Preben Alsholm

13728 Reputation

22 Badges

20 years, 239 days

MaplePrimes Activity


These are answers submitted by Preben Alsholm

It seems that algsubs won't touch attempts to replace functions like int, Int, sin, or f in f(x):
 

restart;
expr:=int(f(x),x);
algsubs(f(x)=g(x),expr); # Works
algsubs(f=g,expr); # Doesn't do anything
algsubs(sin=cos,sin(x)); # Doesn't do anything
algsubs(x=y,expr); # Works

 

That problem with y(0) = 0 has infinitely many solutions (a well known fact):
 

restart;
ode := diff(y(x),x) = 2*sqrt(y(x));
p:=seq(piecewise(x<n,0,(x-n)^2),n=0..4);
plot([p],x=-1..5);
seq(odetest(y(x)=q,ode),q=p);

With 17 equations we may assume that your solution is numerical.

I give here a very simple example: Just one ode and it can be solved symbolically as well as numerically:
 

restart;
ode1:=diff(x(t),t)=-x(t)+sin(t);
ic1:=x(0)=1;
res1:=dsolve({ode1,ic1},numeric); # The numerical solution for x
plots:-odeplot(res1,[t,x(t)],0..20); 
### Now introduce the integral of x which is called y: 
INT:=y(t)=int(x(s),s=0..t);
### Differentiate that to get an extra ode:
ode2:=diff(INT,t);
ic2:=eval(INT,t=0); # The initial value for y
res2:=dsolve({ode1,ode2,ic1,ic2},numeric); # Numerical solutions for x and y
plots:-odeplot(res2,[[t,x(t)],[t,y(t)]],0..20); 
### Now for comparison we solve exactly (symbolically):
sol1:=dsolve({ode1,ic1});
map(int,sol1,t=0..T);
sol2:=y(t)=subs(T=t,rhs(%));
plot([rhs(sol1),rhs(sol2)],t=0..20); 
### The difference between the numerical and the exact y(t):
plots:-odeplot(res2,[t,y(t)-rhs(sol2)],0..20);

PS. I see that Carl Love beat me to it, but I shall leave my version. It doesn't hurt with several examples especially when you are new to Maple.

Could you not use events?
Here is a suggestion:
 

sysE := {
         diff(x(t), t) = v(t),
         diff(v(t), t) = t - (b(t)*f+(1-b(t))*(-f)),
         x(0) = 0,
         v(0) = 0,
         b(0) = 0
       };
solE := dsolve(sysE, numeric, parameters=[f],discrete_variables=[b(t)::boolean], events=[[v(t)=0,b(t)=1-b(t)]]);
solE(parameters=[1]):
solE(1);
odeplot(solE,[t,v(t)],0..100);

 

In the revised version of U it pays to reverse the order of integration:

 

restart;
#HAM := [1, 2, 3, 4, 5, 6]; 
U := q^6*sin(p); 
alpha := 1/3;
## Notice that the order of integration has been reversed:
for i from 1 to 6 do
   rho := i;
   f[i] := int(int(U/((x^rho-p^rho)^alpha*(y^rho-q^rho)^alpha), p = 0 .. x), q = 0 .. y) assuming x>0,y>0
end do;

 


 

restart;

sys:=P*diff(f(eta), eta, eta, eta)/Q + lambda*theta(eta)*(S0 + S1*Qc*theta(eta)) + (n + 1)/2*(f(eta) + g(eta))*diff(f(eta), eta, eta) - n*diff(f(eta), eta)*(diff(f(eta), eta) + diff(g(eta), eta)) = 0, P*diff(g(eta), eta, eta, eta)/Q + (n + 1)/2*(f(eta) + g(eta))*diff(g(eta), eta, eta) - n*diff(g(eta), eta)*(diff(f(eta), eta) + diff(g(eta), eta)) = 0, (S2 - 2*R)*diff(theta(eta), eta, eta)/(S4*Pr) + (3*R)/(2*S4*Pr*(thetaw - 1))*diff((1 + (thetaw - 1)*theta(eta))^2, eta, eta) + (n + 1)/2*(f(eta) + g(eta))*diff(theta(eta), eta) = 0, f(0) = 0, g(0) = 0, theta(0) = 1, D(f)(0) = 1, D(g)(0) = c, D(f)(3) = 0, D(g)(3) = 0, theta(3) = 0;
 

sys[3]; # Term 2 has a removable singularity at thetaw=1

sys3:=map(normal,lhs(sys[3]))=0; # No singularity at thetaw=1

isolate(sys3,diff(theta(eta),eta,eta));

When R > 0, theta(eta) > 0, and thetaw > 1 we see that the denominator is positive (in fact grater than R+S2).

