..1, theta=0..Pi])).

Will term by term integration be helpful? How to do it in maple?

PS: If I decrease the number of digits, I get the result fast.
 

restart;

F1 := 0.1e10 * (0.55776153956804000740336392666745e0 * r ^ 2 - 0.18915469024923561670746189899598e-134609736 * BesselJ(0.0e0, 0.15157937163140142799278350422223e3 * r) + 0.10159683864017545475828989384714e-98384011 * BesselJ(0.0e0, 0.12958780324510399675374141784136e3 * r) + 0.59829761821461366846048256106725e-56462782 * BesselJ(0.0e0, 0.98170950730790781973537759160851e2 * r) + 0.14811094053601555275542685914404e-80227782 * BesselJ(0.0e0, 0.11702112189889242502757649460146e3 * r) + 0.33892512681723589723181533606428e-7313754 * BesselJ(0.0e0, 0.35332307550083865102634479022519e2 * r) - 0.51262328796358933950059817332311e-2254297 * BesselJ(0.0e0, 0.19615858510468242021125065884138e2 * r) - 0.12881247566594125484600726823569e-19254076 * BesselJ(0.0e0, 0.57327525437901010745090504243751e2 * r) + 0.11118751423887112574088244798447e-31252221 * BesselJ(0.0e0, 0.73036895225573834826506117569092e2 * r) - 0.51777724984261891154172697895593e-33998785 * BesselJ(0.0e0, 0.76178699584641457572852614623535e2 * r) + 0.12182571270348008146031905708415e-42932343 * BesselJ(0.0e0, 0.85604019436350230965949425493380e2 * r) + 0.40737194122764952321439991068058e-36860993 * BesselJ(0.0e0, 0.79320487175476299391184484872488e2 * r) - 0.50622470024129990724764923292822e-6070573 * BesselJ(0.0e0, 0.32189679910974403626622984104460e2 * r) - 0.46336835054606228289459855037304e-46141486 * BesselJ(0.0e0, 0.88745767144926306903735916434854e2 * r) + 0.13326755919882635551499433439984e-71843536 * BesselJ(0.0e0, 0.11073775478089921510860865288827e3 * r) - 0.51549643524094258017297656487619e-15264332 * BesselJ(0.0e0, 0.51043535183571509468733034633224e2 * r) + 0.63020619016879105779529017065422e-17201382 * BesselJ(0.0e0, 0.54185553641061320532099966214534e2 * r) - 0.34143530857990731804462883496266e-75977837 * BesselJ(0.0e0, 0.11387944084759499813488417492843e3 * r) + 0.29817206128159554191843363526765e-49466273 * BesselJ(0.0e0, 0.91887504251694985280553622214490e2 * r) - 0.32466998108445575875801048023258e-52906705 * BesselJ(0.0e0, 0.95029231808044695268050998187174e2 * r) - 0.18661427630098737592148946513116e-60134503 * BesselJ(0.0e0, 0.10131266182303873013714105638865e3 * r) - 0.88067954684538428870806207522441e-67824881 * BesselJ(0.0e0, 0.10759606325950917218267036427761e3 * r) + 0.13287757851408088906808371290053e-1290876``98 * BesselJ(0.0e0, 0.14843772662034223039593927702627e3 * r) - 0.28491383339723867983586755114008e-93671487 * BesselJ(0.0e0, 0.12644613869851659569779448049584e3 * r) + 0.44151440493072282554074854252808e-21422416 * BesselJ(0.0e0, 0.60469457845347491559398749808383e2 * r) - 0.25433459757254658126695515265514e-23706400 * BesselJ(0.0e0, 0.63611356698481232631039762417874e2 * r) + 0.31838472287249562307154488541348e-118390557 * BesselJ(0.0e0, 0.14215442965585902903270090809976e3 * r) + 0.24664036351722993558633516210405e-26106029 * BesselJ(0.0e0, 0.66753226734098493415305259750042e2 * r) - 0.35291670105094410350434844041935e-8672580 * BesselJ(0.0e0, 0.38474766234771615112052197557717e2 * r) + 0.58664491893391140222815167210588e-10147051 * BesselJ(0.0e0, 0.41617094212814450885863516805060e2 * r) - 0.15835272073861680035000959411566e-11737166 * BesselJ(0.0e0, 0.44759318997652821732779352713212e2 * r) + 0.70213789662657167106991346854437e-13442927 * BesselJ(0.0e0, 0.47901460887185447121274008722508e2 * r) + 0.20203042047105171656770921613101e-86016 * BesselJ(0.0e0, 0.38317059702075123156144358863082e1 * r) + 