MAXR

20 Reputation

2 Badges

1 years, 362 days

MaplePrimes Activity


These are questions asked by MAXR

Dear All,

I am facing some problems. This kind of error has been shown "Error, (in Engine:-Dispatch) badly formed input to solve: not fully algebraic"

eqn1 := {((1+1/beta).(diff(f(eta), eta, eta, eta))-(1+F[s]).((diff(f(eta), eta))^2)+(diff(f(eta), eta, eta)).f(eta)+M.(A-(diff(f(eta), eta)))-1/(R.D[a]).(diff(f(eta), eta)) = 0, diff(theta(eta), eta, eta)+4/3.N.(diff((1+(K-1).theta(eta))^3.(diff(theta(eta), eta)), eta)))+Pr.f(eta).(diff(theta(eta), eta))+(1+1/beta).Pr.Ec.((diff(f(eta), eta, eta))^2)+M.Ec.((diff(f(eta), eta)-A)^2) = 0, f(0) = 0, theta(0) = 1+alpha.(D(theta))(0), theta(10) = 0, (D(f))(0) = 1+(1+1/beta).lambda.(D(D(f)))(0), (D(f))(10) = 0};
;
sys1 := eval(eqn1, {A = 1, Ec = .2, K = 2.5, M = .5, N = .5, Pr = 6.5, R = 1, alpha = .5, beta = 2, lambda = .5, D[a] = .3, F[s] = 1});
sol1 := dsolve(sys1, numeric);
Error, (in Engine:-Dispatch) badly formed input to solve: not fully algebraic
with(plots);
t1 := odeplot(sol1, [eta, diff(f(eta), eta)], eta = 0 .. 10, numpoints = 65, thickness = 0, color = green, linestyle = solid);
plots[plots:-display]({t1})

MAXR.mw

Dear All,

I am facing some problems. I want to draw some plots: I have considered the 4th order momentum equation and the 2nd order energy equation; it requires 6 boundary conditions, which I have provided, but till asking for errors (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 7, got 6.

eqn1 := {((kappa[1].phi[1]+kappa[2].phi[2]+kappa[3].phi[3])/(phi[1]+phi[2]+phi[3])+(p-1).kappa[f]+(p-1).(kappa[1].phi[1]+kappa[2].phi[2]+kappa[3].phi[3])-(p-1).(phi[1]+phi[2]+phi[3]).kappa[f])/((kappa[1].phi[1]+kappa[2].phi[2]+kappa[3].phi[3])/(phi[1]+phi[2]+phi[3])+(p-1).kappa[f]-(p-1).(kappa[1].phi[1]+kappa[2].phi[2]+kappa[3].phi[3])+(phi[1]+phi[2]+phi[3]).kappa[f]).(diff(theta(eta), eta, eta)+4/3.N.(diff((1+(K-1).theta(eta))^3.(diff(theta(eta), eta)), eta)))+Pr.(((1-phi[3]).((1-phi[2])*(1-phi[1]+phi[1].(`ρc__s1`/`ρc__f`))+phi[2].(`ρc__s2`/`ρc__f`))+phi[3].(`ρc__s3`/`ρc__f`)).(R.f(eta)+alpha.eta).(diff(theta(eta), eta))+Q.theta(eta)+R.Ec.((diff(f(eta), eta, eta))^2)) = 0, diff(f(eta), eta, eta, eta, eta)-(1-phi[1])^2.5.((1-phi[2])^2.5).((1-phi[3])^2.5).((1-phi[3]).((1-phi[2]).(1-phi[1]+phi[1].(`ρ__s1`/`ρ__f`))+phi[2].(`ρ__s2`/`ρ__f`))+phi[3].(`ρ__s3`/`ρ__f`)).(alpha.(eta.(diff(f(eta), eta, eta, eta))+3.*(diff(f(eta), eta, eta)))+(diff(f(eta), eta, eta, eta)).f(eta)-(diff(f(eta), eta)).(diff(f(eta), eta, eta))).R-(1-phi[1])^2.5.((1-phi[2])^2.5).((1-phi[3])^2.5).A.B.e^(-B.eta) = 0, f(-1) = S, f(1) = 1, theta(-1) = 1, theta(1) = 0, (D(f))(-1) = 0, (D(f))(1) = 0}

sys1 := eval(eqn1, {A = 1, B = .5, Ec = .1, K = 1.5, N = .5, Pr = 2, Q = .4, R = 1, S = -.1, p = 3, alpha = .2, `ρ__f` = 997.1, `ρ__s1` = 0, `ρ__s2` = 0, `ρ__s3` = 5180, `ρc__f` = 997.1.4179, `ρc__s1` = 0, `ρc__s2` = 0, `ρc__s3` = 5180.670, phi[1] = 0., phi[2] = 0., phi[3] = 0.3e-1, kappa[1] = 0, kappa[2] = 0, kappa[3] = 9.7, kappa[f] = .613})

sol1 := dsolve(sys1, numeric);
Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 7, got 6
with(plots);
t1 := odeplot(sol1, [eta, diff(f(eta), eta)], eta = -1 .. 1, numpoints = 65, thickness = 0, color = green, linestyle = solid);
plots[plots:-display]({t1})

Download A1.mw

Dear All,

How to draw 3D plot from given data as follows

x:=[0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5,0.1, 0.2, 0.3, 0.4, 0.5,0.1, 0.2, 0.3, 0.4, 0.5,0.1, 0.2, 0.3, 0.4, 0.5]
y:=[0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.4, 0.4,0.5,0.5,0.5,0.5,0.5]
z:=[1.971284960, 1.642401616, 1.372353338,1.153620572,0.9762759982,
    1.675502483, 1.411976881, 1.190627373,1.007730234,0.8570007139, 
    1.397140245, 1.184230644, 1.003688984,0.852696223,0.7268039317,
    1.144791107, 0.9725020383,0.8257592921,0.7020549659,0.5979974836,                                                                                 0.9208492326, 0.7816302394, 0.6627749172,0.5620029444,0.4766238930]
 

Like:

Product Name: Maple 17

 

Dear colleagues,

how can i plot streamlines and isothermes and also 3D graphes of Nussult number and skin friction coefficient for boundary layer flow problem with Maple? 

Regards

MAXR

Modified.mw

3D plots of nusselt number like:

Streamline like:

Page 1 of 1