Khair Muhammad Saraz

MaplePrimes Activity


These are questions asked by Khair Muhammad Saraz

how to evaluate summation upto infinity in maple including exponential function too if it is possible or we can evaluate it upto finite number of terms?. kindly explain with example

while i am writing code for loop with if condition i am having problem kindly help me out i am sharing fileburgers_type_method.mw

i have  written summation with  two  loops at the end and the result should be start from uNew[1][1] since values of i is starting from 1 but in the result i am getting uNew[0][1] why? for understanding of question i am attaching my file kindly help me sort out the problemautomatic_differentiation.mw

i am writing code for an iterative process at the end i want to evaluate the summation expression with two loops but it is not evaluating kindly help me out here automatic_differentiation.mw
 

restart

v := 1; a := 2; t := 0.1e-2; dt := 0.1e-3; N := 40; h := 1/40; K := 4

NULL

NULL

for i from 0 to N do x[i] := i*h end do

x[5]

1/8

(1)

initial_condition := []; for i to N do initial_condition := [op(initial_condition), evalf(2*v*Pi*sin(Pi*x[i])/(a+cos(Pi*x[i])))] end do

u := proc (i) local u_x, u_xx, expr, j; u_x := (1/2)*(u[i+1]-u[i-1])/h; u_xx := (u[i-1]-2*u[i]+u[i+1])/h^2; expr := -alpha*u[i]*u_x+v*u_xx; expr end proc
NULL

NULL

odes := [seq(u(i, [seq(u[j], j = 1 .. N-1)]), i = 1 .. N-1)]

