Kitonum

21835 Reputation

26 Badges

17 years, 221 days

MaplePrimes Activity


These are answers submitted by Kitonum

Under the condition that  u, v, delta, lambda, phi, beta, alpha  are in the interval  ]0,1]  there are no solutions.

The proof.

Let   A=(alpha+lambda+u+delta)/(u+v+alpha) ,  B=(alpha+lambda+u+delta)/(u+v)

From the first inequality we have  beta/phi>B  and from the fourth inequality we have  beta/phi<A .  We have a contradiction because  A<B .

Theta:=[ 0, Pi/3, 2*Pi/3, Pi]:
Phi:=[ 0, Pi/3, 2*Pi/3, Pi, 4*Pi/3, 5*Pi/3, 2*Pi, 7*Pi/3]:
F:=(theta,phi)->[cos(phi)*sin(theta), sin(phi)*sin(theta), cos(theta)]:
{seq(seq(F(theta,phi), phi=Phi), theta=Theta)};
A:=plots[pointplot3d](%, color=red, symbol=solidcircle, symbolsize=20):
B:=plottools[sphere]([0,0,0], 1):
plots[display](A, B);

 

 


 

a := [1, 4, 2, 6, 8]:  b:={a[ ]};
{seq(seq(parse(cat(i,j)), j=b minus {i}), i=b)};
select(`<`, b union %, 50);

                 {1, 2, 4, 6, 8, 12, 14, 16, 18, 21, 24, 26, 28, 41, 42, 46, 48}

 

or using  combinat:-permute  instead of nested  seq  :

a := [1, 4, 2, 6, 8]:  b:={a[ ]};
map(parse@cat@op, combinat:-permute(b,2));
select(`<`, b union {%[ ]}, 50);

 

Edit.
                     

Apply  evalf  command to your answer.

restart;
with(Student[NumericalAnalysis]):
f:=x->abs(x):
a, b:=-1., 1.:
h:=(b-a)/4:
xx:=[a,a+h,a+2*h,a+3*h,b]:
yy:=map(f, xx):
xy:=zip((u,v)->[u,v], xx, yy);
s2:=CubicSpline(xy, independentvar=x);
P:=expand(Interpolant(s2));
plot([f(x), P], x=-1..1);
Draw(s2);
M:=maximize(abs(abs(x) - P), x=-1..1);

 

Edit.

 

restart; 
1 = int(abs(A*exp(-(1/3)*x^2))^2, x = -infinity .. infinity); 
solve({%, A > 0}); 
A := eval(``(A^4)^(1/4), %);  
# The final result

                        

 

Addition. If in the future you are going to do any numerical manipulations with  A , you must first use  expand  command, for example:

evalf(expand(A));

                                  0.6787185469

 

Examples:

L:=[x1+x2-x3=0, 2*x1-x2+x3=0, x2-3*x3=0]:
convert(L, Vector);

# or
%piecewise(seq(op([``, L[i] ]), i=1..nops(L)));

                            

 

Addition. You can also display it in a column without any brackets using a for loop:

L:=[x1+x2-x3=0, 2*x1-x2+x3=0, x2-3*x3=0]:
for i from 1 to nops(L) do
L[i];
od;

 

I think the reason is incorrect conversion, which does not need:

int(f(x)*f(y)*x^2*abs(x+y), x=-infinity..infinity, y=-infinity..infinity);
evalf(%);

                                     3/sqrt(Pi)

                                 1.692568750

 

f:=(x,n)->(1-x^2)^n/n!:
is(diff(f(x,n),x,x) = 2*(1-2*n)*f(x,n-1)+4*f(x,n-2));

                                     true
 

The proof below uses only the initial Maple conversion and  simplest transformations with roots:


 

restart;
A:=convert(hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)),elementary) assuming z>1:
B:=normal(numer(A))/denom(A);
 

(-((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3)+((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3))/(z*(3*z-3)^(1/2)*((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3)*((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3))

(1)