SYS:=sys[1..2],sys3,sys[4..-1];

P := 0.7952865489: Q := 1.239340734: S4 := 1.007143462:S0 := 0.8330195568:S1 := 0.8330195568:
S2 := 1.087762421: Pr := 0.0157*2415/0.252: n:=3: lambda:=20: Qc:=2: c:=0.5:

for s in SYS do s end do; # Viewing the system

Digits:=15:

Boundary value problems of this kind are notoriously difficult, so we begin with simply providing simple values for thetaw and R:

res:=dsolve(eval({SYS},{thetaw=1.5,R=0.2}),numeric,initmesh=256,maxmesh=1024);

res(0);

dth0:=subs(res(0),diff(theta(eta),eta));

plots:-odeplot(res,[[eta,f(eta)],[eta,g(eta)],[eta,theta(eta)]],0..3);

This procedure will be used for animation:

resplot:=proc(thetaw0,R0) local res;
   res:=dsolve(eval({SYS},{thetaw=thetaw0,R=R0}),numeric,_rest);
   plots:-odeplot(res,[[eta,f(eta)],[eta,g(eta)],[eta,theta(eta)]],0..3,legend=[f,g,theta])
end proc;

resplot(1.5,0.2,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta)]);

plots:-animate(resplot,[1.5,R,initmesh=512,maxmesh=2048,
       approxsoln=[f(eta)=0.4*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta)]],R=0.1..2,trace=24);

plots:-animate(resplot,[thetaw,0.2,initmesh=512,maxmesh=2048,
              approxsoln=[f(eta)=0.4*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta)]],thetaw=1..10,trace=24);

We notice that the general shape of the solutions doesn't change much with R and thetaw.

 

The following procedure takes values of thetaw and D(theta)(0) as input and outputs the corresponding value for R.

Notice the extra boundary condition D(theta)(0)=Dth0:

Rproc:=proc(thetaw0,Dth0) local res;
   if not [thetaw0,Dth0]::list(realcons) then return 'procname(_passed)' end if;
   res:=dsolve(eval({SYS,D(theta)(0)=Dth0},thetaw=thetaw0),numeric,_rest);
   subs(res(0),R)
end proc;

Here we should expect to see the result 0.2 for R even though the R value given in approxsoln is R = 1, and indeed we do:

Rproc(1.5,dth0,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=1]);

Rproc(1.5,dth0,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=2]);

Rproc(1.5,-1,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=1]);

plot(
     Rproc(thetaw,-1,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=1]),
     thetaw=1..2,labels=[thetaw,R]);

 


Here as we saw we have D(theta)(0) = -1 (the second argument to Rproc):

This code:
 

plot3d(Rproc(thetaw,Dth0,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=1]),
     thetaw=1..2,Dth0=-3..-1,labels=[thetaw,Dth0,R]);

produces (after a while):


and this code produces an animation:
 

plots:-animate(plot,
     [Rproc(thetaw,Dth0,initmesh=256,approxsoln=[f(eta)=0.5*tanh(eta),g(eta)=0.2*tanh(eta),theta(eta)=exp(-12*eta),R=1]),
     thetaw=1..2,labels=[thetaw,R] ],
     Dth0=-3..-1,frames=10,trace=9);



Download MaplePrimes20-10-26_odebvp2.mw

Here is a start that may or may not with extra optional arguments to dsolve lead to something:
 

restart;
sys:=P*diff(f(eta), eta, eta, eta)/Q + lambda*theta(eta)*(S0 + S1*Qc*theta(eta)) + (n + 1)/2*(f(eta) + g(eta))*diff(f(eta), eta, eta) - n*diff(f(eta), eta)*(diff(f(eta), eta) + diff(g(eta), eta)) = 0, P*diff(g(eta), eta, eta, eta)/Q + (n + 1)/2*(f(eta) + g(eta))*diff(g(eta), eta, eta) - n*diff(g(eta), eta)*(diff(f(eta), eta) + diff(g(eta), eta)) = 0, (S2 - 2*R)*diff(theta(eta), eta, eta)/(S4*Pr) + (3*R)/(2*S4*Pr*(thetaw - 1))*diff((1 + (thetaw - 1)*theta(eta))^2, eta, eta) + (n + 1)/2*(f(eta) + g(eta))*diff(theta(eta), eta) = 0, f(0) = 0, g(0) = 0, theta(0) = 1, D(f)(0) = 1, D(g)(0) = c, D(f)(3) = 0, D(g)(3) = 0, theta(3) = 0;