for i to N-1 do assign(o[i] = odes[i]) end do

for i to N-1 do printf("u_%d = %s\n", i, convert(u(i), string)) end do

u_1 = -alpha*u[1]*(20*u[2]-20*u[0])+1600*u[0]-3200*u[1]+1600*u[2]
u_2 = -alpha*u[2]*(20*u[3]-20*u[1])+1600*u[1]-3200*u[2]+1600*u[3]
u_3 = -alpha*u[3]*(20*u[4]-20*u[2])+1600*u[2]-3200*u[3]+1600*u[4]
u_4 = -alpha*u[4]*(20*u[5]-20*u[3])+1600*u[3]-3200*u[4]+1600*u[5]
u_5 = -alpha*u[5]*(20*u[6]-20*u[4])+1600*u[4]-3200*u[5]+1600*u[6]
u_6 = -alpha*u[6]*(20*u[7]-20*u[5])+1600*u[5]-3200*u[6]+1600*u[7]
u_7 = -alpha*u[7]*(20*u[8]-20*u[6])+1600*u[6]-3200*u[7]+1600*u[8]
u_8 = -alpha*u[8]*(20*u[9]-20*u[7])+1600*u[7]-3200*u[8]+1600*u[9]
u_9 = -alpha*u[9]*(20*u[10]-20*u[8])+1600*u[8]-3200*u[9]+1600*u[10]
u_10 = -alpha*u[10]*(20*u[11]-20*u[9])+1600*u[9]-3200*u[10]+1600*u[11]
u_11 = -alpha*u[11]*(20*u[12]-20*u[10])+1600*u[10]-3200*u[11]+1600*u[12]
u_12 = -alpha*u[12]*(20*u[13]-20*u[11])+1600*u[11]-3200*u[12]+1600*u[13]
u_13 = -alpha*u[13]*(20*u[14]-20*u[12])+1600*u[12]-3200*u[13]+1600*u[14]
u_14 = -alpha*u[14]*(20*u[15]-20*u[13])+1600*u[13]-3200*u[14]+1600*u[15]
u_15 = -alpha*u[15]*(20*u[16]-20*u[14])+1600*u[14]-3200*u[15]+1600*u[16]
u_16 = -alpha*u[16]*(20*u[17]-20*u[15])+1600*u[15]-3200*u[16]+1600*u[17]
u_17 = -alpha*u[17]*(20*u[18]-20*u[16])+1600*u[16]-3200*u[17]+1600*u[18]
u_18 = -alpha*u[18]*(20*u[19]-20*u[17])+1600*u[17]-3200*u[18]+1600*u[19]
u_19 = -alpha*u[19]*(20*u[20]-20*u[18])+1600*u[18]-3200*u[19]+1600*u[20]
u_20 = -alpha*u[20]*(20*u[21]-20*u[19])+1600*u[19]-3200*u[20]+1600*u[21]
u_21 = -alpha*u[21]*(20*u[22]-20*u[20])+1600*u[20]-3200*u[21]+1600*u[22]
u_22 = -alpha*u[22]*(20*u[23]-20*u[21])+1600*u[21]-3200*u[22]+1600*u[23]
u_23 = -alpha*u[23]*(20*u[24]-20*u[22])+1600*u[22]-3200*u[23]+1600*u[24]
u_24 = -alpha*u[24]*(20*u[25]-20*u[23])+1600*u[23]-3200*u[24]+1600*u[25]
u_25 = -alpha*u[25]*(20*u[26]-20*u[24])+1600*u[24]-3200*u[25]+1600*u[26]
u_26 = -alpha*u[26]*(20*u[27]-20*u[25])+1600*u[25]-3200*u[26]+1600*u[27]
u_27 = -alpha*u[27]*(20*u[28]-20*u[26])+1600*u[26]-3200*u[27]+1600*u[28]
u_28 = -alpha*u[28]*(20*u[29]-20*u[27])+1600*u[27]-3200*u[28]+1600*u[29]
u_29 = -alpha*u[29]*(20*u[30]-20*u[28])+1600*u[28]-3200*u[29]+1600*u[30]
u_30 = -alpha*u[30]*(20*u[31]-20*u[29])+1600*u[29]-3200*u[30]+1600*u[31]
u_31 = -alpha*u[31]*(20*u[32]-20*u[30])+1600*u[30]-3200*u[31]+1600*u[32]
u_32 = -alpha*u[32]*(20*u[33]-20*u[31])+1600*u[31]-3200*u[32]+1600*u[33]
u_33 = -alpha*u[33]*(20*u[34]-20*u[32])+1600*u[32]-3200*u[33]+1600*u[34]
u_34 = -alpha*u[34]*(20*u[35]-20*u[33])+1600*u[33]-3200*u[34]+1600*u[35]
u_35 = -alpha*u[35]*(20*u[36]-20*u[34])+1600*u[34]-3200*u[35]+1600*u[36]
u_36 = -alpha*u[36]*(20*u[37]-20*u[35])+1600*u[35]-3200*u[36]+1600*u[37]
u_37 = -alpha*u[37]*(20*u[38]-20*u[36])+1600*u[36]-3200*u[37]+1600*u[38]
u_38 = -alpha*u[38]*(20*u[39]-20*u[37])+1600*u[37]-3200*u[38]+1600*u[39]
u_39 = -alpha*u[39]*(20*u[40]-20*u[38])+1600*u[38]-3200*u[39]+1600*u[40]

 

initial_conditions := [.1644933719, .3289856976, .4934717144, .6579375992, .8223563570, .9866828090, 1.150848028, 1.314753051, 1.478261707, 1.641192349, 1.803308276, 1.964306617, 2.123805434, 2.281328760, 2.436289364, 2.587968970, 2.735495794, 2.877819368, 3.013682762, 3.141592654, 3.259788188, 3.366210070, 3.458472370, 3.533840560, 3.589220824, 3.621167336, 3.625916040, 3.599455182, 3.537643690, 3.436388151, 3.291886154, 3.100937330, 2.861312732, 2.572157998, 2.234388242, 1.851015873, 1.427342882, .9709526944, .4914580366, 0.]; u := table(); for i to N do u[i] := initial_conditions[i] end do

.1644933719

 

.3289856976

 

.4934717144

 

.6579375992

 

.8223563570

 

.9866828090

 

1.150848028

 

1.314753051

 

1.478261707

 

1.641192349

 

1.803308276

 

1.964306617

 

2.123805434

 

2.281328760

 

2.436289364

 

2.587968970

 

2.735495794

 

2.877819368

 

3.013682762

 

3.141592654

 

3.259788188

 

3.366210070

 

3.458472370

 

3.533840560

 

3.589220824

 

3.621167336

 

3.625916040

 

3.599455182

 

3.537643690

 

3.436388151

 

3.291886154

 

3.100937330

 

2.861312732

 

2.572157998

 

2.234388242

 

1.851015873

 

1.427342882

 

.9709526944

 

.4914580366

 

0.

