MaplePrimes Questions

Hello, I am newbie in Maple...

I tried to make a simple iteration, and I would like to get complex results for Z2, Z4 and Z5, as they have complex tag in them.

Would anybody to be so kind, to have a look at my file, and tell me, what's the mistake?
zernike_BB.mw

Thank you:

Attila

How can I call to an external batch file (which is located in a given directory) from a Maple session?

Thanks,

Janos Pinter

 

Hi all,

I would like to know how could I plot an ODE for 3 values of a parameter in the same figure.

sol:=dsolve(dsys,numeric,parameters=[t]);

p:=proc(t)sol(parameters=[t]); plots:-odeplot(sol,[x,f(x)],-1..0,_rest) end proc;

p(-1); p(-0.5); p(-0.1);

Here, I have 3 figures one for each value. I used with(plots): display(p(-1); p(-0.5); p(-0.1)). But doesn't work.

Thanks for your help.

 

Hello,

 

I wonder if it is possible to create standalone executables in Maple that would run in a  computer without Maple. Also if it is possible can we do that with Matlab code in it too?  

 

Matlab does not allow to create standalone executable is you use symbolic toolbox and I want to find a solution for that. What I will need to take second derivatives and get the coefficients of polynomials. 

How to find (i. e. to evaluate) the positive root of the polynomial equation

mul(x+j, j = 0 .. 2015)=1?

The command

RootFinding:-NextZero(x-> mul(x+j, j = 0 .. 2015)-1 , 0);

outputs

                              FAIL
The same with Digits:=100.

Hello people,

 

I've been working with a list of [x,y,z] elements, where the x and y are positions, and z is the value at given x y. I wish to be able to plot the results so that they look like this

Plot of points

 link:http://imgur.com/t6fEHee

I made the above plot using the following code

surfdata(points[1],dimension=2,colorscheme=["Orange","MediumBlue"])

where points[1] is a list of lists of points.

Glad that i was succesful, i tried to apply this method to a must larger number of points, only to be met by the following error

Error, (in makePlotFromLargeFNASet) assigning to a long list, please use Arrays

So, i made it so that points[1] became an array instead of a list of lists. When trying to apply surfdata now, using the exact same line as above, the plot is not 2D with colors as the 3rd dimension, but only returns a 3D plot as if dimension=3. It is endlessly frustrating, since there doesn't seem to be any sense to the error, and i cannot find an answer to why it does so. Any help would be appreciated!

 

Thanks in advance,

Mehdi

 

EDIT: I have uploaded the worksheet and the two files that i use on the following link:

http://www.filedropper.com/plotscript

restart;
with(ArrayTools):
M1 := Matrix([[0, 0, b], [0, e, f]], order = Fortran_order);
row, col, var := SearchArray(M1);
M2 := Matrix([[0, 0, b], [0, e, f]], order = C_order);
row2, col2, var2 := SearchArray(M2);

I guess that's a bug.

How can I access the Laplace Transform built-in package?

I want to try to modify it for something like this,

 int(f(t)*exp(-s*t), t=0..infinity);

to 

 int(f(u*t)*exp(-s*t), t=0..infinity);

 or to

 int(f(u*t)*exp(-t), t=0..infinity);

Cheers!

Dear  i want to plot the graphs for different values of R[2,5,6.5]   here is the codes: Either ido loop or array i have to use or other procedure 

The graph display should be at R=2, one graph, R=5 another and R=6.5 

onemore graph

 

restart:
with(DEtools):
eta:=1+k*x+epsilon*sin(2*Pi*x):
A1(x):=-exp(-alpha*x)*J^2*R/(2*eta^3+6*xi*J^2*eta^2):

psi0:=A1(x)*y^3:
psi:=delta*psi0:
V:=-diff(psi,x):
delta:=0.1:
epsilon:=0.01:
alpha:=1:
xi:=0.001:
k:=0.1:
As:= [0, 2, 4]:
x:=0.2
plot([seq]([eval(V, J= A), y, y= 0..eval(eta, J= A)], A= As),title=" velocity at R=2.0 ",labels= ["v", "y"],color= [green, red, blue], linestyle= [solid, dash, dot],legend= [seq](J = A, A= As), axes=boxed);

 

 

 

 

 

 

Hello, I would like to customize the context menu in Maple 18 and looking for a way, to convert 2-D expressions to classical maple input using command(s) (same function as "2-D Math > Convert To > 1-D Math Input"). My main problem is, that using the standard procedures in the context menu I get the result of an expression, not the expression itself.

Can you give me an idea, how to do this? Thanks, Csaba

@Carl Love Dear Sir i am trying to solve the system of nonlinear ODE equation with semiinfinite domain by using shooting method . but i am receiving following error 

"Error, (in isolate) cannot isolate for a function when it appears with different arguments"

how can i remove this error. i am unable to find the mistake. kindly help me 

Hello! I'm really craving for a piece of advice from you pros.
For simplicity's sake let's start with this made-up system.

where

and

Here is solver options with pair of events to get idea about what I want.

Plot of solution



For my purposes it's essential to restrict variables m and D(fi1)(t), D(fi2)(t). While it's very convenient to use piecewise() operator in first case with m, I simply can't find working method for second.

