JAMET

410 Reputation

4 Badges

7 years, 65 days

MaplePrimes Activity


These are questions asked by JAMET

restart;
with(plots);
A := [0, 0];
B := [4, 2];
C := [2, 3];
distance := proc(P1, P2) sqrt((P1[1] - P2[1])^2 + (P1[2] - P2[2])^2); end proc;
plot_triangle := proc(A, B, C) plot([A, B, C, A], style = line, color = black, thickness = 2); end proc;
plot_bisectors := proc(A, B, C) local AB, BC, CA, AB_bisector, BC_bisector, CA_bisector, i; AB := [A, B]; BC := [B, C]; CA := [C, A]; AB_bisector := [seq(A[i] + t*(B[i] - A[i]), i = 1 .. 2)]; BC_bisector := [seq(B[i] + t*(C[i] - B[i]), i = 1 .. 2)]; CA_bisector := [seq(C[i] + t*(A[i] - C[i]), i = 1 .. 2)]; plot([AB_bisector, BC_bisector, CA_bisector], t = 0 .. 1, style = line, color = blue, thickness = 2); end proc;
plot_apollonius := proc(A, B, C, ratio) local f, g; f := (x, y) -> sqrt((x - A[1])^2 + (y - A[2])^2)/sqrt((x - B[1])^2 + (y - B[2])^2) - ratio; g := implicitplot(f(x, y), x = -5 .. 5, y = -5 .. 5, grid = [100, 100], style = line, color = red, thickness = 2); g; end proc;
plot_inscribed_circle := proc(A, B, C) local a, b, c, s, r, Ii; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; r := sqrt((s - a)*(s - b)*(s - c)/s); Ii := [(a*A[1] + b*B[1] + c*C[1])/(a + b + c), (a*A[2] + b*B[2] + c*C[2])/(a + b + c)]; plot(circle(Ii, r), style = line, color = green, thickness = 2); end proc;
plot_exscribed_circles := proc(A, B, C) local a, b, c, s, rA, rB, rC, IA, IB, IC; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; rA := sqrt((s - b)*(s - c)*s/(s - a)); rB := sqrt((s - a)*(s - c)*s/(s - b)); rC := sqrt((s - a)*(s - b)*s/(s - c)); IA := [(a*A[1] - b*B[1] + c*C[1])/(a - b + c), (a*A[2] - b*B[2] + c*C[2])/(a - b + c)]; IB := [(a*A[1] + b*B[1] - c*C[1])/(a + b - c), (a*A[2] + b*B[2] - c*C[2])/(a + b - c)]; IC := [(-a*A[1] + b*B[1] + c*C[1])/(-a + b + c), (-a*A[2] + b*B[2] + c*C[2])/(-a + b + c)]; plot([circle(IA, rA), circle(IB, rB), circle(IC, rC)], style = line, color = magenta, thickness = 2); end proc;
with(geometry);
point(A1, 0, 0);
point(B1, 4, 2);
point(C1, 2, 3);
tx := textplot([[coordinates(A1)[], "A"], [coordinates(B1)[], "B"], [coordinates(C1)[], "C"]], font = [times, bold, 16], align = [above, left]);
triangle_plot := plot_triangle(A, B, C);
restart;
with(plots);
A := [0, 0];
B := [4, 2];
C := [2, 3];
distance := proc(P1, P2) sqrt((P1[1] - P2[1])^2 + (P1[2] - P2[2])^2); end proc;
plot_triangle := proc(A, B, C) plot([A, B, C, A], style = line, color = black, thickness = 2); end proc;
plot_bisectors := proc(A, B, C) local AB, BC, CA, AB_bisector, BC_bisector, CA_bisector, i; AB := [A, B]; BC := [B, C]; CA := [C, A]; AB_bisector := [seq(A[i] + t*(B[i] - A[i]), i = 1 .. 2)]; BC_bisector := [seq(B[i] + t*(C[i] - B[i]), i = 1 .. 2)]; CA_bisector := [seq(C[i] + t*(A[i] - C[i]), i = 1 .. 2)]; plot([AB_bisector, BC_bisector, CA_bisector], t = 0 .. 1, style = line, color = blue, thickness = 2); end proc;
plot_apollonius := proc(A, B, C, ratio) local f, g; f := (x, y) -> sqrt((x - A[1])^2 + (y - A[2])^2)/sqrt((x - B[1])^2 + (y - B[2])^2) - ratio; g := implicitplot(f(x, y), x = -5 .. 5, y = -5 .. 5, grid = [100, 100], style = line, color = red, thickness = 2); g; end proc;
plot_inscribed_circle := proc(A, B, C) local a, b, c, s, r, Ii; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; r := sqrt((s - a)*(s - b)*(s - c)/s); Ii := [(a*A[1] + b*B[1] + c*C[1])/(a + b + c), (a*A[2] + b*B[2] + c*C[2])/(a + b + c)]; plot(circle(Ii, r), style = line, color = green, thickness = 2); end proc;
plot_exscribed_circles := proc(A, B, C) local a, b, c, s, rA, rB, rC, IA, IB, IC; a := distance(B, C); b := distance(A, C); c := distance(A, B); s := 1/2*a + 1/2*b + 1/2*c; rA := sqrt((s - b)*(s - c)*s/(s - a)); rB := sqrt((s - a)*(s - c)*s/(s - b)); rC := sqrt((s - a)*(s - b)*s/(s - c)); IA := [(a*A[1] - b*B[1] + c*C[1])/(a - b + c), (a*A[2] - b*B[2] + c*C[2])/(a - b + c)]; IB := [(a*A[1] + b*B[1] - c*C[1])/(a + b - c), (a*A[2] + b*B[2] - c*C[2])/(a + b - c)]; IC := [(-a*A[1] + b*B[1] + c*C[1])/(-a + b + c), (-a*A[2] + b*B[2] + c*C[2])/(-a + b + c)]; plot([circle(IA, rA), circle(IB, rB), circle(IC, rC)], style = line, color = magenta, thickness = 2); end proc;
with(geometry);
point(A1, 0, 0);
point(B1, 4, 2);
point(C1, 2, 3);
tx := textplot([[coordinates(A1)[], "A"], [coordinates(B1)[], "B"], [coordinates(C1)[], "C"]], font = [times, bold, 16], align = [above, left]);
triangle_plot := plot_triangle(A, B, C);
bisectors_plot := plot_bisectors(A, B, C);
apollonius_plot := plot_apollonius(A, B, C, 1);
with(geometry);
inscribed_circle_plot := plot_inscribed_circle(A, B, C);
exscribed_circles_plot := plot_exscribed_circles(A, B, C);
display(triangle_plot, tx, bisectors_plot, apollonius_plot, axes = none, scaling = constrained, title = "Triangle with Bisectors, Apollonius Hyperbola, and Circles");
Error, (in plot) cannot determine plotting variable
Error, (in plot) cannot determine plotting variable
Warning, data could not be converted to float Matrix
Can you tel why these errors mean ? Thank you.
 