(2)

for i from 2 to N-1 do T1[i] := (u[i+1]-u[i-1])/(2*h); T2[i] := u[i]*T1[i]; T3[i] := (u[i-1]-2*u[i]+u[i+1])/h^2; uN[i][1] := v*T3[i]-T2[i] end do

6.579566850

 

2.164583390

 

-0.100942400e-1

 

-2.174677630

 

6.579038030

 

3.246569176

 

-0.322112000e-1

 

-3.278780376

 

6.577692850

 

4.327711442

 

-0.754025600e-1

 

-4.403114002

 

6.574904195

 

5.406914261

 

-.1476892800

 

-5.554603541

 

6.569833420

 

6.482341694

 

-.257972800

 

-6.740314494

 

6.561404840

 

7.551179821

 

-.416313600

 

-7.967493421

 

6.548273580

 

8.609362668

 

-.634187200

 

-9.243549868

 

6.528785960

 

9.651254278

 

-.924822400

 

-10.57607668

 

6.500931380

 

10.66927884

 

-1.303544000

 

-11.97282284

 

6.462285360

 

11.65349267

 

-1.788137600

 

-13.44163027

 

6.409943160

 

12.59109376

 

-2.399238400

 

-14.99033216

 

6.340442860

 

13.46586700

 

-3.160785600

 

-16.62665260

 

6.249678600

 

14.25757153

 

-4.100355200

 

-18.35792673

 

6.132804200

 

14.94128564

 

-5.249596800

 

-20.19088244

 

5.984128600

 

15.48673913

 

-6.644451200

 

-22.13119033

 

5.797007960

 

15.85769089

 

-8.325200000

 

-24.18289089

 

5.563739360

 

16.01143689

 

-10.33628800

 

-26.34772489

 

5.275465720

 

15.89858010

 

-12.72560320

 

-28.62418330

 

4.922108520

 

15.46325997

 

-15.54297280

 

-31.00623277

 

4.492348320

 

14.64410399

 

-18.83784320

 

-33.48194719

 

3.973683640

 

13.37625388

 

-22.65533120

 

-36.03158508

 

3.352609800

 

11.59490836

 

-27.03057600

 

-38.62548436

 

2.614969080

 

9.240883798

 

-31.98068160

 

-41.22156540

 

1.746535520

 

6.268701658

 

-37.49400320

 

-43.76270486

 

.7339043200

 

2.657590351

 

-43.51649280

 

-46.17408315

 

-.4342430800

 

-1.574528949

 

-49.93529920

 

-48.36077025

 

-1.765447000

 

-6.354647353

 

-56.56101440

 

-50.20636705

 

-3.261340620

 

-11.53746107

 

-63.11047520

 

-51.57301413

 

-4.915150720

 

-16.89036569

 

-69.19433280

 

-52.30396711

 

-6.709016420

 

-22.08531826

 

-74.31492320

 

-52.22960494

 

-8.611468440

 

-26.70362395

 

-77.88123840

 

-51.17761445

 

-10.57558664

 

-30.26006070

 

-79.24821760

 

-48.98815690

 

-12.53848980

 

-32.25097682

 

-77.78403520

 

-45.53305838

 

-14.42284250

 

-32.22622970

 

-72.96418080

 

-40.73795110

 

-16.14090720

 

-29.87707543

 

-64.48099520

 

-34.60391977

 

-17.60126357

 

-25.12303827

 

-52.34751456

 

-27.22447629

 

-18.71769691

 

-18.17399825

 

-36.96715264

 

-18.79315439

 

-19.41905389

 

-9.543650097

 

-19.14140608

 

