Ramakrishnan

Ramakrishnan Vaidyanathan

399 Reputation

13 Badges

11 years, 183 days

Social Networks and Content at Maplesoft.com

With twenty years of Industrial experience and twenty years of teaching experience, I am now as retired Professor, using Maple to teach mathematics subject for students studying X to XII standards. Published XII Mathematics books.

MaplePrimes Activity


These are questions asked by Ramakrishnan

 

NULLIn TEXT MODE the greek letters phi and varphi behave peculiarly in text entries inside text box in drawing. If it is the first letter it prints alright. Otherwise they rverse themselves (phi to varphi and viceversa). Is this solvable?

 

NULL

 

Download A_DOUBT_on_phi_varphi.mw


 


 

 

Ramakrishnan V

rukmini_ramki@hotmail.com

 

``

 

I would appreciate if anyone lets me know how to write circular references  (say 1 inside a circle to refer element 1. At present i do a drawing insert text and using.

 

Also i do not know how to remove the boundary of the overall drawing.

NULL

 

Download A_DOUBT_to_be_sent_to_prime_community.mw

Ramakrishnan V

rukmini_ramki@hotmail.com

In the following problem though b and c are same (except the way denominator 2 is hanfled), command ' a-b ' readily answers zero, but a-c not so. Why? Only on condition of assumption real it gives zero!

a := (1/2)*(kappa*omega^2+omega^3)*(Y+(1/2)*(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(kappa*omega^2+omega^3))^2/omega:

b := (1/2)*(kappa*omega^2+omega^3)*(Y+(1/2)*(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(kappa*omega^2+omega^3))^2/omega:

a-b;

0

(1)

c := (1/2)*(kappa*omega^2+omega^3)*(Y+(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(kappa*omega^2+omega^3)))^2/omega:

a-c;

(1/2)*(kappa*omega^2+omega^3)*(Y+(1/2)*(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(kappa*omega^2+omega^3))^2/omega-(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega

(2)

"(->)"

0

(3)

``

Why the answer is not given as zero?

``

``

 

Download what_is_the_difference_between_b_and_c.mw

What difference therms b and c make for Maple? Are they not same?

Ramakrishnan V

rukmini_ramki@hotmail.com

There have come unwanted lines and marks . I donot know how to remove them. Using doc.block, remove block seems to be little tough to incorporate! Please enlighten me. Modified doc. is most welcome. Thanks. Ramakrishnan V 

Gaussian Elimination Method

 

 

Given*the*equations

  restartreset:

with(Student[LinearAlgebra])``

(1)
Coefficient Tanle

Equation 1

Equation 2

Equation 3

Equations

`m__1,1` := 3:
`` 

`m__2,1` := 2:
``

`m__3,1` := 1:
``

`m__1,1`*x__1+`m__1,2`*y+`m__1,3`*z = `m__1,4`; = 3*x__1+y-z = 3

`m__2,1`*x__1+`m__2,2`*y+`m__2,3`*z = `m__2,4`; = 2*x__1-8*y+z = -5

```m__3,1`*x__1+`m__3,2`*y+`m__3,3`*z = `m__3,4`; = x__1-2*y+9*z = 8

The equations in matrix form is given by

Matrix([[3, 1, -1, 3], [2, -8, 1, -5], [1, -2, 9, 8]])

(2)

The Gaussian Elimination gives the simplified natrix equation as given below:

Matrix([[3, 1, -1, 3], [0, -26/3, 5/3, -7], [0, 0, 231/26, 231/26]])

(3)

``The equations in simplified form are:

3*x+y-z = 3

(4)

-(26/3)*y+(5/3)*z = -7

(5)

(231/26)*z = 231/26

(6)

``

The aolution ia obtained by solving the above equations in reverse order

{x = 1, y = 1, z = 1}

(7)

 

``

 

Download GausianFinal15Nov2015.mwGausianFinal15Nov2015.mw

Please_Help_for_a_better_presentation.mw
I have used conduction Fourier formula to find k or q or T. Each time i hAvE to run from restart and units. Can this duplication be eliminated?
How do i rewrite the codes?

Thanks for considering this worth answering.

Ramakrishnan Vaidyanathan

restart

with(Units[Standard])

with(Units)

UsingSystem()

SI

(1)

q := -k*(T__2-T__1)/t

-k*(T__2-T__1)/t

(2)

S := {T__1 = 550*Unit('K'), T__2 = 50*Unit(Unit('K')), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), t = 2*Unit('cm')}

{T__1 = 550*Units:-Unit(K), T__2 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), t = (1/50)*Units:-Unit(m)}

(3)

eval(q, S)

477.5000000*Units:-Unit(kW/m^2)

(4)

refresh

restart

with(Units[Standard])

with(Units)

UsingSystem()

 

 

t := -k*(T__2-T__1)/qNULL

 

-k*(T__2-T__1)/q

(5)

S := {T__1 = 550*Unit('K'), T__2 = 50*Unit(Unit('K')), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), q = 477.5*Unit('kW'/'m'^2)}

{T__1 = 550*Units:-Unit(K), T__2 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), q = 477500.0*Units:-Unit(kg/s^3)}

(6)

eval(t, S)

2.000000000*Units:-Unit(cm)

(7)

restart

clear

 

``NULL

NULL

 

  refresh

restart

with(Units[Standard])

with(Units)

UsingSystem()

NULL

T__2 := q*t/k+T__1

q*t/k+T__1

(8)

S := {T__1 = 50*Unit('K'), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), q = 477.5*Unit('kW'/'m'^2), t = 2*Unit('cm')}

{T__1 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), q = 477500.0*Units:-Unit(kg/s^3), t = (1/50)*Units:-Unit(m)}

(9)

eval(T__2, S)

550.0000000*Units:-Unit(K)

(10)

NULL

 

NULL

 

Download Please_Help_for_a_better_presentation.mw

restart

with(Units[Standard])

with(Units)

UsingSystem()

SI

(1)

q := -k*(T__2-T__1)/t

-k*(T__2-T__1)/t

(2)

S := {T__1 = 550*Unit('K'), T__2 = 50*Unit(Unit('K')), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), t = 2*Unit('cm')}

{T__1 = 550*Units:-Unit(K), T__2 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), t = (1/50)*Units:-Unit(m)}

(3)

eval(q, S)

477.5000000*Units:-Unit(kW/m^2)

(4)

refresh

restart

with(Units[Standard])

with(Units)

UsingSystem()

 

 

t := -k*(T__2-T__1)/qNULL

 

-k*(T__2-T__1)/q

(5)

S := {T__1 = 550*Unit('K'), T__2 = 50*Unit(Unit('K')), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), q = 477.5*Unit('kW'/'m'^2)}

{T__1 = 550*Units:-Unit(K), T__2 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), q = 477500.0*Units:-Unit(kg/s^3)}

(6)

eval(t, S)

2.000000000*Units:-Unit(cm)

(7)

restart

clear

 

``NULL

NULL

 

  refresh

restart

with(Units[Standard])

with(Units)

UsingSystem()

NULL

T__2 := q*t/k+T__1

q*t/k+T__1

(8)

S := {T__1 = 50*Unit('K'), k = 19.1*Unit('W')/(Unit('m')*Unit('K')), q = 477.5*Unit('kW'/'m'^2), t = 2*Unit('cm')}

{T__1 = 50*Units:-Unit(K), k = 19.1*Units:-Unit(m*kg/(s^3*K)), q = 477500.0*Units:-Unit(kg/s^3), t = (1/50)*Units:-Unit(m)}

(9)

eval(T__2, S)

550.0000000*Units:-Unit(K)

(10)

NULL

 

NULL

 

Download Please_Help_for_a_better_presentation.mw

First 10 11 12 13 Page 12 of 13