sys[3]; # Term 2 has a removable singularity at thetaw=1
sys3:=map(normal,lhs(sys[3]))=0; # No singularity at thetaw=1
SYS:=sys[1..2],sys3,sys[4..-1];
P := 0.7952865489: Q := 1.239340734: S4 := 1.007143462:S0 := 0.8330195568:S1 := 0.8330195568: 
S2 := 1.087762421: Pr := 0.0157*2415/0.252: n:=3: lambda:=20: Qc:=2: c:=0.5: 
for s in SYS do s end do; # Viewing the system
Digits:=15:
#Boundary value problems of this kind are notoriously difficult, 
#so we begin with simply providing simple values for thetaw and R:
res:=dsolve(eval({SYS},{thetaw=1,R=2}),numeric,initmesh=256);
res(0);
dth0:=subs(res(0),diff(theta(eta),eta));
#The following procedure takes values of thetaw and D(theta)(0) as input and outputs the 
#corresponding value for R.
#Notice the extra boundary condition D(theta)(0)=Dth0:
Rproc:=proc(thetaw0,Dth0) local res;
   res:=dsolve(eval({SYS,D(theta)(0)=Dth0},thetaw=thetaw0),numeric,_rest);
   subs(res(0),R)
end proc;
#Here we should like to see the result 2 for R, but unfortunately we get an error instead. 
#Equally unfortunate is it that I'm not surprised:
Rproc(1,dth0,initmesh=1024);

 

Since you don't worry about the legitimacy of the simplification you can use the assumption  n::posint.
So you could do:
 

subsindets(expr,'exp(anything)^anything',f->simplify(f,exp)) assuming n::posint;

The following simple example is a reminder that the simplification is not always true. One should keep in mind that Maple uses the principal branch of the logarithm.
 

x:=2*Pi*I;
n:=-1+I;
exp(x)^n;        #  1
evalc(exp(x*n)); #  exp(-2*Pi)

 

dsolve doesn't use LinearAlgebra:-dAlambertianSolver, which is ised in DEtools:-particularsol.
That solver hangs. Why I don't know.
Try this:
 

restart;
ode:=diff(y(x),x$7)-2*diff(y(x),x$6)+9*diff(y(x),x$5)-16*diff(y(x),x$4)+24*diff(y(x),x$3)-32*diff(y(x),x$2)+16*diff(y(x),x)=exp(2*x)+x*sin(x)+x^2;
debug(LinearOperators:-dAlembertianSolver);
sol:=dsolve(ode); 
DEtools:-particularsol(ode,y(x));

 

Clearly a bug. But omitting the initial condition makes odetest work:
 

restart;
ode:=diff(y(x), x) - 2*y(x) = 2*sqrt(y(x));
ic:=y(0)=1;
maple_sol := 1 - 2*exp(x) + sqrt(y(x)) = 0;
my_sol:= y(x)^(1/2) = -1+2*exp(x);
odetest(maple_sol,ode) assuming x>0; # 0
odetest(my_sol,ode) assuming x>0 ;   # 0

This bug is very old. It is in Maple 8 too.
It appears that the bug is in `odetest/sysODE`, which is not used when ic is excluded.

 

Your problem just consists in finding an antiderivative P(x) of the right hand side satilfying the condition P(x) -> 0 for x -> -infinity:
 

restart;
sigma := x^2 + 1;
M:=1/10:
N:=1/2:
ode := diff(P(x), x) = -3*(M - 1)/(2*sigma^2) - 3*N/sigma^3;
sol:=int(rhs(ode),x=-infinity..x); # abuse of notation: x used in 2 ways
simplify(diff(sol,x)-rhs(ode)); # Check

Notice that I have used rationals instead of floating points.
The abuse of notation is allowed in Maple these days.

PS. Maybe you are not really interested in finding P(x), but are using this as training for odes having dependence on P(x) and not solvable by symbolic methods?

I don't think that you can prove anything in Maple.
But try this:
 

pdsolve(diff(g(y,z),y)=0);

 

@acer You can simply replace all occrurrences of subs in `plots/animate` by eval with this simple code:

`plots/animate`:=subs(subs=((x,y)->eval(y,x)),eval(`plots/animate`)):

This is quite harmless and works. I have been doing it for years. The problem is present in versions up to and including Maple 14.
It is unnecessary in later version: they don't use subs, so even here it is harmless.
After that redefinition the following code works quite nicely:
 

animate (pointplot3d, [ [b(t),c(t),d(t)], symbol=box, color=blue],t=15..100,
background = odeplot(sol, [x(t),y(t),z(t)],t=15..100,numpoints=7000),frames=500,axes=boxed);

I just tried in Maple 12.