-9.597755983

(3)

for i from 3 to N do for k to 4 do T1[i][k] := (uN[i+1][k]-uN[i-1][k])/(2*h); T2[i][k] := 0; for j from 0 to k do T2[i][k] := T1[i][k-j]*uN[i][j]+T2[i][k] end do; T3[i][k] := (uN[i-1][k]-2*uN[i][k]+uN[i+1][k])/h^2; uN[i][k+1] := (-T2[i][k]+T3[i][k])/(k+1) end do end do

NULL

NULL

NULL

NULL

NULL

NULL

NULL

"for i from1 to N do          for j  from 1 to 10  do      uNew[i]:=sum(uN[i][k] *( j*dt)^(k), k=0..K);      end do;      end do;"

Error, controlling variable of for loop must be a name or sequence of 2 names

"for i from1 to N do         for j  from 1 to 10  do  uNew[i]:=sum(uN[i][k] * j*dt, k=0..K);      end do;    end do;"

 

NULL

NULL

NULL

NULL

NULL

NULL

NULL


 

Download automatic_differentiation.mw

 

i am writing the code and unfortunately i am struck in a pb  where i assign initial condition values to u[i] from i 1 to N but when i use them in a loop it is not taking values of u[i] it is just taking value of u[1] only kindly help me in this regard i am attaching my file here.

automatic_differentiation.mw
 

restart

v := 1; a := 2; t := 0.1e-2; dt := 0.1e-3; N := 40; h := 1/40; K := 4

NULL

NULL

for i from 0 to N do x[i] := i*h end do

x[5]

1/8

(1)

initial_condition := []; for i to N do initial_condition := [op(initial_condition), evalf(2*v*Pi*sin(Pi*x[i])/(a+cos(Pi*x[i])))] end do

initial_conditions := [.1644933719, .3289856976, .4934717144, .6579375992, .8223563570, .9866828090, 1.150848028, 1.314753051, 1.478261707, 1.641192349, 1.803308276, 1.964306617, 2.123805434, 2.281328760, 2.436289364, 2.587968970, 2.735495794, 2.877819368, 3.013682762, 3.141592654, 3.259788188, 3.366210070, 3.458472370, 3.533840560, 3.589220824, 3.621167336, 3.625916040, 3.599455182, 3.537643690, 3.436388151, 3.291886154, 3.100937330, 2.861312732, 2.572157998, 2.234388242, 1.851015873, 1.427342882, .9709526944, .4914580366, 0.]; u := proc (i) local u_x, u_xx, expr, j; u_x := (1/2)*(u[i+1]-u[i-1])/h; u_xx := (u[i-1]-2*u[i]+u[i+1])/h^2; expr := -alpha*u[i]*u_x+v*u_xx; expr end proc
NULL

NULL

odes := [seq(u(i, [seq(u[j], j = 1 .. N-1)]), i = 1 .. N-1)]