0.45595799288913858149685893872177e-140247419 * BesselJ(0.0e0, 0.15472101451628595352476655565184e3 * r) - 0.18611154629569865685380386607775e-146000746 * BesselJ(0.0e0, 0.15786265540193029780509466960866e3 * r) + 0.98529688671644920915913795962299e-63921870 * BesselJ(0.0e0, 0.10445436579128276007136342813961e3 * r) - 0.15806285101030450527944027463056e-123681305 * BesselJ(0.0e0, 0.14529607934519590723242215085501e3 * r) - 0.40315574736579460691059726643094e-28621303 * BesselJ(0.0e0, 0.69895071837495773969730536435500e2 * r) + 0.62723521218202757338090566184844e-108155995 * BesselJ(0.0e0, 0.13587112236478900059180156821946e3 * r) - 0.10859734567264554119513113490716e-113215453 * BesselJ(0.0e0, 0.13901277738865970417843354613596e3 * r) - 0.54175511325922018873646654014932e-39838846 * BesselJ(0.0e0, 0.82462259914373556453986610648781e2 * r) + 0.11283650227585469604741653680022e-4943036 * BesselJ(0.0e0, 0.29046828534916855066647819883532e2 * r) - 0.61345791140260163801601678872534e-103212181 * BesselJ(0.0e0, 0.13272946438850961588677459735175e3 * r) - 0.10878629914720505255262338938331e-84593372 * BesselJ(0.0e0, 0.12016279832814900375811940782917e3 * r) - 0.35054349658929943485990383440882e-3931145 * BesselJ(0.0e0, 0.25903672087618382625495855445980e2 * r) + 0.13529453916914935758397358737774e-89074607 * BesselJ(0.0e0, 0.12330447048863571801676003206877e3 * r) + 0.13471689526126410315073637771645e-3034898 * BesselJ(0.0e0, 0.22760084380592771898053005152182e2 * r) - 0.21295581245266175979652384428576e-288353 * BesselJ(0.0e0, 0.70155866698156187535370499814765e1 * r) + 0.46293568384524693637583038682636e-606366 * BesselJ(0.0e0, 0.10173468135062722077185711776776e2 * r) - 0.65373336840252622743371660187403e-1040030 * BesselJ(0.0e0, 0.13323691936314223032393684126948e2 * r) + 0.12271878942218097649114096289979e-1589340 * BesselJ(0.0e0, 0.16470630050877632812552460470990e2 * r) + 0.30096533794321654779481815801012e5) * (-0.84195432401461277308031602263610e-5 * r ^ 2 - 0.59149959490724929627371164952978e-2 * r ^ 6 * cos(0.6e1 * theta) + 0.44528672504236299477606103483348e-2 * r ^ 9 * cos(0.9e1 * theta) + 0.2112306765385091377525007041829e-2 * r ^ 25 * cos(0.25e2 * theta) - 0.67200617360940427597733246769568e-3 * r ^ 4 * cos(0.4e1 * theta) + 0.8077651557524848874997646779728e-4 * r ^ 38 * cos(0.38e2 * theta) + 0.6431431133931729186611840353106e-3 * r ^ 39 * cos(0.39e2 * theta) + 0.6638764085868884552072751263020e-3 * r ^ 40 * cos(0.40e2 * theta) + 0.3077586813267194148977094233961e-3 * r ^ 41 * cos(0.41e2 * theta) - 0.1856408707409825202502168626613e-3 * r ^ 42 * cos(0.42e2 * theta) - 0.4195028383398335941571877904622e-3 * r ^ 43 * cos(0.43e2 * theta) - 0.3706398326158304378037548737582e-3 * r ^ 44 * cos(0.44e2 * theta) - 0.7999587757612915190037434403564e-4 * r ^ 45 * cos(0.45e2 * theta) + 0.1737050010593172373976692973078e-3 * r ^ 46 * cos(0.46e2 * theta) + 0.2156346448293426610250334073280e-3 * r ^ 47 * cos(0.47e2 * theta) + 0.8688707406587637755715273073496e-4 * r ^ 48 * cos(0.48e2 * theta) - 0.2566545888070136544474329645476e-4 * r ^ 49 * cos(0.49e2 * theta) + 0.10879633813910334336257501999693e-1 * cos(theta) * r + 0.1887562703232630941270016328998e-2 * r ^ 24 * cos(0.24e2 * theta) + 0.9513343462787182229625573235371e-3 * r ^ 26 * cos(0.26e2 * theta) - 0.6163648649547716429383661026270e-3 * r ^ 27 * cos(0.27e2 * theta) - 0.1638476483444926784339005153548e-2 * r ^ 28 * cos(0.28e2 * theta) - 0.1544747773264052898936010069036e-2 * r ^ 29 * cos(0.29e2 * theta) - 0.5206686266979668543527923877478e-3 * r ^ 30 * cos(0.30e2 * theta) + 0.7031766719478684183248753358164e-3 * r ^ 31 * cos(0.31e2 * theta) + 0.1364403772746535517159915014059e-2 * r ^ 32 * cos(0.32e2 * theta) + 0.10540246948583098852767644351809e-2 * r ^ 33 * cos(0.33e2 * theta) + 0.1949337811874134263703020015791e-3 * r ^ 34 * cos(0.34e2 * theta) - 0.7191715359288498000802128285804e-3 * r ^ 35 * cos(0.35e2 * theta) - 0.10227876151057534138247065986153e-2 * r ^ 36 * cos(0.36e2 * theta) - 0.6867126825080510201446558832207e-3 * r ^ 37 * cos(0.37e2 * theta) - 0.51907452513946892830363140141895e-2 * r ^ 5 * cos(0.5e1 * theta) + 0.15481206149695126077925147166938e-2 * r ^ 11 * cos(0.11e2 * theta) - 0.18891064144929437714573633077525e-2 * r ^ 12 * cos(0.12e2 * theta) - 0.3811736195725823688361734620913e-2 * r ^ 13 * cos(0.13e2 * theta) - 0.32257343081162300403533436479469e-2 * r ^ 14 * cos(0.14e2 * theta) - 0.6456518231629053621129825002098e-3 * r ^ 15 * cos(0.15e2 * theta) + 0.20319096805014454478199422911684e-2 * r ^ 16 * cos(0.16e2 * theta) + 0.3233144446775015541635116158538e-2 * r ^ 17 * cos(0.17e2 * theta) + 0.23137228128708316785559166203584e-2 * r ^ 18 * cos(0.18e2 * theta) + 0.6898483226498941349817978084256e-4 * r ^ 19 * cos(0.19e2 * theta) - 0.20285262491678306920628881668352e-2 * r ^ 20 * cos(0.20e2 * theta) - 0.2671173199674743523515178373090e-2 * r ^ 21 * cos(0.21e2 * theta) - 0.15775142288031750532503075313091e-2 * r ^ 22 * cos(0.22e2 * theta) + 0.3622094777240520457049718035053e-3 * r ^ 23 * cos(0.23e2 * theta) + 0.14579067481459940998484958894370e-2 * r ^ 8 * cos(0.8e1 * theta) + 0.43385218600667457865829805287215e-2 * r ^ 10 * cos(0.10e2 * theta) - 0.29324228962818139404116534560943e-2 * r ^ 7 * cos(0.7e1 * theta) + 0.54771662980043457997274959739776e-2 * r ^ 3 * cos(0.3e1 * theta) - 0.11907324829492592983826593268542e-1 + 0.99737018277250342942042004599405e6 * (0.10375843065514893709650453544669e-7 * r ^ 4 - 0.24066724220589275560649004814238e-8 * r ^ 2) * cos(0.2e1 * theta) / r ^ 2 - 0.18524693450872080736996040590111e-1589345 * BesselJ(0.0e0, 0.16470630050877632812552460470990e2 * r) - 0.20335836094200343189896872255293e-3034903 * BesselJ(0.0e0, 0.22760084380592771898053005152182e2 * r) + 0.32146186927377989454999075542184e-288358 * BesselJ(0.0e0, 0.70155866698156187535370499814765e1 * r) - 0.69881243704258704205303920297122e-606371 * BesselJ(0.0e0, 0.10173468135062722077185711776776e2 * r) + 0.98682608468381340045946744187651e-1040035 * BesselJ(0.0e0, 0.13323691936314223032393684126948e2 * r) - 0.20423032817438260168628393904163e-89074612 * BesselJ(0.0e0, 0.12330447048863571801676003206877e3 * r) + 0.16393027894394588837550747507414e-113215458 * BesselJ(0.0e0, 0.13901277738865970417843354613596e3 * r) + 0.81779224239606095156885663441587e-39838851 * BesselJ(0.0e0, 0.82462259914373556453986610648781e2 * r) - 0.17032938676879018403348115316985e-4943041 * BesselJ(0.0e0, 0.29046828534916855066647819883532e2 * r) + 0.92602932340297485357655867631396e-103212186 * BesselJ(0.0e0, 0.13272946438850961588677459735175e3 * r) + 0.16421550871268572218657911635481e-84593377 * BesselJ(0.0e0, 0.12016279832814900375811940782917e3 * r) + 0.52915375437527581357423578813141e-3931150 * BesselJ(0.0e0, 0.25903672087618382625495855445980e2 * r) + 0.77815414272085141864206462412262e-15264337 * BesselJ(0.0e0, 0.51043535183571509468733034633224e2 * r) - 0.95131124896907983486241420998755e-17201387 * BesselJ(0.0e0, 0.54185553641061320532099966214534e2 * r) + 0.51540472771347914200070162230077e-75977842 * BesselJ(0.0e0, 0.11387944084759499813488417492843e3 * r) - 0.45009782583936088946734982085640e-49466278 * BesselJ(0.0e0, 0.91887504251694985280553622214490e2 * r) + 0.49009706668463083583947296301775e-52906710 * BesselJ(0.0e0, 0.95029231808044695268050998187174e2 * r) + 0.28169869327339522936720076403132e-60134508 * BesselJ(0.0e0, 0.10131266182303873013714105638865e3 * r) + 0.13294067445237467596212175135530e-67824885 * BesselJ(0.0e0, 0.10759606325950917218267036427761e3 * r) - 0.20058186851887448492658350947366e-129087703 * BesselJ(0.0e0, 0.14843772662034223039593927702627e3 * r) + 0.43008421517583172146652387481621e-93671492 * BesselJ(0.0e0, 0.12644613869851659569779448049584e3 * r) - 0.66647650649066255093532041895905e-21422421 * BesselJ(0.0e0, 0.60469457845347491559398749808383e2 * r) + 0.38392413062141555362678468281752e-23706405 * BesselJ(0.0e0, 0.63611356698481232631039762417874e2 * r) - 0.48060931976467196435085585083844e-118390562 * BesselJ(0.0e0, 0.14215442965585902903270090809976e3 * r) - 0.37230950111886614086127736374754e-26106034 * BesselJ(0.0e0, 0.66753226734098493415305259750042e2 * r) + 0.53273616301499657528989740768063e-8672585 * BesselJ(0.0e0, 0.38474766234771615112052197557717e2 * r) - 0.88555447286690435479201942884554e-10147056 * BesselJ(0.0e0, 0.41617094212814450885863516805060e2 * r) + 0.23903720225781678909977638730792e-11737171 * BesselJ(0.0e0, 0.44759318997652821732779352713212e2 * r) - 0.10598938725267772368055360453741e-13442931 * BesselJ(0.0e0, 0.47901460887185447121274008722508e2 * r) - 0.30496972994915901977125629292157e-86021 * BesselJ(0.0e0, 0.38317059702075123156144358863082e1 * r) - 0.68827944640884252540240135035619e-140247424 * BesselJ(0.0e0, 0.15472101451628595352476655565184e3 * r) + 0.28093981036064987725074202641260e-146000751 * BesselJ(0.0e0, 0.15786265540193029780509466960866e3 * r) - 0.14873291099481638062068892057166e-63921874 * BesselJ(0.0e0, 0.10445436579128276007136342813961e3 * r) + 0.23859963700126918177896460503756e-123681310 * BesselJ(0.0e0, 0.14529607934519590723242215085501e3 * r) + 0.60857319959503281138409206408861e-28621308 * BesselJ(0.0e0, 0.69895071837495773969730536435500e2 * r) - 0.94682648696048924172260521336169e-108156000 * BesselJ(0.0e0, 0.13587112236478900059180156821946e3 * r) + 0.28553350861432233569650200943679e-134609741 * BesselJ(0.0e0, 0.15157937163140142799278350422223e3 * r) - 0.15336284689969342456370426833116e-98384016 * BesselJ(0.0e0, 0.12958780324510399675374141784136e3 * r) - 0.90314449987634539477129986599199e-56462787 * BesselJ(0.0e0, 0.98170950730790781973537759160851e2 * r) - 0.22357699119008062011176340166029e-80227787 * BesselJ(0.0e0, 0.11702112189889242502757649460146e3 * r) - 0.51161554857649418772612124539227e-7313759 * BesselJ(0.0e0, 0.35332307550083865102634479022519e2 * r) + 0.77381705849741819343661724258774e-2254302 * BesselJ(0.0e0, 0.19615858510468242021125065884138e2 * r) + 0.19444549898144465612468716205102e-19254081 * BesselJ(0.0e0, 0.57327525437901010745090504243751e2 * r) - 0.16784020006534355647552255243370e-31252226 * BesselJ(0.0e0, 0.73036895225573834826506117569092e2 * r) + 0.78159708666719140456536882061442e-33998790 * BesselJ(0.0e0, 0.76178699584641457572852614623535e2 * r) - 0.18389881393811040868057686236036e-42932348 * BesselJ(0.0e0, 0.85604019436350230965949425493380e2 * r) - 0.61493764461507094694745129374163e-36860998 * BesselJ(0.0e0, 0.79320487175476299391184484872488e2 * r) + 0.76415823798329557427383241351545e-6070578 * BesselJ(0.0e0, 0.32189679910974403626622984104460e2 * r) + 0.69946555772905592227422733556311e-46141491 * BesselJ(0.0e0, 0.88745767144926306903735916434854e2 * r) - 0.20117055364775216522977716192738e-71843541 * BesselJ(0.0e0, 0.11073775478089921510860865288827e3 * r) + 0.24003433134624560908493351044670e-2 * cos(0.2e1 * theta)) * r;

