PreethiPandian

15 Reputation

One Badge

0 years, 298 days

MaplePrimes Activity


These are questions asked by PreethiPandian

How to find the values of unknown parameters for these equations with initial and  boundary conditions

where Pr=6.2,M=2,nu=0.3,phi=0.05 and lambda=Sc=Ks=1

Could some one help me out to find the exact way to find the values of unknown parameters

Can anyone help me to frame the equations in Fractional Reduced Differential Transform Method 

system of nonlinear ordinary differential equations
ds/ dt = b−γ s(t)− (δ s(t)(i(t) + βa(t)) /N − ε s(t) m(t) 
de/ dt = δ (s(t)(i(t) + βa(t))/ N + ε s(t) m(t) − (1−ϑ) θ e(t) − ϑ α e(t) − γ e(t) 
di/ dt = (1−ϑ) θ e(t) − (ρ + γ) i(t)
da/ dt = ϑ α e(t) − (σ + γ) a(t)
dr /dt = ρ i(t) + σ a(t) − γ r(t)
dm /dt = τ i(t) + κ a(t) − ω m(t) 

I'm trying to solve the couple of ode

and 

with boundary conditions 

using differential transformation method.Isolved the equations and found the parameter values,further i coudn't plot the graph.

Can any one help me out to solve this

F(0) := a; F(1) := b; F(2) := c; F(3) := d

for k from 0 to 1 do F(k+4) := -(N[1]*G(k)+Re*(sum(F(k-m)*(m+1)*(m+2)*(m+3)*F(m+3), m = 0 .. k))-Re*(sum((k-m+1)*F(k-m+1)*(m+1)*(m+2)*F(m+2), m = 0 .. k)))/((1+N[1])*(k+1)*(k+2)*(k+3)*(k+4)) end do

How to plot a graph for this equation with different values of N_1 and Re number

Page 1 of 1