for i to N-1 do assign(o[i] = odes[i]) end do

for i to N-1 do printf("u_%d = %s\n", i, convert(u(i), string)) end do

u_1 = -alpha*u[1]*(20*u[2]-20*u[0])+1600*u[0]-3200*u[1]+1600*u[2]
u_2 = -alpha*u[2]*(20*u[3]-20*u[1])+1600*u[1]-3200*u[2]+1600*u[3]
u_3 = -alpha*u[3]*(20*u[4]-20*u[2])+1600*u[2]-3200*u[3]+1600*u[4]
u_4 = -alpha*u[4]*(20*u[5]-20*u[3])+1600*u[3]-3200*u[4]+1600*u[5]
u_5 = -alpha*u[5]*(20*u[6]-20*u[4])+1600*u[4]-3200*u[5]+1600*u[6]
u_6 = -alpha*u[6]*(20*u[7]-20*u[5])+1600*u[5]-3200*u[6]+1600*u[7]
u_7 = -alpha*u[7]*(20*u[8]-20*u[6])+1600*u[6]-3200*u[7]+1600*u[8]
u_8 = -alpha*u[8]*(20*u[9]-20*u[7])+1600*u[7]-3200*u[8]+1600*u[9]
u_9 = -alpha*u[9]*(20*u[10]-20*u[8])+1600*u[8]-3200*u[9]+1600*u[10]
u_10 = -alpha*u[10]*(20*u[11]-20*u[9])+1600*u[9]-3200*u[10]+1600*u[11]
u_11 = -alpha*u[11]*(20*u[12]-20*u[10])+1600*u[10]-3200*u[11]+1600*u[12]
u_12 = -alpha*u[12]*(20*u[13]-20*u[11])+1600*u[11]-3200*u[12]+1600*u[13]
u_13 = -alpha*u[13]*(20*u[14]-20*u[12])+1600*u[12]-3200*u[13]+1600*u[14]
u_14 = -alpha*u[14]*(20*u[15]-20*u[13])+1600*u[13]-3200*u[14]+1600*u[15]
u_15 = -alpha*u[15]*(20*u[16]-20*u[14])+1600*u[14]-3200*u[15]+1600*u[16]
u_16 = -alpha*u[16]*(20*u[17]-20*u[15])+1600*u[15]-3200*u[16]+1600*u[17]
u_17 = -alpha*u[17]*(20*u[18]-20*u[16])+1600*u[16]-3200*u[17]+1600*u[18]
u_18 = -alpha*u[18]*(20*u[19]-20*u[17])+1600*u[17]-3200*u[18]+1600*u[19]
u_19 = -alpha*u[19]*(20*u[20]-20*u[18])+1600*u[18]-3200*u[19]+1600*u[20]
u_20 = -alpha*u[20]*(20*u[21]-20*u[19])+1600*u[19]-3200*u[20]+1600*u[21]
u_21 = -alpha*u[21]*(20*u[22]-20*u[20])+1600*u[20]-3200*u[21]+1600*u[22]
u_22 = -alpha*u[22]*(20*u[23]-20*u[21])+1600*u[21]-3200*u[22]+1600*u[23]
u_23 = -alpha*u[23]*(20*u[24]-20*u[22])+1600*u[22]-3200*u[23]+1600*u[24]
u_24 = -alpha*u[24]*(20*u[25]-20*u[23])+1600*u[23]-3200*u[24]+1600*u[25]
u_25 = -alpha*u[25]*(20*u[26]-20*u[24])+1600*u[24]-3200*u[25]+1600*u[26]
u_26 = -alpha*u[26]*(20*u[27]-20*u[25])+1600*u[25]-3200*u[26]+1600*u[27]
u_27 = -alpha*u[27]*(20*u[28]-20*u[26])+1600*u[26]-3200*u[27]+1600*u[28]
u_28 = -alpha*u[28]*(20*u[29]-20*u[27])+1600*u[27]-3200*u[28]+1600*u[29]
u_29 = -alpha*u[29]*(20*u[30]-20*u[28])+1600*u[28]-3200*u[29]+1600*u[30]
u_30 = -alpha*u[30]*(20*u[31]-20*u[29])+1600*u[29]-3200*u[30]+1600*u[31]
u_31 = -alpha*u[31]*(20*u[32]-20*u[30])+1600*u[30]-3200*u[31]+1600*u[32]
u_32 = -alpha*u[32]*(20*u[33]-20*u[31])+1600*u[31]-3200*u[32]+1600*u[33]
u_33 = -alpha*u[33]*(20*u[34]-20*u[32])+1600*u[32]-3200*u[33]+1600*u[34]
u_34 = -alpha*u[34]*(20*u[35]-20*u[33])+1600*u[33]-3200*u[34]+1600*u[35]
u_35 = -alpha*u[35]*(20*u[36]-20*u[34])+1600*u[34]-3200*u[35]+1600*u[36]
u_36 = -alpha*u[36]*(20*u[37]-20*u[35])+1600*u[35]-3200*u[36]+1600*u[37]
u_37 = -alpha*u[37]*(20*u[38]-20*u[36])+1600*u[36]-3200*u[37]+1600*u[38]
u_38 = -alpha*u[38]*(20*u[39]-20*u[37])+1600*u[37]-3200*u[38]+1600*u[39]
u_39 = -alpha*u[39]*(20*u[40]-20*u[38])+1600*u[38]-3200*u[39]+1600*u[40]