B1:=(1/2)*sqrt(27*z^3-27*z^2+4)+(3/2)*z*sqrt(3*z-3):
B2:=(1/2)*sqrt(27*z^3-27*z^2+4)-(3/2)*z*sqrt(3*z-3):
expand(B1*B2);  # Below we use (2) for simplification of B

1

       (2)

'B'=numer(B)/`*`(op(1..2,denom(B))); # It follows from (2)

B = (-((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3)+((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3))/(z*(3*z-3)^(1/2))

(3)

# It remains to prove that numer(B)=sqrt(3*z-3)
# We denote t=B1^(1/3)-B2^(1/3) and cube both sides of this equation
t^3=B1-3*t-B2: # It follows from (2)
is(eval(%, t=sqrt(3*z-3)));

true

       (4)

 


 

Download 111.mw

I  simplified a little notations for your system. Maple finds all solutions of the system in a very bulky form. To simplify the answer the numerical values of the system parameters should be specified. See the attached file.

solutions1.mw

Edit.

Transformation to the  simple_answer :

ode:=diff(y(x),x) = sec(x)^2*sec(y(x))^3:
dsolve(ode, implicit);
A:=3*subs(sin(x)/cos(x)=tan(x), expand(-%)); 
 # An intermediate result
factor(subs(_C1=_C1/3, A-add(op(i, lhs(A)), i=[1,4])));   # The final result

 

Edit.

Try to replace the code by this:

dsys := {2*m1*(a+l*sin(phi(t)))^2*(diff(diff(theta(t), t), t))+4*m1*(a+l*sin(phi(t)))*l*cos(phi(t))*(diff(theta(t), t))*(diff(phi(t), t)) = M, 2*m1*l^2*(diff(diff(phi(t), t), t))+4*m2*l^2*sin(2*phi(t))*(diff(phi(t), t))*(diff(phi(t), t))+4*m2*l^2*sin(phi(t))^2*(diff(diff(phi(t), t), t))-2*m1*(a+l*sin(phi(t)))*l*cos(phi(t))*(diff(theta(t), t))*(diff(theta(t), t))-2*m2*l^2*(sin(2*phi(t)))*(diff(phi(t), t))*(diff(phi(t), t)) = -(2*(m1+m2))*g*l*sin(phi(t))-2*k*l^2*sin(2*phi(t)), phi(0) = 0, theta(0) = 0, (D(phi))(0) = 0, (D(theta))(0) = 0};

{M = 10, a = .5, g = 9.81, k = .1, l = .5, m1 = 10, m2 = 1}:
dsn1 := dsolve(eval(dsys, %), numeric);

 

Edit.  Multiplication sign was missed. See

You can easily automate your manual solution using  minimize  command:

restart;
y0:=solve(x^2*y = 16, y);
minimize(eval(4*x^2+4*x*y, y=y0), x=0..infinity, location);
x0:=op([1,1,1], %[2]);
Minimum=%%[1], [op([1,1,1],%%[2]),y=eval(y0,x0)];
 # The final result

                              Minimum = 48, [x = 2, y = 4]

I do not understand the other half of your code and wrote the animation in 3D anew:

with(plots):
Repltlist := [[sin(t), 0], [cos(t), (1/3)*Pi], [cos(2*t), (2/3)*Pi]]:
Impltlist := [[-sin(3*t), 0], [-2*cos(t), (1/3)*Pi], [-cos(4*t), (2/3)*Pi]]:
L1:=map(s->[s[1]*cos(s[2]), s[1]*sin(s[2]), t], Repltlist);
L2:=map(s->[s[1]*cos(s[2]), s[1]*sin(s[2]), t], Impltlist);
A:=a->spacecurve(L1, t=-Pi..a, color=red, thickness=3):
B:=a->spacecurve(L2, t=-Pi..a, color=blue, thickness=3):

animate(display, ['A'(a), 'B'(a), axes=normal, labels=[x,y,t] ], a=-Pi..Pi, frames=90);


 

First 172 173 174 175 176 177 178 Last Page 174 of 292