dharr

Dr. David Harrington

8235 Reputation

22 Badges

20 years, 340 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

I don't really understand your notation or exactly what you want. Perhaps you could clarify for this simple example, for which the entropy (as I understand it) is easily calculated.
 

Arranging i atoms on n sites, zero or one per site. Number of ways is

W := binomial(n, i);

binomial(n, i)

pmf?

pmf := W/2^n;

binomial(n, i)/2^n

For a large n, the fraction of sites occupied is theta"=i/(n) "and the configurational entropy is ln(W)

S := `assuming`([limit(ln(binomial(n, theta*n))/n, n = infinity)], [theta > 0, theta < 1]);

-theta*ln(theta)+theta*ln(-theta+1)-ln(-theta+1)

``

 

 

Download entropy.mw

Not sure what is going on, but this gets the right form from rsolve.
 

restart

Sum. Sum of zero things is zero

eqs := s(n+1) = s(n)+x[n+1];

s(n+1) = s(n)+x[n+1]

s(0) = 0

Desired form

rsolve({eqs, eqs0}, s(n));

Sum(x[n0], n0 = 1 .. n)

Mean is sum/n, but if n=0 we will define it as zero

equ := u(n+1) = s(n+1)/(n+1);

u(n+1) = s(n+1)/(n+1)

u(0) = 0

rsolve({eqs, eqs0, equ, equ0}, {s(n), u(n)});

{s(n) = Sum(x[n0], n0 = 1 .. n), u(0) = 0, u(n) = (Sum(x[n0], n0 = 1 .. n))/n}

``

 

Download rsolve.mw

Within a procedure, _npassed tells how many arguments were passed to it, and _passed gives the sequence of arguments. For example to make a procedure that takes the mean of some numbers you can use

f:=()->add(_passed)/_npassed;

Then f(1,3,5) returns 3.

In Maple 18, these were probably nargs and args, so perhaps

f:=()->add(i,i in args)/nargs;

 

You probably want the VIEW part, which you can extract as follows:
 

p := plot(sin(x), x = -1 .. 10):

v := op(select(type, p, specfunc(VIEW)));

VIEW(-1. .. 10., DEFAULT, _ATTRIBUTE("source" = "mathdefault"))

``

 

Download view.mw

Not very clear what you want. I think you want to find where the zero entries are and then replace them. Here is one way to do that; you will need to convert your older array to Array with convert(dumX,Array) first.

Or perhaps you want the sum of the numeric values.

[worksheet not displaying properly right now]

Array.mw

You can use sprintf to format a number into a string, with control over the number of decimal places etc. Here are some examples:

d := 0.75e-4:
sprintf("d = %g",d);
sprintf("d = %8.3e",d);

"d = 7.5e-05"

"d = 7.500e-05"

d:=0.75:
sprintf("d = %g",d);
sprintf("d = %.3f",d);

"d = 0.75"

"d = 0.750"

``

Download sprintf.mw

It would help if there are some initial/boundary conditions, and perhaps h(t). Maple 2015 gives:
 

restart;NULL

Arbitrary h(t) and lambda

  odeSys:= diff(x(t),t)=y(t),
           diff( y(t), t) =z(t),
           diff(z(t),t)=-lambda*y(t)-h(t);
  dsolve({odeSys},{x(t),y(t),z(t)}) assuming lambda>0;

diff(x(t), t) = y(t), diff(y(t), t) = z(t), diff(z(t), t) = -lambda*y(t)-h(t)

{x(t) = Int(-(-sin(lambda^(1/2)*t)*_C3*lambda^(1/2)-cos(lambda^(1/2)*t)*_C2*lambda^(1/2)+(Int(cos(lambda^(1/2)*t)*h(t), t))*sin(lambda^(1/2)*t)-(Int(sin(lambda^(1/2)*t)*h(t), t))*cos(lambda^(1/2)*t))/lambda^(1/2), t)+_C1, y(t) = -(-sin(lambda^(1/2)*t)*_C3*lambda^(1/2)-cos(lambda^(1/2)*t)*_C2*lambda^(1/2)+(Int(cos(lambda^(1/2)*t)*h(t), t))*sin(lambda^(1/2)*t)-(Int(sin(lambda^(1/2)*t)*h(t), t))*cos(lambda^(1/2)*t))/lambda^(1/2), z(t) = -lambda^(1/2)*sin(lambda^(1/2)*t)*_C2+lambda^(1/2)*cos(lambda^(1/2)*t)*_C3-cos(lambda^(1/2)*t)*(Int(cos(lambda^(1/2)*t)*h(t), t))-sin(lambda^(1/2)*t)*(Int(sin(lambda^(1/2)*t)*h(t), t))}