 

u := table(); for i to N do u[i] := initial_conditions[i] end do

.1644933719

 

.3289856976

 

.4934717144

 

.6579375992

 

.8223563570

 

.9866828090

 

1.150848028

 

1.314753051

 

1.478261707

 

1.641192349

 

1.803308276

 

1.964306617

 

2.123805434

 

2.281328760

 

2.436289364

 

2.587968970

 

2.735495794

 

2.877819368

 

3.013682762

 

3.141592654

 

3.259788188

 

3.366210070

 

3.458472370

 

3.533840560

 

3.589220824

 

3.621167336

 

3.625916040

 

3.599455182

 

3.537643690

 

3.436388151

 

3.291886154

 

3.100937330

 

2.861312732

 

2.572157998

 

2.234388242

 

1.851015873

 

1.427342882

 

.9709526944

 

.4914580366

 

0.

(2)

for i from 2 to N do T1[i] := (u[i+1]-u[i-1])/(2*h); T2[i] := u[i]*T1[i]; T3[i] := (u[i-1]-2*u[i]+u[i+1])/h^2; u[i][1] := v*T3[i]-T2[i] end do

20*u[3]-3.289867438

 

u[2]*(20*u[3]-3.289867438)

 

263.1893950-3200*u[2]+1600*u[3]

 

263.1893950-3200*u[2]+1600*u[3]-u[2]*(20*u[3]-3.289867438)

 

20*u[4]-20*u[2]

 

u[3]*(20*u[4]-20*u[2])

 

1600*u[2]-3200*u[3]+1600*u[4]

 

1600*u[2]-3200*u[3]+1600*u[4]-u[3]*(20*u[4]-20*u[2])

 

20*u[5]-20*u[3]

 

u[4]*(20*u[5]-20*u[3])

 

1600*u[3]-3200*u[4]+1600*u[5]

 

1600*u[3]-3200*u[4]+1600*u[5]-u[4]*(20*u[5]-20*u[3])

 

20*u[6]-20*u[4]

 

u[5]*(20*u[6]-20*u[4])

 

1600*u[4]-3200*u[5]+1600*u[6]

 

1600*u[4]-3200*u[5]+1600*u[6]-u[5]*(20*u[6]-20*u[4])

 

20*u[7]-20*u[5]

 

u[6]*(20*u[7]-20*u[5])

 

1600*u[5]-3200*u[6]+1600*u[7]

 

1600*u[5]-3200*u[6]+1600*u[7]-u[6]*(20*u[7]-20*u[5])

 

20*u[8]-20*u[6]

 

u[7]*(20*u[8]-20*u[6])

 

1600*u[6]-3200*u[7]+1600*u[8]

 

1600*u[6]-3200*u[7]+1600*u[8]-u[7]*(20*u[8]-20*u[6])

 

20*u[9]-20*u[7]

 

u[8]*(20*u[9]-20*u[7])

 

1600*u[7]-3200*u[8]+1600*u[9]

 

1600*u[7]-3200*u[8]+1600*u[9]-u[8]*(20*u[9]-20*u[7])

 

20*u[10]-20*u[8]

 

u[9]*(20*u[10]-20*u[8])

 

1600*u[8]-3200*u[9]+1600*u[10]

 

1600*u[8]-3200*u[9]+1600*u[10]-u[9]*(20*u[10]-20*u[8])

 

20*u[11]-20*u[9]

 

u[10]*(20*u[11]-20*u[9])

 

1600*u[9]-3200*u[10]+1600*u[11]

 

1600*u[9]-3200*u[10]+1600*u[11]-u[10]*(20*u[11]-20*u[9])

 

20*u[12]-20*u[10]

 

u[11]*(20*u[12]-20*u[10])

 

1600*u[10]-3200*u[11]+1600*u[12]

 

1600*u[10]-3200*u[11]+1600*u[12]-u[11]*(20*u[12]-20*u[10])

 

20*u[13]-20*u[11]

