Ahmed111

135 Reputation

5 Badges

7 years, 123 days

MaplePrimes Activity


These are questions asked by Ahmed111

I am trying to factor out I = sqrt(-1) from square roots in my Maple expression by using a substitution f2. However, after applying these substitutions to my final expression, there is no visible change. In addition, the term sqrt(2)/2 + sqrt(2)*I/2 also appear. How can I=sqrt(-1) can be properly factored out from the square roots?

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := (0*A__c)*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(I*delta2-delta1)*(delta1+I*delta2))

(1)

`assuming`([simplify(combine(simplify(convert(combine(eval(expr, delta1 = 0)), trigh))))], [delta2 > g*A__c and g*A__c > 0])

(cos((2*A__c^2*g*l__0^2-1)*omega__0*t)-I*sin((2*A__c^2*g*l__0^2-1)*omega__0*t))*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/(delta2*(I*(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))+delta2))

(2)

f1 := simplify(convert(numer(%),exp))/factor(denom(%))

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/((-(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*(-A__c^2*g-delta2^2)^(1/2))+I*delta2)*delta2)

(3)

sqrtterms := indets(%, sqrt)

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2)}

(4)

f2 := subs({sqrtterms[1] = sqrt(I)*sqrt(delta2-sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[2] = sqrt(I)*sqrt(delta2+sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[3] = sqrt(I)*sqrt(A__c^2*g+delta2^2)})

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2)}

(5)

f3 := subs(f2, f1)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))+I*delta2)*delta2)

(6)

f4 := subs({sqrt(A__c^2*g+delta2^2) = Z}, f3)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(7)

f4f := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+f4

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(8)

f4fnl := subs({I = -I, x = -x}, f4f)

A__c*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)-I*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(I*cosh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0+x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)-I*delta2)*delta2)

(9)

Mdensity := simplify(f4f*f4fnl)

(1/4)*(2*(1-I*A__c*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)-2*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2+(1+I)*2^(1/2)*Z*sinh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)+(2*I)*A__c*delta2^2)*(2*(I*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*A__c-1)*delta2*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)+(1-I)*2^(1/2)*Z*sinh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-(2*I)*A__c*delta2^2+2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2))/(delta2^2*((delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-delta2)*((delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)-delta2))

(10)

NULL

Download simplify.mw

I'm trying to reproduce a manual asymptotic analysis (see the attached pdf file) in Maple for a two-soliton solution. Specifically, I want to evaluate the limit of a function (e.g., r[2]r[2]r[2] or ∂xq[2]\partial_x q[2]∂x​q[2]). How can I properly perform the limit a2→+−∞ as t​→+−∞ in Maple, either by substitution or by reparametrization, in order to study the asymptotic behavior of a multi-variable expression symbolically? 

restart

with(Student[Calculus1])

lambda1 := I*mu1; lambda2 := I*mu2; a1 := -2*x/mu1+mu1*t; a2 := -2*x/mu2+mu2*t

numer_r := lambda2*cosh(a1)-lambda1*cosh(a2)

denom_r := (lambda1^2+lambda2^2)*cosh(a1)*cosh(a2)-2*lambda1*lambda2*(1+sinh(a1)*sinh(a2))

r2 := I*(-lambda1^2+lambda2^2)*numer_r/denom_r

numer_dq := (sinh(a1)-sinh(a2))^2; denom_dq := ((lambda1^2+lambda2^2)*cosh(a1)*cosh(a2)-2*lambda1*lambda2*(1+sinh(a1)*sinh(a2)))^2

dq2 := 1-2*(lambda1^2-lambda2^2)^2*numer_dq/denom_dq

limit_r2 := limit(r2, a2 = -infinity); simplify(limit_r2)

Error, invalid input: limit expects its 2nd argument, p, to be of type Or(name = algebraic,set(name = algebraic),list(name = algebraic)), but received -2*x/mu2+mu2*t = -infinity

 

limit_r2

(1)

limit_r2_pos := limit(r2, a2 = infinity); simplify(limit_r2_pos)

Error, invalid input: limit expects its 2nd argument, p, to be of type Or(name = algebraic,set(name = algebraic),list(name = algebraic)), but received -2*x/mu2+mu2*t = infinity

 

limit_r2_pos

(2)

NULL

Download asymptotic.mw cooocp_(2).pdf

Any suggestions for reformulating the limit or change of variables would be appreciated. 

I checked the ConsistencyTest of the system of equations but no output with 'true' or 'False'. Is it not work in 'DEtools'? Download consistency.mw

I am working with a symbolic expression in Maple that combines exponential terms. How can exponential terms be fully converted into hyperbolic functions? 

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(-delta1+I*delta2)*(delta1+I*delta2))

(1)

NULL

Download simplify.mw

  1. Further simplify the expression under three physical scenarios, assuming delta__1 > 0:

    • Case (i): When A__c = 0

    • Case (ii): When delta__1 > g * A__c

    • Case (iii): When delta__1 < g * A__c

How to integrate eq (4)? Since 'a', 'b', and 'c' are constant. 

restart

with(DEtools)

declare(z(x), y(x))

declare(z(x), y(x))

(1)

eq1 := (1/2)*(-z(x)^3-2*c*z(x))*(diff(diff(y(x), x), x))-((z(x)^2+2*c)*(diff(y(x), x))+b*z(x)^2+c*k+a)*(diff(z(x), x)) = 0

(1/2)*(-z(x)^3-2*c*z(x))*(diff(diff(y(x), x), x))-((z(x)^2+2*c)*(diff(y(x), x))+b*z(x)^2+c*k+a)*(diff(z(x), x)) = 0

(2)

eq2 := simplify(z(x)*eq1)

-z(x)*(z(x)*((1/2)*z(x)^2+c)*(diff(diff(y(x), x), x))+((z(x)^2+2*c)*(diff(y(x), x))+b*z(x)^2+c*k+a)*(diff(z(x), x))) = 0

(3)

eq3 := eval(int(lhs(eq2), x))

int(-z(x)*(z(x)*((1/2)*z(x)^2+c)*(diff(diff(y(x), x), x))+((z(x)^2+2*c)*(diff(y(x), x))+b*z(x)^2+c*k+a)*(diff(z(x), x))), x)

(4)

NULL

Download integration.mw

1 2 3 4 5 6 7 Last Page 1 of 9