Find lambda as well

dsolve({odeSys},{x(t),y(t),z(t),lambda}) assuming lambda>0;

{lambda = (cos(t/_C1)^2*h(t)*_C1^2+sin(t/_C1)^2*h(t)*_C1^2-h(t)*_C1^2+cos(t/_C1)*(Int(sin(t/_C1)*h(t), t))*_C1-sin(t/_C1)*(Int(cos(t/_C1)*h(t), t))*_C1+cos(t/_C1)*_C2+sin(t/_C1)*_C3)/(_C1^2*(-sin(t/_C1)*(Int(cos(t/_C1)*h(t), t))*_C1+cos(t/_C1)*(Int(sin(t/_C1)*h(t), t))*_C1+sin(t/_C1)*_C3+cos(t/_C1)*_C2)), x(t) = Int(-sin(t/_C1)*(Int(cos(t/_C1)*h(t), t))*_C1+cos(t/_C1)*(Int(sin(t/_C1)*h(t), t))*_C1+sin(t/_C1)*_C3+cos(t/_C1)*_C2, t)+_C4, y(t) = sin(t/_C1)*_C3+cos(t/_C1)*_C2+(-(Int(cos(t/_C1)*h(t), t))*sin(t/_C1)+(Int(sin(t/_C1)*h(t), t))*cos(t/_C1))*_C1, z(t) = (-sin(t/_C1)*(Int(sin(t/_C1)*h(t), t))*_C1-cos(t/_C1)*(Int(cos(t/_C1)*h(t), t))*_C1-sin(t/_C1)*_C2+cos(t/_C1)*_C3)/_C1}

``

 

Download system.mw

Your Excel file now has data at each grid point, so perhaps surfdata gives what you want?
 

restart;

dat:=ExcelTools:-Import(cat(currentdir(),"/PlotTest.xlsx"),1,"B2:J10"):

plots:-surfdata(dat,0.1..0.9,0.1..0.9);

``


 

Download Yasi.mw

Here is the nearest I can think of.

F:=proc(v::string,k)
   local F1,F2;
   uses DocumentTools:-Layout;
   F1:=Font(cat(v,"]"),color=blue):
   F2:=Font(sprintf(" is %g",k),color=red):
   DocumentTools:-InsertContent(Worksheet(Group(Input(Textfield(F1,F2))))):
end proc:
F("1:1",4) 

produces  "1:1] is 4" in a new input group.

Download Colortext.mw

You ask for op(1,eq5), which is the left-hand side of:

You did not indicate phi(x), just phi, so (the inner) differentiaton wrt xi gives zero (phi does not depend on xi). The same thing happens with the outer differentiation. So value on this gives zero. 

If I understand correctly, you want to find values of A[0] etc that make it zero. Here is how to equate the coefficients to find equations to be solved.

restart;
with(PDEtools):


pde2:=-lambda*diff(y(xi),xi)+y(xi)*diff(y(xi),xi)+diff(y(xi),xi$2)=0;

-lambda*(diff(y(xi), xi))+y(xi)*(diff(y(xi), xi))+diff(diff(y(xi), xi), xi) = 0

 

NULL

phi(xi):=(p[1]*exp(q[1]*xi)+p[2]*exp(q[2]*xi))/(p[3]*exp(q[3]*xi)+p[4]*exp(q[4]*xi));
eval(phi(xi),[p[1]=I,p[2]=-I,p[3]=1,p[4]=1,q[1]=I,q[2]=-I,q[3]=I,q[4]=-I]);
simplify(%);
phi(xi):=%;
U(xi):=A[0]+sum(A[d]*phi(xi)^d,d=1)+sum(B[d]*phi(xi)^(-d),d=1);

(p[1]*exp(q[1]*xi)+p[2]*exp(q[2]*xi))/(p[3]*exp(q[3]*xi)+p[4]*exp(q[4]*xi))

(I*exp(I*xi)-I*exp(-I*xi))/(exp(I*xi)+exp(-I*xi))

-sin(xi)/cos(xi)

-sin(xi)/cos(xi)

A[0]-A[1]*sin(xi)/cos(xi)-B[1]*cos(xi)/sin(xi)

subs(y(xi)=convert(U(xi),tan),pde2);
q:=simplify(%);