 

u[12]*(20*u[13]-20*u[11])

 

1600*u[11]-3200*u[12]+1600*u[13]

 

1600*u[11]-3200*u[12]+1600*u[13]-u[12]*(20*u[13]-20*u[11])

 

20*u[14]-20*u[12]

 

u[13]*(20*u[14]-20*u[12])

 

1600*u[12]-3200*u[13]+1600*u[14]

 

1600*u[12]-3200*u[13]+1600*u[14]-u[13]*(20*u[14]-20*u[12])

 

20*u[15]-20*u[13]

 

u[14]*(20*u[15]-20*u[13])

 

1600*u[13]-3200*u[14]+1600*u[15]

 

1600*u[13]-3200*u[14]+1600*u[15]-u[14]*(20*u[15]-20*u[13])

 

20*u[16]-20*u[14]

 

u[15]*(20*u[16]-20*u[14])

 

1600*u[14]-3200*u[15]+1600*u[16]

 

1600*u[14]-3200*u[15]+1600*u[16]-u[15]*(20*u[16]-20*u[14])

 

20*u[17]-20*u[15]

 

u[16]*(20*u[17]-20*u[15])

 

1600*u[15]-3200*u[16]+1600*u[17]

 

1600*u[15]-3200*u[16]+1600*u[17]-u[16]*(20*u[17]-20*u[15])

 

20*u[18]-20*u[16]

 

u[17]*(20*u[18]-20*u[16])

 

1600*u[16]-3200*u[17]+1600*u[18]

 

1600*u[16]-3200*u[17]+1600*u[18]-u[17]*(20*u[18]-20*u[16])

 

20*u[19]-20*u[17]

 

u[18]*(20*u[19]-20*u[17])

 

1600*u[17]-3200*u[18]+1600*u[19]

 

1600*u[17]-3200*u[18]+1600*u[19]-u[18]*(20*u[19]-20*u[17])

 

20*u[20]-20*u[18]

 

u[19]*(20*u[20]-20*u[18])

 

1600*u[18]-3200*u[19]+1600*u[20]

 

1600*u[18]-3200*u[19]+1600*u[20]-u[19]*(20*u[20]-20*u[18])

 

20*u[21]-20*u[19]

 

u[20]*(20*u[21]-20*u[19])

 

1600*u[19]-3200*u[20]+1600*u[21]

 

1600*u[19]-3200*u[20]+1600*u[21]-u[20]*(20*u[21]-20*u[19])

 

20*u[22]-20*u[20]

 

u[21]*(20*u[22]-20*u[20])

 

1600*u[20]-3200*u[21]+1600*u[22]

 

1600*u[20]-3200*u[21]+1600*u[22]-u[21]*(20*u[22]-20*u[20])

 

20*u[23]-20*u[21]

 

u[22]*(20*u[23]-20*u[21])

 

1600*u[21]-3200*u[22]+1600*u[23]

 

1600*u[21]-3200*u[22]+1600*u[23]-u[22]*(20*u[23]-20*u[21])

 

20*u[24]-20*u[22]

 

u[23]*(20*u[24]-20*u[22])

 

1600*u[22]-3200*u[23]+1600*u[24]

 

1600*u[22]-3200*u[23]+1600*u[24]-u[23]*(20*u[24]-20*u[22])

 

20*u[25]-20*u[23]

 

u[24]*(20*u[25]-20*u[23])

 

1600*u[23]-3200*u[24]+1600*u[25]

 

1600*u[23]-3200*u[24]+1600*u[25]-u[24]*(20*u[25]-20*u[23])

 

20*u[26]-20*u[24]

 

u[25]*(20*u[26]-20*u[24])

 

1600*u[24]-3200*u[25]+1600*u[26]

 

1600*u[24]-3200*u[25]+1600*u[26]-u[25]*(20*u[26]-20*u[24])

 

20*u[27]-20*u[25]

 

u[26]*(20*u[27]-20*u[25])

 

1600*u[25]-3200*u[26]+1600*u[27]

 

1600*u[25]-3200*u[26]+1600*u[27]-u[26]*(20*u[27]-20*u[25])