0.1e10*(30096.533794321654779481815801012+.55776153956804000740336392666745*r^2-0.18915469024923561670746189899598e-134609736*BesselJ(0., 151.57937163140142799278350422223*r)+0.10159683864017545475828989384714e-98384011*BesselJ(0., 129.58780324510399675374141784136*r)+0.59829761821461366846048256106725e-56462782*BesselJ(0., 98.170950730790781973537759160851*r)+0.14811094053601555275542685914404e-80227782*BesselJ(0., 117.02112189889242502757649460146*r)+0.33892512681723589723181533606428e-7313754*BesselJ(0., 35.332307550083865102634479022519*r)-0.51262328796358933950059817332311e-2254297*BesselJ(0., 19.615858510468242021125065884138*r)-0.12881247566594125484600726823569e-19254076*BesselJ(0., 57.327525437901010745090504243751*r)+0.11118751423887112574088244798447e-31252221*BesselJ(0., 73.036895225573834826506117569092*r)-0.51777724984261891154172697895593e-33998785*BesselJ(0., 76.178699584641457572852614623535*r)+0.12182571270348008146031905708415e-42932343*BesselJ(0., 85.604019436350230965949425493380*r)+0.40737194122764952321439991068058e-36860993*BesselJ(0., 79.320487175476299391184484872488*r)-0.50622470024129990724764923292822e-6070573*BesselJ(0., 32.189679910974403626622984104460*r)-0.46336835054606228289459855037304e-46141486*BesselJ(0., 88.745767144926306903735916434854*r)+0.13326755919882635551499433439984e-71843536*BesselJ(0., 110.73775478089921510860865288827*r)-0.51549643524094258017297656487619e-15264332*BesselJ(0., 51.043535183571509468733034633224*r)+0.63020619016879105779529017065422e-17201382*BesselJ(0., 54.185553641061320532099966214534*r)-0.34143530857990731804462883496266e-75977837*BesselJ(0., 113.87944084759499813488417492843*r)+0.29817206128159554191843363526765e-49466273*BesselJ(0., 91.887504251694985280553622214490*r)-0.32466998108445575875801048023258e-52906705*BesselJ(0., 95.029231808044695268050998187174*r)-0.18661427630098737592148946513116e-60134503*BesselJ(0., 101.31266182303873013714105638865*r)-0.88067954684538428870806207522441e-67824881*BesselJ(0., 107.59606325950917218267036427761*r)+0.13287757851408088906808371290053e-129087698*BesselJ(0., 148.43772662034223039593927702627*r)-0.28491383339723867983586755114008e-93671487*BesselJ(0., 126.44613869851659569779448049584*r)+0.44151440493072282554074854252808e-21422416*BesselJ(0., 60.469457845347491559398749808383*r)-0.25433459757254658126695515265514e-23706400*BesselJ(0., 63.611356698481232631039762417874*r)+0.31838472287249562307154488541348e-118390557*BesselJ(0., 142.15442965585902903270090809976*r)+0.24664036351722993558633516210405e-26106029*BesselJ(0., 66.753226734098493415305259750042*r)-0.35291670105094410350434844041935e-8672580*BesselJ(0., 38.474766234771615112052197557717*r)+0.58664491893391140222815167210588e-10147051*BesselJ(0., 41.617094212814450885863516805060*r)-0.15835272073861680035000959411566e-11737166*BesselJ(0., 44.759318997652821732779352713212*r)+0.70213789662657167106991346854437e-13442927*BesselJ(0., 47.901460887185447121274008722508*r)+0.20203042047105171656770921613101e-86016*BesselJ(0., 3.8317059702075123156144358863082*r)+0.45595799288913858149685893872177e-140247419*BesselJ(0., 154.72101451628595352476655565184*r)-0.18611154629569865685380386607775e-146000746*BesselJ(0., 157.86265540193029780509466960866*r)+0.98529688671644920915913795962299e-63921870*BesselJ(0., 104.45436579128276007136342813961*r)-0.15806285101030450527944027463056e-123681305*BesselJ(0., 145.29607934519590723242215085501*r)-0.40315574736579460691059726643094e-28621303*BesselJ(0., 69.895071837495773969730536435500*r)+0.62723521218202757338090566184844e-108155995*BesselJ(0., 135.87112236478900059180156821946*r)-0.10859734567264554119513113490716e-113215453*BesselJ(0., 139.01277738865970417843354613596*r)-0.54175511325922018873646654014932e-39838846*BesselJ(0., 82.462259914373556453986610648781*r)+0.11283650227585469604741653680022e-4943036*BesselJ(0., 29.046828534916855066647819883532*r)-0.61345791140260163801601678872534e-103212181*BesselJ(0., 132.72946438850961588677459735175*r)-0.10878629914720505255262338938331e-84593372*BesselJ(0., 120.16279832814900375811940782917*r)-0.35054349658929943485990383440882e-3931145*BesselJ(0., 