I've tried various events for dsolve, but they trigger only once and I failed to provide continuous restriction on the derivatives in question.

That's what I need in the end:


If there's a way to obtain this result, please, don't make secrets of it :) Thank you in advance!

I input:

solve({My(x, -(1/2)*b) = 0, My(x, (1/2)*b) = 0, w(x, -(1/2)*b) = 0, w(x, (1/2)*b) = 0}, {Am, Bm, Cm, Dm});

and recieved: 

Error, (in My) invalid input: diff received -1, which is not valid for its 2nd argument

 

My is 

My := proc (x, y) options operator, arrow; -((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x+y)/a))^2/((exp(Pi*(I*x+y)/a)-1)^3*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))^2*a^2)-((1/2)*I)*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a^2)-I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x+y)/a)/((exp(Pi*(I*x+y)/a)-1)^2*(-1+exp(Pi*(I*x-y)/a))*a)+I*Bm*(exp((2*I)*Pi*x/a)-1)*Pi^2*(exp(Pi*(I*x-y)/a))^2/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^3*a^2)+I*Dm*(exp((2*I)*Pi*x/a)-1)*Pi*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a)-((1/2)*I)*Dm*y*(exp((2*I)*Pi*x/a)-1)*Pi^2*exp(Pi*(I*x-y)/a)/((exp(Pi*(I*x+y)/a)-1)*(-1+exp(Pi*(I*x-y)/a))^2*a^2)+sum(-4*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(d(y), y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*(diff(po(y), y))*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*(diff(po(y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+32*po(y)*a(y)^3*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(a(y), y))/(Pi(y)^7*m(y)^7*d(y))+16*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(a(y), y), y))/(Pi(y)^7*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-56*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-8*po(y)*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(Pi(y), y))/(Pi(y)^8*m(y)^7*d(y))-224*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(m(y), y))/(Pi(y)^7*m(y)^8*d(y))-32*po(y)*a(y)^3*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^7*d(y)^2)+392*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(m(y), y))/(Pi(y)^8*m(y)^8*d(y))+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))*(diff(d(y), y))/(Pi(y)^8*m(y)^7*d(y)^2)+56*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))*(diff(d(y), y))/(Pi(y)^7*m(y)^8*d(y)^2)+4*(diff(diff(po(y), y), y))*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+8*(diff(po(y), y))*a(y)^4*(2*Pi(y)*m(y)^2*y(y)^2*(diff(Pi(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(m(y), y))+2*Pi(y)^2*m(y)^2*y(y)*(diff(y(y), y))+8*a(y)*(diff(a(y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))+4*po(y)*a(y)^4*(2*(diff(Pi(y), y))^2*m(y)^2*y(y)^2+8*Pi(y)*m(y)*y(y)^2*(diff(Pi(y), y))*(diff(m(y), y))+8*Pi(y)*m(y)^2*y(y)*(diff(Pi(y), y))*(diff(y(y), y))+2*Pi(y)*m(y)^2*y(y)^2*(diff(diff(Pi(y), y), y))+2*Pi(y)^2*(diff(m(y), y))^2*y(y)^2+8*Pi(y)^2*m(y)*y(y)*(diff(m(y), y))*(diff(y(y), y))+2*Pi(y)^2*m(y)*y(y)^2*(diff(diff(m(y), y), y))+2*Pi(y)^2*m(y)^2*(diff(y(y), y))^2+2*Pi(y)^2*m(y)^2*y(y)*(diff(diff(y(y), y), y))+8*(diff(a(y), y))^2+8*a(y)*(diff(diff(a(y), y), y)))*sin(m*Pi*x/a)/(Pi(y)^7*m(y)^7*d(y))-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(m(y), y), y))/(Pi(y)^7*m(y)^8*d(y))+48*po(y)*a(y)^2*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(a(y), y))^2/(Pi(y)^7*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(Pi(y), y))^2/(Pi(y)^9*m(y)^7*d(y))+224*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(m(y), y))^2/(Pi(y)^7*m(y)^9*d(y))+8*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(d(y), y))^2/(Pi(y)^7*m(y)^7*d(y)^3)-28*po(y)*a(y)^4*(Pi(y)^2*m(y)^2*y(y)^2+4*a(y)^2)*sin(m*Pi*x/a)*(diff(diff(Pi(y), y), y))/(Pi(y)^8*m(y)^7*d(y)), m = 1 .. infinity) end proc;

[Lengthy, poorly formatted, and very-difficult-to-read plaintext prettyprint of the above procedure removed by a moderator.--Carl Love]

Hi, I build my simulation system in MapleSim, using the module 'Stepper Permanent Magnet' like this

 

But when I run this system, I get the followiing error:

System is underdetermined

 

When I delete the part about 'Stepper Permanent Magnet', the system runs well.

How to solve this problem? How to use 'Stepper Permanent Magnet'?

The Help file of MapleSim cannot proviod such help information.

Thank you.

 

 

 

 

sh.mw

 

guys i have a metric and i want to find its d'alembertian. what is your idea ?

 

thanks

First 1281 1282 1283 1284 1285 1286 1287 Last Page 1283 of 2429