-lambda*(diff(A[0]-A[1]*tan(xi)-B[1]/tan(xi), xi))+(A[0]-A[1]*tan(xi)-B[1]/tan(xi))*(diff(A[0]-A[1]*tan(xi)-B[1]/tan(xi), xi))+diff(diff(A[0]-A[1]*tan(xi)-B[1]/tan(xi), xi), xi) = 0

(1+tan(xi)^2)*(tan(xi)^4*A[1]^2-2*A[1]*tan(xi)^4+tan(xi)^3*lambda*A[1]-tan(xi)^3*A[0]*A[1]-tan(xi)*lambda*B[1]+tan(xi)*A[0]*B[1]-B[1]^2-2*B[1])/tan(xi)^3 = 0

q2:=numer(lhs(q));

(1+tan(xi)^2)*(tan(xi)^4*A[1]^2-2*A[1]*tan(xi)^4+tan(xi)^3*lambda*A[1]-tan(xi)^3*A[0]*A[1]-tan(xi)*lambda*B[1]+tan(xi)*A[0]*B[1]-B[1]^2-2*B[1])

q3:=collect(q2,tan);

(A[1]^2-2*A[1])*tan(xi)^6+(lambda*A[1]-A[0]*A[1])*tan(xi)^5+(A[1]^2-2*A[1])*tan(xi)^4+(lambda*A[1]-lambda*B[1]-A[0]*A[1]+A[0]*B[1])*tan(xi)^3+(-B[1]^2-2*B[1])*tan(xi)^2+(-lambda*B[1]+A[0]*B[1])*tan(xi)-B[1]^2-2*B[1]

eqns:=seq(coeff(q3,tan(xi),i)=0,i=0..6);

-B[1]^2-2*B[1] = 0, -lambda*B[1]+A[0]*B[1] = 0, -B[1]^2-2*B[1] = 0, lambda*A[1]-lambda*B[1]-A[0]*A[1]+A[0]*B[1] = 0, A[1]^2-2*A[1] = 0, lambda*A[1]-A[0]*A[1] = 0, A[1]^2-2*A[1] = 0

 

Download test1.mw

Here is one way. The theta initial condition may not be the one you want, your versions keep changing. Really it should be non-dimensionalized first. Theta=theta/thetab and Z=z/d are obvious, but the scale of v or the timescale weren't obvious to me.

Edit: looks like v might be identically zero.
 

restart

with(LinearAlgebra)

Solve following system by differential quadrature. See D. Zwillinger, Handbook of Differential Equations, 2nd ed., Academic Press, 1992, p 708,

or e.g., G. Naadimuthu et al, J. Math. Anal. App., 98 (1984), 220-235.

pde1 := `&gamma;__1`*(diff(theta(z, t), t))-K__3*(diff(theta(z, t), z, z))-`&alpha;__2`*(diff(v(z, t), z)); pde2 := `&eta;__2`*(diff(v(z, t), z, z))-`&alpha;__2`*(diff(theta(z, t), t, z))-xi*(diff(theta(z, t), z))

gamma__1*(diff(theta(z, t), t))-K__3*(diff(diff(theta(z, t), z), z))-alpha__2*(diff(v(z, t), z))

eta__2*(diff(diff(v(z, t), z), z))-alpha__2*(diff(diff(theta(z, t), t), z))-xi*(diff(theta(z, t), z))

IBCs := {theta(0, t) = 0, theta(d, t) = 0, theta(z, 0) = `&theta;__b`*sin(Pi*z/d), v(0, t) = 0, v(d, t) = 0, v(z, 0) = 0}

{theta(0, t) = 0, theta(d, t) = 0, theta(z, 0) = theta__b*sin(Pi*z/d), v(0, t) = 0, v(d, t) = 0, v(z, 0) = 0}

params := {K__3 = 7.5*10^(-12), d = 0.2e-3, xi = .1, `&alpha;__2` = -.1104, `&eta;__2` = .1361, `&gamma;__1` = .1093, `&theta;__b` = 0.1e-3}

{K__3 = 0.7500000000e-11, d = 0.2e-3, eta__2 = .1361, xi = .1, alpha__2 = -.1104, gamma__1 = .1093, theta__b = 0.1e-3}

(Really should non-dimensionalize first.) Discretize in the z direction, and then find matrix Dz that differentiates with respect to z at each grid point. The N grid points need not be equally spaced.