25.903672087618382625495855445980*r)+0.13529453916914935758397358737774e-89074607*BesselJ(0., 123.30447048863571801676003206877*r)+0.13471689526126410315073637771645e-3034898*BesselJ(0., 22.760084380592771898053005152182*r)-0.21295581245266175979652384428576e-288353*BesselJ(0., 7.0155866698156187535370499814765*r)+0.46293568384524693637583038682636e-606366*BesselJ(0., 10.173468135062722077185711776776*r)-0.65373336840252622743371660187403e-1040030*BesselJ(0., 13.323691936314223032393684126948*r)+0.12271878942218097649114096289979e-1589340*BesselJ(0., 16.470630050877632812552460470990*r))*(-0.11907324829492592983826593268542e-1-0.59149959490724929627371164952978e-2*r^6*cos(6.*theta)+0.44528672504236299477606103483348e-2*r^9*cos(9.*theta)+0.2112306765385091377525007041829e-2*r^25*cos(25.*theta)-0.67200617360940427597733246769568e-3*r^4*cos(4.*theta)+0.8077651557524848874997646779728e-4*r^38*cos(38.*theta)+0.6431431133931729186611840353106e-3*r^39*cos(39.*theta)+0.6638764085868884552072751263020e-3*r^40*cos(40.*theta)+0.3077586813267194148977094233961e-3*r^41*cos(41.*theta)-0.1856408707409825202502168626613e-3*r^42*cos(42.*theta)-0.4195028383398335941571877904622e-3*r^43*cos(43.*theta)-0.3706398326158304378037548737582e-3*r^44*cos(44.*theta)-0.7999587757612915190037434403564e-4*r^45*cos(45.*theta)+0.1737050010593172373976692973078e-3*r^46*cos(46.*theta)+0.2156346448293426610250334073280e-3*r^47*cos(47.*theta)+0.8688707406587637755715273073496e-4*r^48*cos(48.*theta)-0.2566545888070136544474329645476e-4*r^49*cos(49.*theta)+0.10879633813910334336257501999693e-1*cos(theta)*r+0.1887562703232630941270016328998e-2*r^24*cos(24.*theta)+0.9513343462787182229625573235371e-3*r^26*cos(26.*theta)-0.6163648649547716429383661026270e-3*r^27*cos(27.*theta)-0.1638476483444926784339005153548e-2*r^28*cos(28.*theta)-0.1544747773264052898936010069036e-2*r^29*cos(29.*theta)-0.5206686266979668543527923877478e-3*r^30*cos(30.*theta)+0.7031766719478684183248753358164e-3*r^31*cos(31.*theta)+0.1364403772746535517159915014059e-2*r^32*cos(32.*theta)+0.10540246948583098852767644351809e-2*r^33*cos(33.*theta)+0.1949337811874134263703020015791e-3*r^34*cos(34.*theta)-0.7191715359288498000802128285804e-3*r^35*cos(35.*theta)-0.10227876151057534138247065986153e-2*r^36*cos(36.*theta)-0.6867126825080510201446558832207e-3*r^37*cos(37.*theta)-0.51907452513946892830363140141895e-2*r^5*cos(5.*theta)+0.15481206149695126077925147166938e-2*r^11*cos(11.*theta)-0.18891064144929437714573633077525e-2*r^12*cos(12.*theta)-0.3811736195725823688361734620913e-2*r^13*cos(13.*theta)-0.32257343081162300403533436479469e-2*r^14*cos(14.*theta)-0.6456518231629053621129825002098e-3*r^15*cos(15.*theta)+0.20319096805014454478199422911684e-2*r^16*cos(16.*theta)+0.3233144446775015541635116158538e-2*r^17*cos(17.*theta)+0.23137228128708316785559166203584e-2*r^18*cos(18.*theta)+0.6898483226498941349817978084256e-4*r^19*cos(19.*theta)-0.20285262491678306920628881668352e-2*r^20*cos(20.*theta)-0.2671173199674743523515178373090e-2*r^21*cos(21.*theta)-0.15775142288031750532503075313091e-2*r^22*cos(22.*theta)+0.3622094777240520457049718035053e-3*r^23*cos(23.*theta)+0.14579067481459940998484958894370e-2*r^8*cos(8.*theta)+0.43385218600667457865829805287215e-2*r^10*cos(10.*theta)-0.29324228962818139404116534560943e-2*r^7*cos(7.*theta)+0.54771662980043457997274959739776e-2*r^3*cos(3.*theta)-0.84195432401461277308031602263610e-5*r^2+0.28553350861432233569650200943679e-134609741*BesselJ(0., 151.57937163140142799278350422223*r)-0.15336284689969342456370426833116e-98384016*BesselJ(0., 129.58780324510399675374141784136*r)-0.90314449987634539477129986599199e-56462787*BesselJ(0., 98.170950730790781973537759160851*r)-0.22357699119008062011176340166029e-80227787*BesselJ(0., 117.02112189889242502757649460146*r)-0.51161554857649418772612124539227e-7313759*BesselJ(0., 35.332307550083865102634479022519*r)+0.77381705849741819343661724258774e-2254302*BesselJ(0., 19.615858510468242021125065884138*r)+0.19444549898144465612468716205102e-19254081*BesselJ(0., 57.327525437901010745090504243751*r)-0.16784020006534355647552255243370e-31252226*BesselJ(0., 