 

20*u[28]-20*u[26]

 

u[27]*(20*u[28]-20*u[26])

 

1600*u[26]-3200*u[27]+1600*u[28]

 

1600*u[26]-3200*u[27]+1600*u[28]-u[27]*(20*u[28]-20*u[26])

 

20*u[29]-20*u[27]

 

u[28]*(20*u[29]-20*u[27])

 

1600*u[27]-3200*u[28]+1600*u[29]

 

1600*u[27]-3200*u[28]+1600*u[29]-u[28]*(20*u[29]-20*u[27])

 

20*u[30]-20*u[28]

 

u[29]*(20*u[30]-20*u[28])

 

1600*u[28]-3200*u[29]+1600*u[30]

 

1600*u[28]-3200*u[29]+1600*u[30]-u[29]*(20*u[30]-20*u[28])

 

20*u[31]-20*u[29]

 

u[30]*(20*u[31]-20*u[29])

 

1600*u[29]-3200*u[30]+1600*u[31]

 

1600*u[29]-3200*u[30]+1600*u[31]-u[30]*(20*u[31]-20*u[29])

 

20*u[32]-20*u[30]

 

u[31]*(20*u[32]-20*u[30])

 

1600*u[30]-3200*u[31]+1600*u[32]

 

1600*u[30]-3200*u[31]+1600*u[32]-u[31]*(20*u[32]-20*u[30])

 

20*u[33]-20*u[31]

 

u[32]*(20*u[33]-20*u[31])

 

1600*u[31]-3200*u[32]+1600*u[33]

 

1600*u[31]-3200*u[32]+1600*u[33]-u[32]*(20*u[33]-20*u[31])

 

20*u[34]-20*u[32]

 

u[33]*(20*u[34]-20*u[32])

 

1600*u[32]-3200*u[33]+1600*u[34]

 

1600*u[32]-3200*u[33]+1600*u[34]-u[33]*(20*u[34]-20*u[32])

 

20*u[35]-20*u[33]

 

u[34]*(20*u[35]-20*u[33])

 

1600*u[33]-3200*u[34]+1600*u[35]

 

1600*u[33]-3200*u[34]+1600*u[35]-u[34]*(20*u[35]-20*u[33])

 

20*u[36]-20*u[34]

 

u[35]*(20*u[36]-20*u[34])

 

1600*u[34]-3200*u[35]+1600*u[36]

 

1600*u[34]-3200*u[35]+1600*u[36]-u[35]*(20*u[36]-20*u[34])

 

20*u[37]-20*u[35]

 

u[36]*(20*u[37]-20*u[35])

 

1600*u[35]-3200*u[36]+1600*u[37]

 

1600*u[35]-3200*u[36]+1600*u[37]-u[36]*(20*u[37]-20*u[35])

 

20*u[38]-20*u[36]

 

u[37]*(20*u[38]-20*u[36])

 

1600*u[36]-3200*u[37]+1600*u[38]

 

1600*u[36]-3200*u[37]+1600*u[38]-u[37]*(20*u[38]-20*u[36])

 

20*u[39]-20*u[37]

 

u[38]*(20*u[39]-20*u[37])

 

1600*u[37]-3200*u[38]+1600*u[39]

 

1600*u[37]-3200*u[38]+1600*u[39]-u[38]*(20*u[39]-20*u[37])

 

20*u[40]-20*u[38]

 

u[39]*(20*u[40]-20*u[38])

 

1600*u[38]-3200*u[39]+1600*u[40]

 

1600*u[38]-3200*u[39]+1600*u[40]-u[39]*(20*u[40]-20*u[38])

 

20*u[41]-20*u[39]

 

u[40]*(20*u[41]-20*u[39])

 

1600*u[39]-3200*u[40]+1600*u[41]

 

1600*u[39]-3200*u[40]+1600*u[41]-u[40]*(20*u[41]-20*u[39])

(3)

u[1]

.1644933719

(4)

u[2]

u[2]

(5)
 

NULL

Download automatic_differentiation.mw

1 2 3 Page 1 of 3