Alsu

445 Reputation

6 Badges

8 years, 188 days
Mathematics teacher

MaplePrimes Activity


These are Posts that have been published by Alsu


Elena, Liya "Designing of islamic arabesques", Kazan, Russia, school #57


> restart:
      At the theorem of cosines  c^2 = a^2+b^2-2*a*b*cos(phi);
      In our case  c=a0 ,  a=1 ,  a=b , phi; - acute angle of a rhombus (the tip of the kalam).
      s0 calculated at theorem of  Pythagoras.
     (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a:=1:phi:=Pi/4:
> a0:=sqrt(a^2+a^2-2*a^2*cos(phi));

                       a0 := sqrt(2 - sqrt(2))

> solve((s0^2)/4=a^2-(a0^2)/4,s0);

                sqrt(2 + sqrt(2)), -sqrt(2 + sqrt(2))


      The setting of initial parameters : the size of the tip of the pen-kalam and  depending on its - the main module size - point
       (а0 - horizontal diagonal of a  rhombus, s0 - vertical diagonal of a  rhombus)
> a0:=sqrt(2-sqrt(2)):
> s0:=sqrt(2+sqrt(2)):
      Connection the graphical libraries Maple
> with(plots):with(plottools):
      Construction of unit of measure (point) - rhombus - the tip of the kalam
> p0:=plot([[0,0],[a0/2,s0/2],[0,s0],[-a0/2,s0/2],[0,0]],scaling=constrained,color=gold,thickness=3):
> plots[display](p0);

The setting and construction of altitude of alif - the basis of the rules compilation of the proportions      Example, on style naskh altitude of alif amount five points
> p_i:=seq(plot([[0,0+s0*i],[a0/2,s0/2+s0*i],[0,s0+s0*i],[-a0/2,s0/2+s0*i],[0,0+s0*i]],scaling=constrained,color=black),i=0..4):
> pi:=display(p_i):
> plots[display](p_i);
The setting of appropriate circle of diameter, amount altitude of alifd0:=s0+s0*i:
> i:=4:
> d0:=d0:
> c0:=circle([0,d0/2],d0/2,color=blue):
> plots[display](p_i,c0);


Construction of flower by turning "point"r_i:=seq(rotate(p0,i*Pi/4),i=1..8):
> p1:=display(r_i,p0):plots[display](p1,scaling=constrained);

 The setting of circumscribed circlec1:=circle([0,0],s0,color=blue,thickness=2):
      Construction and the setting of flower inscribed in a circle
> plots[display](c1,p1,scaling=constrained);
> p_c:=plots[display](c1,p1,scaling=constrained):

The setting and construction of arabesque by horizontal parallel transport original flower with different stepspt_i_1:=seq(translate(p1,5*a0*i,0),i=0..4):
> plots[display](pt_i_1);
> pt_i_11:=seq(translate(p1,2*a0*i,0),i=0..4):
> plots[display](pt_i_11);
> pt_i_111:=seq(translate(p1,a0*7*i,0),i=0..4):
> plots[display](pt_i_111);

 The setting and construction of arabesque by vertical parallel transport original flower with different stepspt_i_2:=seq(translate(p1,0,2*s0*i),i=0..4):
> plots[display](pt_i_2);
> pt_i_22:=seq(translate(p1,0,s0*i),i=0..4):
> plots[display](pt_i_22);
> pt_i_222:=seq(translate(p1,0,1/2*s0*i),i=0..4):
> plots[display](pt_i_222);
 Getting arabesques by turning original flower on different anglespr:=rotate(p1,Pi/8):
> plots[display](pr);
> plots[display](p1,pr);

> pr_i:=seq(rotate(p1,Pi/16*i),i=0..8):
> plots[display](pr_i);


> pt_1:=translate(p1,0,2*s0):
> pr_1_i:=seq(rotate(pt_1,Pi/3.5*i),i=0..6):
> plots[display](pr_1_i);
> pr_11_i:=seq(rotate(pt_1,Pi/5*i),i=0..10):
> plots[display](pr_11_i);
> pr_111_i:=seq(rotate(pt_1,Pi/6.5*i),i=0..12):
> plots[display](pr_111_i);


Construction of standard quadrilaterals

      Muchametshina Liya,  8th class,  school № 57, Kazan, Russia


                   Square

                  Rectangle     
                  
                  Rhombus        
 
                  Parallelogram

                   Trapeze

Construction of square

> restart:
> with(plottools):
       Сoordinates (x;y) of the lower left corner of the square and the side "а"
> x:=0;y:=3;a:=6;

                                x := 0


                                y := 3


                                a := 6

      Construction of the square
> P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
> plots[display](P1,scaling=CONSTRAINED);

The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
> plots[display](P1,P2,scaling=CONSTRAINED);

Construction of rectangle

> restart:
> with(plottools):
        Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
> x:=0;y:=2;a:=3;b:=9;
>

                                x := 0


                                y := 2


                                a := 3


                                b := 9

       The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
> l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
> plots[display](l,scaling=CONSTRAINED,thickness=4);
Construction of rhombus

> restart:
> with(plottools):
      The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
> x:=0;y:=2;a:=3;b:=4;

                                x := 0


                                y := 2


                                a := 3


                                b := 4

       Rhombus is specified by the sequence of vertices with the values "a" and "b"
> ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
> plots[display](ll,scaling=CONSTRAINED,thickness=4);

Construction of parallelogram

> restart:
> with(plottools):
      (х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
> x:=0;y:=0;i:=4;j:=5;a:=10;

                                x := 0


                                y := 0


                                i := 4


                                j := 5


                               a := 10

     The parallelogram is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
 If  i= 0  it turns out the rectangleget.
       If  j= а  it turns out the  square.
       If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

Construction of trapeze

Trapeze general form
> restart:
> with(plottools):
>
        (х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
> x:=0;y:=2;i:=1;j:=5;a:=11;

                                x := 0


                                y := 2


                                i := 1


                                j := 5


                               a := 11

         The trapez is defined by the sequence of vertices     
> P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Rectangular trapezoid
> restsrt:
> with(plottools):
> x:=0;y:=2;i:=0;j:=6;a:=11;

                                x := 0


                                y := 2


                                i := 0


                                j := 6


                               a := 11

> P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Isosceles trapezoid
> restart:
> with(plottools):
> x:=0;y:=2;i:=4;j:=6;a:=15;

                                x := 0


                                y := 2


                                i := 4


                                j := 6


                               a := 15

> P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);



 

 

 

> restart;
> a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

 

restart:
with(plots):
y=sin(x);
p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
plots[display](p);

 

y=sin(3*x);
p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p1);
y=sin(1/3*x);
p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p11);

 

 

y=2*sin(x);
p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p2);
y=1/2*sin(x);
p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p22);

 

y=2+sin(x);
p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p3);
y=sin(x)-2;
p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p33);

y=sin(x+2);
p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p4);
y=sin(x-2);
p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p44);

y=-sin(x);
p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p7);
y=sin(-x);
p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p77);

 

y=abs(sin(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p00,p5);
plots[display](p5,scaling=constrained);

y=sin(abs(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p00,p6);
plots[display](p6,scaling=constrained);

 

 

Post gialid_GEODROMchik - what is this?

Pilot project of Secondary school # 57 of Kazan, Russia

Use of Maple

in Mathematics Education by mathematics teacher Alsu Gibadullina

and in scientific work of schoolchildren

 

Examples made using the Maple

the 6th class

 

              Arina                         Elza                             David    

       

       Book.mws              Kolobok.mws               sn_angl.mws

 

         Artur    

 

 

1 2 3 4 5 6 Page 6 of 6