73.036895225573834826506117569092*r)+0.78159708666719140456536882061442e-33998790*BesselJ(0., 76.178699584641457572852614623535*r)-0.18389881393811040868057686236036e-42932348*BesselJ(0., 85.604019436350230965949425493380*r)-0.61493764461507094694745129374163e-36860998*BesselJ(0., 79.320487175476299391184484872488*r)+0.76415823798329557427383241351545e-6070578*BesselJ(0., 32.189679910974403626622984104460*r)+0.69946555772905592227422733556311e-46141491*BesselJ(0., 88.745767144926306903735916434854*r)-0.20117055364775216522977716192738e-71843541*BesselJ(0., 110.73775478089921510860865288827*r)+0.77815414272085141864206462412262e-15264337*BesselJ(0., 51.043535183571509468733034633224*r)-0.95131124896907983486241420998755e-17201387*BesselJ(0., 54.185553641061320532099966214534*r)+0.51540472771347914200070162230077e-75977842*BesselJ(0., 113.87944084759499813488417492843*r)-0.45009782583936088946734982085640e-49466278*BesselJ(0., 91.887504251694985280553622214490*r)+0.49009706668463083583947296301775e-52906710*BesselJ(0., 95.029231808044695268050998187174*r)+0.28169869327339522936720076403132e-60134508*BesselJ(0., 101.31266182303873013714105638865*r)+0.13294067445237467596212175135530e-67824885*BesselJ(0., 107.59606325950917218267036427761*r)-0.20058186851887448492658350947366e-129087703*BesselJ(0., 148.43772662034223039593927702627*r)+0.43008421517583172146652387481621e-93671492*BesselJ(0., 126.44613869851659569779448049584*r)-0.66647650649066255093532041895905e-21422421*BesselJ(0., 60.469457845347491559398749808383*r)+0.38392413062141555362678468281752e-23706405*BesselJ(0., 63.611356698481232631039762417874*r)-0.48060931976467196435085585083844e-118390562*BesselJ(0., 142.15442965585902903270090809976*r)-0.37230950111886614086127736374754e-26106034*BesselJ(0., 66.753226734098493415305259750042*r)+0.53273616301499657528989740768063e-8672585*BesselJ(0., 38.474766234771615112052197557717*r)-0.88555447286690435479201942884554e-10147056*BesselJ(0., 41.617094212814450885863516805060*r)+0.23903720225781678909977638730792e-11737171*BesselJ(0., 44.759318997652821732779352713212*r)-0.10598938725267772368055360453741e-13442931*BesselJ(0., 47.901460887185447121274008722508*r)-0.30496972994915901977125629292157e-86021*BesselJ(0., 3.8317059702075123156144358863082*r)-0.68827944640884252540240135035619e-140247424*BesselJ(0., 154.72101451628595352476655565184*r)+0.28093981036064987725074202641260e-146000751*BesselJ(0., 157.86265540193029780509466960866*r)-0.14873291099481638062068892057166e-63921874*BesselJ(0., 104.45436579128276007136342813961*r)+0.23859963700126918177896460503756e-123681310*BesselJ(0., 145.29607934519590723242215085501*r)+0.60857319959503281138409206408861e-28621308*BesselJ(0., 69.895071837495773969730536435500*r)-0.94682648696048924172260521336169e-108156000*BesselJ(0., 135.87112236478900059180156821946*r)+0.16393027894394588837550747507414e-113215458*BesselJ(0., 139.01277738865970417843354613596*r)+0.81779224239606095156885663441587e-39838851*BesselJ(0., 82.462259914373556453986610648781*r)-0.17032938676879018403348115316985e-4943041*BesselJ(0., 29.046828534916855066647819883532*r)+0.92602932340297485357655867631396e-103212186*BesselJ(0., 132.72946438850961588677459735175*r)+0.16421550871268572218657911635481e-84593377*BesselJ(0., 120.16279832814900375811940782917*r)+0.52915375437527581357423578813141e-3931150*BesselJ(0., 25.903672087618382625495855445980*r)-0.20423032817438260168628393904163e-89074612*BesselJ(0., 123.30447048863571801676003206877*r)-0.20335836094200343189896872255293e-3034903*BesselJ(0., 22.760084380592771898053005152182*r)+0.32146186927377989454999075542184e-288358*BesselJ(0., 7.0155866698156187535370499814765*r)-0.69881243704258704205303920297122e-606371*BesselJ(0., 10.173468135062722077185711776776*r)+0.98682608468381340045946744187651e-1040035*BesselJ(0., 13.323691936314223032393684126948*r)-0.18524693450872080736996040590111e-1589345*BesselJ(0., 16.470630050877632812552460470990*r)+0.24003433134624560908493351044670e-2*cos(2.*theta)+997370.18277250342942042004599405*(0.10375843065514893709650453544669e-7*r^4-0.24066724220589275560649004814238e-8*r^2)*cos(2.*theta)/r^2)*r