N := 9; grid := Vector(N, proc (i) options operator, arrow; (i-1)*(eval(d, params))/(N-1) end proc); C := Matrix(N, N, proc (i, j) options operator, arrow; grid[j]^(i-1) end proc); B := Matrix(N, N, proc (i, j) options operator, arrow; if i = 1 then 0 else (i-1)*grid[j]^(i-2) end if end proc); Dz := Transpose(LinearSolve(C, B))

N := 9

grid := Vector(9, {(1) = 0., (2) = 0.2500000000e-4, (3) = 0.5000000000e-4, (4) = 0.7500000000e-4, (5) = 0.1000000000e-3, (6) = 0.1250000000e-3, (7) = 0.1500000000e-3, (8) = 0.1750000000e-3, (9) = 0.2000000000e-3})

Should be exact for an N-1 degree polynomial - check.

p := proc (z) options operator, arrow; 0.1e20*z^8 end proc; map(D(p), grid), Dz.map(p, grid)

p := proc (z) options operator, arrow; 1.*10^19*z^8 end proc

Vector(9, {(1) = 0., (2) = 0.4882812500e-12, (3) = 0.6250000000e-10, (4) = 0.1067871094e-8, (5) = 0.8000000000e-8, (6) = 0.3814697266e-7, (7) = 0.1366875000e-6, (8) = 0.4021206054e-6, (9) = 0.1024000000e-5}), Vector(9, {(1) = .0, (2) = 0.4882812499944532e-12, (3) = 0.6249999999999642e-10, (4) = 0.10678710940000019e-8, (5) = 0.7999999999999996e-8, (6) = 0.38146972659999994e-7, (7) = 0.13668750000000003e-6, (8) = 0.4021206054e-6, (9) = 0.10239999999999996e-5}, datatype = float[8])

Values of theta and v at the grid points (to be found)

Theta := Vector(N, proc (i) options operator, arrow; theta[i](t) end proc); V := Vector(N, proc (i) options operator, arrow; v[i](t) end proc)

Discretized versions of pde1 and pde2

pde1; sys1 := convert(`&gamma;__1`*map(diff, Theta, t)-K__3*Dz.Dz.Theta-`&alpha;__2`*Dz.V, list)

gamma__1*(diff(theta(z, t), t))-K__3*(diff(diff(theta(z, t), z), z))-alpha__2*(diff(v(z, t), z))

pde2; sys2 := convert(`&eta;__2`*Dz.Dz.V-`&alpha;__2`*map(diff, Dz.Theta, t)-xi*Dz.Theta, list)

eta__2*(diff(diff(v(z, t), z), z))-alpha__2*(diff(diff(theta(z, t), t), z))-xi*(diff(theta(z, t), z))

Boundary conditions at z=0 and z=d

bc1 := Theta[1] = 0, V[1] = 0; bcN := Theta[N] = 0, V[N] = 0

theta[1](t) = 0, v[1](t) = 0

theta[9](t) = 0, v[9](t) = 0

Initial conditions (at each grid point) - take half a sine wave across from 0..d

ins := seq(v[i](0) = 0, i = 1 .. N), seq(theta[i](0) = `&theta;__b`*sin(Pi*grid[i]/d), i = 1 .. N)

v[1](0) = 0, v[2](0) = 0, v[3](0) = 0, v[4](0) = 0, v[5](0) = 0, v[6](0) = 0, v[7](0) = 0, v[8](0) = 0, v[9](0) = 0, theta[1](0) = 0., theta[2](0) = theta__b*sin(0.7853981635e-4/d), theta[3](0) = theta__b*sin(0.1570796327e-3/d), theta[4](0) = theta__b*sin(0.2356194490e-3/d), theta[5](0) = theta__b*sin(0.3141592654e-3/d), theta[6](0) = theta__b*sin(0.3926990818e-3/d), theta[7](0) = theta__b*sin(0.4712388981e-3/d), theta[8](0) = theta__b*sin(0.5497787144e-3/d), theta[9](0) = theta__b*sin(0.6283185308e-3/d)