This code is working for function f1 but not for f2
f2 := (x,y)->9*x^2-24*x*y+16*y^2+10*x-70*y + 175;
Why this code is not working for f2 ?
unprotect(D);
f1:= (x, y) -> 3*x^2 - 3*y*x + 6*y^2 - 6*x + 7*y - 9;
coeffs(f(x, y));
A, B, C, D, E, F := %;
theta := 1/2*arctan(B/(A - C));
solve({-2*A*xc - B*yc = D, -B*xc - 2*C*yc = E});
assign(%);
x := xcan*cos(theta) - ycan*sin(theta) + xc;
y := xcan*sin(theta) + ycan*cos(theta) + yc;
Eq := simplify(expand(f1(x, y)));
xcan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, xcan^2)))^`2` + ycan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, ycan^2)))^`2` = 1;

Thank you

intersections := proc(P, Q, T)
local R, W, w, t, a, b, sol, buff, v;
sol := NULL;
if T = Y then W := X; else
W := Y; end if;
R := resultant(P, Q, T);
print(`Résultant :`); print(R);
w := fsolve(R, W); t := NULL;
for v in [w] do t := t, fsolve(subs(W = v, P), T); end do;
for a in {w} do for b in {t} do if T = Y then
buff := abs(subs(X = a, Y = b, P)) + abs(subs(X = a, Y = b, Q));
printf(`X=%a,   Y=%a   --->  %a\\n`, a, b, buff); if buff < 1/100000000 then sol := sol, [a, b]; end if;
else buff := abs(subs(X = b, Y = a, P)) + abs(subs(X = b, Y = a, Q));
printf(`X=%a,   Y=%a   --->  %a\\n `, a, b, buff); if buff < 1/100000000 then sol := sol, [b, a]; end if; end if; end do; end do; printf(`Nombre de solutions :  %a\\n`, nops({sol})); print({sol}); end proc:
intersections(X^2 + Y^2 - 1, X - Y, X);
X=-.7071067812,   Y=-.7071067812   --->  0.\n 
I do not wish to find \n in the answer

restart;
with(geometry);
with(plots);
Bl := color = black;
y0 := x -> -ln(1 - exp(-x));
y0 := proc (x) options operator, arrow; -ln(1-exp(-x)) end proc

y1 := x -> -ln(-1 + exp(-x));
y1 := proc (x) options operator, arrow; -ln(-1+exp(-x)) end proc

y2 := x -> -ln(1 + exp(-x));
y2 := proc (x) options operator, arrow; -ln(1+exp(-x)) end proc

p := plot(y0(x), x = 0.02 .. 4, scaling = constrained, color = blue);
p1 := plot(y2(x), x = -4 .. 4, scaling = constrained, color = green);
p2 := plot(y1(x), x = -4 .. 0, scaling = constrained, color = red);
display({p, p1, p2}, view = [-4 .. 4, -4 .. 5]);
Calculate its area; Thank you.

On donne un cercle fixe de diamètre AB, un point M variable sur ce cercle et on construit un carré de sens direct AMNP; Trouver les lieux des points N et P.
restart;
with(plots);
r := 1;
A := [-r, 0];
B := [r, 0];
M := [r*cos(theta), r*sin(theta)];
N := [r*cos(theta) - r*sin(theta), r*sin(theta) + r*cos(theta)];
P := [-r*cos(theta) - r*sin(theta), r*cos(theta) - r*sin(theta)];
c1 := `~`[plottools]*circle([0, 0], r, color = blue);
plot1 := plot(c1, color = blue);
plot2 := animate([N[1], N[2], theta = 0 .. 2*Pi], color = red, thickness = 2);
plot3 := animate([P[1], P[2], theta = 0 .. 2*Pi], color = green, thickness = 2);
display(plot1, plot2, plot3);
Would you like to improve this code so it works. Thank you.
 

1 2 3 4 5 6 7 Last Page 1 of 32