(1)

evalf(subs(r=1,theta=Pi/4,F1))

0.7135632392e12

(2)

Digits:=16;

16

(3)

int_F1:=evalf(Int(F1,[theta=Pi/4..2*Pi-Pi/4,r=0..1]));

Warning,  computation interrupted

 

``


 

Download Maple_prime_integration.mw

Thanks.

How we can generate given matrix A with help of loop?

Surely there is some button I can click that simply shows all my posts/questions without having to search?

Hello everyone,

I am a studen and have an astrophysics class where I programmed a basic space probe to go from a planet A to a Planet B.

I have a 2D grap and a 3D graph already done however I would like to animate them.

I have included both a picture and my whole program. Also see some code below. 

Thanks to all.

 

Download SondeII_(1).mwSondeII_(1).mwSondeII_(1).mw

restart:

with(linalg):
with(DEtools):

#Sonde
Position := [x(t), y(t)]:

#Terre
omega1 :=2*Pi:
r1 := [cos(omega1*t), sin(omega1*t)]:
x1(t) := innerprod([1, 0], r1):
y1(t) := innerprod([0, 1], r1):

#Mars
omega2 := sqrt(2)*Pi/2:
phi2 := Pi/2:
r2 := [2*cos(omega2*t + phi2), 2*sin(omega2*t+ phi2)]:
x2(t):= innerprod([1, 0], r2):
y2(t):= innerprod([0, 1], r2):

#Les couplages gravitationnelles (masse).
c1 := 1.0:
c2 := 0.2:
c0 := 100:

#Les forces appliqués sur la sonde
ForceGravitationnelle1 := -c1*(Position-r1)/(sqrt((x(t)-x1(t))^2+(y(t)-y1(t))^2))^3:
ForceGravitationnelle2 := -c2*(Position-r2)/(sqrt((x(t)-x2(t))^2+(y(t)-y2(t))^2))^3:
ForceGravitationnelle0 := -c0*(Position)/(sqrt((x(t))^2+(y(t))^2))^3:

#La somme des forces.
Force := ForceGravitationnelle1 + ForceGravitationnelle2 + ForceGravitationnelle0:

Fx := innerprod([1, 0], Force):
Fy := innerprod([0, 1], Force):

#L'interval de temps.
TempsInit := 0:
TempsFinal := 3:

#Les équations différentielles de deuxieme ordre.
eq1x := (D(D(x)))(t) = Fx:
eq1y := (D(D(y)))(t) = Fy:

#Les conditions initiales..
phi0 :=(Pi)/2:
V0 := 12.946802:
x0 := 1:
y0 := 0.1:
Vx0 := V0*cos(phi0):
Vy0 := V0*sin(phi0):

ConditionsInit := x(0) = x0, y(0) = y0, D(x)(0) = Vx0, D(y)(0) = Vy0:

#La trajectoire de la sonde.
Trajectoire := dsolve({eq1x, eq1y, ConditionsInit}, {x(t), y(t)}, numeric, range = TempsInit..TempsFinal, maxfun=0):

#Tracage du graphique de la trajectoire en 2D
plots[odeplot](Trajectoire, [[0,0],[x1(t),y1(t)],[x2(t), y2(t)], [x(t), y(t)]],
TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [2],
color = ["Black", "Green", "Blue", "Red"],
labels = ["X (L)", "Y (L)"],
labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan",
titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle);

#Tracage du graphique en 3D:
plots[odeplot](Trajectoire, [[0,0,t],[x1(t),y1(t), t],[x2(t), y2(t), t], [x(t), y(t), t]],
TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [3],
color = ["Black", "Green", "Blue", "Red"],
labels = ["X (L)", "Y (L)", "t"],
labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan",
titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle);
 

 

 

 

 

 


 

First 693 694 695 696 697 698 699 Last Page 695 of 2431