Here is a straightforward way:
 

restart;
p:=<1,2,3,4,5,6>;
vs:=<.1,.6,NA,-1.4,NA,6.7>;
p1:=Vector():
vs1:=Vector():
j:=1:
for i from 1 to numelems(p) do
  if vs[i]<>NA then p1(j):=p[i]; vs1(j):=vs[i]; j:=j+1 end if
end do;  
vs1;
p1;

 

There is indeed a singularity of your ode. No way of avoiding that unless your numbers are changed:


 

restart;

Digits:=15:

Your ode is q:

#q:=0.00002*diff(f(t),t)+1/0.007*(1.75*exp(-0.06*t)-0.75*exp(-200*t))*(0.007-f(t))^3-(0.007-f(t))^2=0;

We introduce the parameter b, which in your case is b = 1/0.007.
Using rational numbers instead and with the parameter b:

ode:=2*10^(-5)*diff(f(t),t)+b*(7/4*exp(-6/100*t)-3/4*exp(-200*t))*(7/1000-f(t))^3-(7/1000-f(t))^2=0;

(1/50000)*(diff(f(t), t))+b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^3-(7/1000-f(t))^2 = 0

ic1:=f(0)=0;

f(0) = 0

ode1:=isolate(ode,diff(f(t),t)); # Useful later

diff(f(t), t) = -50000*b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^3+50000*(7/1000-f(t))^2

res:=dsolve({ode1,ic1},numeric,parameters=[b],abserr=1e-15,relerr=1e-13,maxfun=0);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [b = b]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 1, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 0, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-12, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-12, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = 0., (2) = Float(undefined)})), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = 0.1e-1}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = f(t)]`; YP[1] := -50000*Y[2]*((7/4)*exp(-(3/50)*X)-(3/4)*exp(-200*X))*(7/1000-Y[1])^3+50000*(7/1000-Y[1])^2; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = f(t)]`; YP[1] := -50000*Y[2]*((7/4)*exp(-(3/50)*X)-(3/4)*exp(-200*X))*(7/1000-Y[1])^3+50000*(7/1000-Y[1])^2; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..2, {(1) = 0., (2) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, f(t)], (4) = [b = b]}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

res(parameters=[105]); # An example

[b = 105.]

plots:-odeplot(res,[[t,f(t)],[t,7/1000]],0..1);

bparam:=b=1000/7; # From q. Notice that bparam is an equation.

b = 1000/7

eval(rhs(ode1),{t=0,f(t)=0}); # f'(0)

-(343/20000)*b+49/20

solve(%,{b}); # so f'(0) = 0 when b = 1000/7 i.e. at bparam

{b = 1000/7}

diff(ode1,t);

diff(diff(f(t), t), t) = -50000*b*(-(21/200)*exp(-(3/50)*t)+150*exp(-200*t))*(7/1000-f(t))^3+150000*b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^2*(diff(f(t), t))-100000*(7/1000-f(t))*(diff(f(t), t))

eval(rhs(%),{t=0,f(t)=0,diff(f(t),t)=0,bparam}); # f''(0) < 0 at bparam

-1468971/4000

Thus f'(t) and f(t) will both be negative on some interval (0, delta), where delta > 0.

RHS:=rhs(ode1);

-50000*b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^3+50000*(7/1000-f(t))^2

While f(t) < 0   we have (7/1000-f(t)) > 7/1000, thus f'(t) = RHS will be less than

RHS2:=subs((7/1000-f(t))^3=(7/1000)*(7/1000-f(t))^2,RHS);

-350*b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^2+50000*(7/1000-f(t))^2

We consider the ode with that right hand side:

ode2:=lhs(ode1)=RHS2;

diff(f(t), t) = -350*b*((7/4)*exp(-(3/50)*t)-(3/4)*exp(-200*t))*(7/1000-f(t))^2+50000*(7/1000-f(t))^2

It can be solved by the exact solver (for any b):

sol2:=dsolve({ode2,ic1});

f(t) = (49/1000)*(63*b*exp(-200*t)-490000*b*exp(-(3/50)*t)+489937*b-2400000*t)/(441*b*exp(-200*t)-3430000*b*exp(-(3/50)*t)+3429559*b-16800000*t-48000)

Any solution of ode1 that is negative on some interval (0, delta) (delta > 0)  will be less than sol2 on its right handed maximal interval of definition.
At bparam we have:

sol2_b:=eval(sol2,bparam);

f(t) = (49/1000)*(9000*exp(-200*t)-70000000*exp(-(3/50)*t)+69991000-2400000*t)/(63000*exp(-200*t)-490000000*exp(-(3/50)*t)+489889000-16800000*t)

dn:=denom(rhs(sol2_b));

-63000*exp(-200*t)+490000000*exp(-(3/50)*t)-489889000+16800000*t

delta_2:=fsolve(dn,t=0..1);

0.775316201320157e-2

It follows that the solution of ode1 with bparam must have a singularity before delta_2.

Illustration:

res(parameters=[bparam]);

[b = 142.857142857143]

plots:-odeplot(res,[[t,f(t)],[t,rhs(sol2_b)]],0..delta_2,view=-.1..0);

Warning, cannot evaluate the solution further right of .36067689e-2, probably a singularity

 


 

Download MaplePrimes20-08-26_ode_ic_sing.mw

 

First 10 11 12 13 14 15 16 Last Page 12 of 160