JAMET

385 Reputation

4 Badges

6 years, 285 days

MaplePrimes Activity


These are questions asked by JAMET

with(plots):R := 5; alpha := (1/9)*Pi;
C1 := plot([R*cos(t), R*sin(t), t = 0 .. 2*Pi], color = blue);
A := [R*cos(alpha), R*sin(alpha)]; B := [R*cos(alpha+Pi), R*sin(alpha+Pi)]; AB := plot([A, B], scaling = constrained);
display({AB, C1}, scaling = constrained);# bad drawing

 

Duo:=proc(a)  #a nombre congruent connu
local u,v,n,m,k,t:
t:=8000:
for m to t do
  for n to m do
    if (igcd(m,n)=1 and m>n) then
      u:=(m^2-n^2-2*m*n)^2:v:=(m^2+n^2)^2:
      k:=op(2,sqrt(v-u))^2: # k nombre congruent réduit
        if k=a then return (m,n): break 
        elif n=t then break fi:
    fi:
  od:
od:
end:

Duo(30);
                              3, 2
Duo(1794);
                             26, 23
Duo(6);
                              2, 1
u, v, w sont des carrés en progression arithmétique dont la raison est un nombre congruent
Procédure permettant de trouver un triplet pythagoricien primitif correspondant au nombre congruent a connu
TriPy:=proc(m,n)# triangles pythagoriciens
local a,a1,b1,c1,d,k,q,u,v,w:
 if (igcd(m,n)=1 and m>n) then
 u:=(m^2-n^2-2*m*n)^2:v:=(m^2+n^2)^2:w:=(m^2-n^2+2*m*n)^2:
 a:=(op(2,sqrt(v-u)))^2:#nombre congruent réduit
 a1:=2*m*n:b1:=(m^2-n^2):c1:=m^2+n^2:
 q:=sqrt((v-u)/a)/2:#rapport de réduction
 print(a1/q,b1/q,c1/q):fi
end:
TriPy(Duo(34));
                              17  145
                          24, --, ---
                              6    6 

TriPy(Duo(39));
                          156  5  313
                          ---, -, ---
                           5   2  10 

TriPy(Duo(111));
                         444  35  1513
                         ---, --, ----
                         35   2    70 
TriPy(Duo(1794));
                         1196      1205
                         ----, 21, ----
                          7         7  
TriPy(Duo(23));don't work, "part dans les choux"

with(plottools):F := proc (N) local a, b, L; L := NULL; L := sort([op({seq(seq(a/b, a = 0 .. b), b = 1 .. N)})]); return L end proc; F(6);
            [   1  1  1  1  2  1  3  2  3  4  5   ]
            [0, -, -, -, -, -, -, -, -, -, -, -, 1]
            [   6  5  4  3  5  2  5  3  4  5  6   ]
Ford6 := proc (i) local d, k, n, r; k := i; n := numer(F(6)[k]); d := denom(F(6)[k]); r := (1/2)/d^2; return [n/d, r], r end proc; nops(F(6));
                               13
for i to 13 do C || i := Ford6(i) end do;

display(circle(C1), circle(C2), circle(C3), circle(C4), circle(C5), circle(C6), circle(C7), circle(C8), circle(C9), circle(C10), circle(C11), circle(C12), circle(C13), axes = normal, scaling = constrained, color = blue, size = [800, 800]);

with(plottools):with(plots): display(seq(seq(display(polygon([[i,j],[i,j+1],[i+1,j+1],[i+1,j]], color=`if``((j)::odd,ColorTools:-Color=magenta))), textplot([1+.5,j+.5,fprintf("%d",i*j)])),i=1..10), j=1..10),axes=none);

Fract := proc (P::posint, Q::posint) local p, q; for p to P-1 do for q to Q-1 do if is((P-p)*q-p*(Q-q) = 1) then return p/q, P/Q, (P-p)/(Q-q) end if end do end do end proc:#this procedure works Fract1 := proc (P::posint, Q::posint) local p, q; `~`[`~`[`/`@op]](select(type, map2(eval, [[p, q], [P-p, Q-q]], [isolve((P-p)*q-P*(Q-q) = 1)]), [[posint$2]$2]))[] end proc:#this procedure don't work Fract(7, 81);Fract1(7,81); Fract(39, 97);Fract1(39,97); Fract(101, 143);Fract1(101,143); Fract(11, 80);Fract1(11,80); Fract(15, 37);Fract1(15,37); Fract(22, 39);Fract1(22,39); Fract(25, 37);Fract1(25,37); Fract(21, 91);Fract1(21,91); Fract(13, 19);Fract1(13,91);
First 25 26 27 28 Page 27 of 28