Now solve the DAE system with one of Maple's solvers

ans := dsolve(eval({bc1, bcN, ins, sys1[2 .. N-1][], sys2[2 .. N-1][]}, params), `union`(convert(Theta, set), convert(V, set)), numeric, method = rosenbrock_dae)

proc (x_rosenbrock_dae) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rosenbrock_dae) else _xout := evalf(x_rosenbrock_dae) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 21, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..53, {(1) = 18, (2) = 9, (3) = 0, (4) = 0, (5) = 0, (6) = 2, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 2, (23) = 3, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 2, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .1776820577043461, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..18, {(1) = .0, (2) = 0.3826834325e-4, (3) = 0.7071067813e-4, (4) = 0.9238795325e-4, (5) = 0.10e-3, (6) = 0.9238795323e-4, (7) = 0.7071067813e-4, (8) = 0.3826834323e-4, (9) = -0.4102067616e-13, (10) = .0, (11) = -0.3291645913233535e-8, (12) = -0.4614518876306682e-8, (13) = -0.30738946701734705e-8, (14) = -0.2386467940958594e-14, (15) = 0.30738888940969832e-8, (16) = 0.4614511074491325e-8, (17) = 0.3291639793846727e-8, (18) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..18, {(1) = 1.0, (2) = 1.0, (3) = 1.0, (4) = 1.0, (5) = 1.0, (6) = 1.0, (7) = 1.0, (8) = 1.0, (9) = 1.0, (10) = 1.0, (11) = 1.0, (12) = 1.0, (13) = 1.0, (14) = 1.0, (15) = 1.0, (16) = 1.0, (17) = 1.0, (18) = 1.0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order), Array(1..9, 1..9, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (1, 9) = .0, (2, 1) = .29108051034856763, (2, 2) = -2.4322775772149594, (2, 3) = -4.838414260965802, (2, 4) = 10.358714228130676, (2, 5) = -10.258319587057228, (2, 6) = 8.566039766653752, (2, 7) = -3.5015047081513013, (2, 8) = 1.9489816819311656, (2, 9) = -.1343000536748697, (3, 1) = -0.47850969143870485e-1, (3, 2) = 1.277331446412501, (3, 3) = -4.050997528977482, (3, 4) = -.8121627017868402, (3, 5) = 3.142678029383609, (3, 6) = -1.4333499788190964, (3, 7) = 1.3869571812273473, (3, 8) = .5481092629669218, (3, 9) = -0.10714741263089139e-1, (4, 1) = -0.32782637129442876e-1, (4, 2) = .7882851863750713, (4, 3) = 1.1643140036594282, (4, 4) = -4.939056958966692, (4, 5) = 1.1879517703786238, (4, 6) = .7318505969737544, (4, 7) = .25953336247440556, (4, 8) = .8794395284081425, (4, 9) = -0.395348521732916e-1, (5, 1) = -0.2752628014487249e-1, (5, 2) = .7389623972085712, (5, 3) = .6465296863914456, (5, 4) = .8116786613824019, (5, 5) = -4.339289921597149, (5, 6) = .8116811420414525, (5, 7) = .6465270906615508, (5, 8) = .7389636130475143, (5, 9) = -0.27526388990915394e-1, (6, 1) = -0.3953399669153772e-1, (6, 2) = .8794299629723406, (6, 3) = .2595632743377339, (6, 4) = .731796598382636, (6, 5) = 1.1880148954744354, (6, 6) = -4.939104581384932, (6, 7) = 1.1643373205198884, (6, 8) = .7882786422754078, (6, 9) = -0.3278211588597212e-1, (7, 1) = -0.10713842766867486e-1, (7, 2) = .5480996712564699, (7, 3) = 1.3869866743881774, (7, 4) = -1.433402258553932, (7, 5) = 3.1427378160510333, (7, 6) = -.8122067197208536, (7, 7) = -4.050976570706205, (7, 8) = 1.2773257531219273, (7, 9) = -0.47850523069749545e-1, (8, 1) = -.13430207984725034, (8, 2) = 1.9490050889867025, (8, 3) = -3.5015819307866507, (8, 4) = 8.56618683226318, (8, 5) = -10.258501974106865, (8, 6) = 10.358860842052858, (8, 7) = -4.838491089552236, (8, 8) = -2.432254279536821, (8, 9) = .29107859052708246, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (9, 8) = .0, (9, 9) = .0}, datatype = float[8], order = C_order), Array(1..9, 1..9, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (1, 9) = 1.0, (2, 1) = 1.0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (2, 9) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (3, 9) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (4, 9) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (5, 9) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (6, 9) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (7, 9) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0, (8, 9) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (9, 8) = .0, (9, 9) = .0}, datatype = float[8], order = C_order), Array(1..18, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = 0, (2) = 0, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 0, (8) = 0, (9) = 0}, datatype = integer[8]), Array(1..18, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0}, datatype = float[8], order = C_order), Array(1..18, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0}, datatype = float[8], order = C_order), Array(1..18, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0}, datatype = float[8], order = C_order), Array(1..18, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..18, {(1) = .0, (2) = 0.3826834325e-4, (3) = 0.7071067813e-4, (4) = 0.9238795325e-4, (5) = 0.10e-3, (6) = 0.9238795323e-4, (7) = 0.7071067813e-4, (8) = 0.3826834323e-4, (9) = -0.4102067616e-13, (10) = undefined, (11) = undefined, (12) = undefined, (13) = undefined, (14) = undefined, (15) = undefined, (16) = undefined, (17) = undefined, (18) = undefined}, datatype = float[8], order = C_order), Array(1..18, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0}, datatype = float[8], order = C_order), Array(1..9, {(1) = .0, (2) = -0.5575256129145857e-3, (3) = -0.8088659806209484e-3, (4) = -0.10018031887544512e-2, (5) = -0.11667255437362992e-2, (6) = -0.2222368289427794e-2, (7) = -0.16596433975844902e-2, (8) = -0.10136299811267799e-1, (9) = .0}, datatype = float[8], order = C_order)]), ( 11 ) = (Array(1..6, 0..18, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (1, 9) = .0, (1, 10) = .0, (1, 11) = .0, (1, 12) = .0, (1, 13) = .0, (1, 14) = .0, (1, 15) = .0, (1, 16) = .0, (1, 17) = .0, (1, 18) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (2, 9) = .0, (2, 10) = .0, (2, 11) = .0, (2, 12) = .0, (2, 13) = .0, (2, 14) = .0, (2, 15) = .0, (2, 16) = .0, (2, 17) = .0, (2, 18) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (3, 9) = .0, (3, 10) = .0, (3, 11) = .0, (3, 12) = .0, (3, 13) = .0, (3, 14) = .0, (3, 15) = .0, (3, 16) = .0, (3, 17) = .0, (3, 18) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (4, 9) = .0, (4, 10) = .0, (4, 11) = .0, (4, 12) = .0, (4, 13) = .0, (4, 14) = .0, (4, 15) = .0, (4, 16) = .0, (4, 17) = .0, (4, 18) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (5, 9) = .0, (5, 10) = .0, (5, 11) = .0, (5, 12) = .0, (5, 13) = .0, (5, 14) = .0, (5, 15) = .0, (5, 16) = .0, (5, 17) = .0, (5, 18) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (6, 9) = .0, (6, 10) = .0, (6, 11) = .0, (6, 12) = .0, (6, 13) = .0, (6, 14) = .0, (6, 15) = .0, (6, 16) = .0, (6, 17) = .0, (6, 18) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) local T1; Y[10] := 0; T1 := -(34235027886134367281253134478584330196949100956133938297053879754718349985020616067458498346444099079286558336743799506676360880231786553802384157365238999969404770129607528763676274363759172646125204966935949862143642464758452656306141364052605008831769531/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[1]+(510561055596134201261177127220413246906171267628330021631961861321215763774316058749682133646925824927990326318099212354391898682329080124915289060645369697209146866734127791355136625554009055121658736019192194423547770369218570086004882459922662940178137997/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[2]-(535042505137951946761634183834132139771285117496720413040198838409795836396296600040589881452464948874749258531386164604056911063461967160868992151972635033977807829024480354746902914635680205952151823498789194163092617425444342307846416173439492209796419231/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100000)*Y[3]+(97731514662945304964541286645490730381598279815609485697496816717394507959729233227101486813177974966901131665901452123136941019303674397322263287890601302028831657381912842548568086937884580782681519579857437511575873091275286401659463076299358357897470293/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000)*Y[4]-(4558013989460672454583150390481892361306631659936420273576083135995919237680260399065358821203992746561741924226389031046975578239286761986768641685560475885731559582638986494873631027693377178079328077372622723713931096011197244063064912551233085183693681/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[5]-(47795387230885106377417844357325945964274298895656912345375331460154299027565169281354305344408804832003956734119392256073261858936024922831528780942297392432160456032701660684897935993990773242417380389037968366162669889662148980985819003227126379223463653/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[6]-(29645868410770869065065768298011496217886024930846493678771037921369770450904245514208309892947765728697747771747566645498610677171626063962159103780668831927103700859721564754511023125267699389943245462085745099009333787704787421846568732937443390059214147/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[7]-(823222409274082051206959105807831432731818183743166174502362940788918976067364697181415058683500918366056479908547649905231932230666186526907319999256892800204357399877358175961907737339547533618062304831648237717058282326124468631608386049409764966695653381/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000000)*Y[8]+(84546185082987271733628432763408909112837152451850355679911554908720286714500196334372105434146427724171075870618656078646950274344853388548148024810456834520447301419048919420156015881584721753324333607492865998474166871804339211556528837741099101097500619/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[9]; Y[11] := T1; T1 := -(119863858734184235846565822698392363546049541407576731583402649537866354242532489363275510230698169027237317439038498503432372994513850433569316785486839309851784284551926479798232776447150303232958507459402242254856735404421199749078962192880430573425035327/21061738287631492115406861616807280765332863706423601978365654633525470189192317891414241243258489122344560290195853456159333978805789968744076134529432047875042321594037231193917525621582684114117649847840959010437770638697710445688900648336475175592711733750000)*Y[1]+(4208759669516697559879358149686635915214273581415681126671907442967772081110315426324592362191330718822839816823434277190685868191835672403554503449491525986777762727110364016275759188616629379817699348307484634906681130389625465689731220956051018423135633983/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[2]+(671495430452785399765711867030102944820315669789254110843533713265936201017772509156743053504504049092507358751649389780498109152820434133402722287460187854070604020011784802292526468327651032821823757811434290218753406307382266109933279102064998628648024469/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[3]-(2343264221765323461986748267029121932214529827273852560280189985583297987711188528496018998637319337275071523365417965696977609320000299465949049228200431036256978962856625781012529907911470595314348380341295483755682983524549870738613614050868073719400639573/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[4]+(55102593826635379122782945696469529238951946455421975951163512248058982151245226661216195080582956498208218521004810959079276303560158181217493079313723202082298018403895483057410141680997463944298017924162937100483173239459101158655876774331293662868152059/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440000)*Y[5]-(215001819355851961723688730033446499856148847906928181883314477607741925223469966992672442582248431521477537922294704160137582510320538704414512907959225550761429859230781986543596165368830043844612888857303810621883925326706938392528797088952414634861208189/3159260743144723817311029242521092114799929555963540296754848195028820528378847683712136186488773368351684043529378018423900096820868495311611420179414807181256348239105584679087628843237402617117647477176143851565665595804656566853335097250471276338906760062500)*Y[6]+(41646866358932181910611576944494967796450232696940528569327606948419871534862942898546705538875458011939557701973385602725108264509497218700504238643679933849709084532119800375216099290837983351412514836803275003269285085651944175418589065739691843318403559/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[7]-(108035908250600846007198776246258260292385046096101768957718197104682075070066479119588249438021852669466432831791941090401672338699561241867020024875395967753320297335330155370220400745641379206580416951289544974342226661812899085112244544672344684319658517/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050000)*Y[8]+(798269728770515722994974743649450500219496805641420040169991917407958628533488223605412275062444438739822692046908259555281755433966493308762176553147992422670455566948796729218734992194331063023178157445613069715412187391760358888003138968924373869750525369/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[9]; Y[12] := T1; T1 := -(1506321754116627047509240431310068017970089148236212773272434868628382388386394473188670394995887453556751461619770255187634938740014093592324043269091555567430076878973171403511128041667692331293776909634788235968239215607142020571151036740830222385786323541/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[1]+(16509221310707777472006564655152164556078195727270401344082906627051373706974173398814177200818323570278149852189537010206658678655789256065160257374332712467906769022656123949380755374423716310056003082131121636087481103858121865788491405216724075869241680773/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[2]+(5378345748707016068390781245078156952111346446335187421734051806643111452812316467774829455392174562381123534839408958149441266586867609758793986688964670817591587383022368343101743115799815343165711525358016340302116308924474754411082854713217144865773024379/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000000)*Y[3]+(983491719127597568145052500470676258966399721908845105295462392121506182580955880306637097578550458999148156459431334022140070289363937326048301785499729864025665137057382193068872243885156718233957257249832787479582151181402916799419222679865844657138468013/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[4]-(269581828261722914482989736640780030005979772871355882888642132304367757963860520209249263304620579634539667424291380763799989808367046474138654459557208102757299714614600586277588300347124053759980673511198906124939205020361888444501041450096299014058169783/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100000)*Y[5]-(23542475577859401436665725215078709478356150537224885187861259387876661632305833697072009870852496013011329512625780968293866030602228009679112931515877415141191354263536306223849513712970731533690478396347258132096941416040518901806984133638757538836712513821/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[6]-(811549245159219968192938918978626249167716522539498157929675539308347960737275324768803607627670903669448135600433965402630571106626093087375173229125125257893014718375866231836005119294504600598875557875165762954906998724473960763573046770829150116552178277/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500000)*Y[7]-(30158912123508815363464200530817790716359213706380772051219699456406728058611776272149712453162536510738170157851212613828150712244776036789657967560706941614134887381211944105222210342775801820506046071623111797192350755413984561654602536969452517347522807479/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[8]+(4952918793512269973649572764509600992534234136174795180066178854290993465716350969617097748935532468501865696083070781783618492996418950461313491549665863954885094940783623443740219633562727215997276392470183153426848021211315171094636123893363506306475170533/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000000)*Y[9]; Y[13] := T1; T1 := -(163130010863936036136168892623832061285314601036088131860184349563567760031971174952107492007287531099590468147639496011880002634672505452038865619766647438695245851279344734569692776554520579202222236357943825052794453846106378994027859309419179928318373/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[1]+(3413367687743847140349633232329408341034802112821988448614961014658475223646554541189975629275633087610921937507110485568303349145835129151757905797652280595153444128287579111777371780617785716047960860864848350569372912915403662191186811301679668870905001/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[2]+(2476048913843346651361468018961201746006159958529889417910771017729271429545427012971368469995591233756858721778545035602099141232628283712177666832146294198175821357533420377338052583723263417056530474366690394762284501917914277459054924560465925605543693/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[3]+(2732464814108453158277726591622621098120355101652510250235420622393943166200031316075766416842718245663999920437601844683252889082504662631219305259297763506713304768286204501882757109112556506301567422568742134841912854623983534368800445776267035138599759/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[4]-(18276799687493261608992370138415653001542365110775402721588118253167677022971913898267956063890451742834925175288904327723030881229560568033275184568662071445379254671129332171375755460713633333680835497455507990423005959918648914373362386119213840407/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[5]-(16394197327849548713885018421847255961345178196009815565277198248239949503201609222398318731127137211911488211746787660732164860601237987468827690841121280766108984387441235094102136081995106096069480184566603323915255967754762046833102291251806012361869899/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644000)*Y[6]-(82540228994372520478534563128848269297396952613625234298591080166475385220528213767830427577875682289749784083404869063080209137836047047385426562786929691385270606797498110933281922528932165620755420199062938694637480729667434966279801221214037785684659/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[7]-(8192033375067711816472599178079559480198174588225524031105087417135068784291895577555863428500687479738262878351769997646801946951498088547501371232364664663768252426918749287017985403367513050330968577250573597912538480020231179428939297794974667983962561/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[8]+(2610052640933598403121315328972851796837367201022354952493442623328570025133737474709069011019629977078066011919818059135328863294769580142868351008056365067142227462995712799341131365688260340247429315172462445259717997016315909405038468204766132656268869/673975625204207747693019571737832984490651638605555263307700948272815046054154172525255719784271651915025929286267310597098687321785278999810436304941825532001354291009191398205360819890645891651764795130910688334008660438326734262044820746767205618966775480000)*Y[9]; Y[14] := T1; T1 := -(247650643570273705033026707506450792330547361141148652110626462007276179628567065272677451695871120271895613667963996979476139532696668770651510332312097228156660157017139484517637125629898110611535658069147533807251670626239534705441021283486111080667178679/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[1]+(5026540103875146896845970928898119189880118019853199553395023780300708719166125243852141293015133131098754661674327522899825138795295699458098613502993060320321725296228515421376200589857596272464804951772661143764084420133793461984786319687056314804069947467/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[2]+(486878708063917778974062657713060101006235611716967640886912514402664395199183802658890883238703399146129417616691081513788080642663745984729034479493762891107497110218846951774964872040221031959990026182951247316002633557788832087071848896520704021031665961/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[3]+(784810297174036485043258102543392181632168499987675295657360551936282354246237413748854682045966633300744382302059213380620198469733968252631056586997218309628165766399268905396197427657613898027541615270091221014167260391409072691882758173115337172627398729/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[4]+(134780012262565589223582048134818483553363191120363281780131331401877762655154104366863765066963299066831128685456038716858916734692863727588125430893922591239652333138132789040251298180974042704932338877550078850151300903741902749672299691469823216282747797/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050000)*Y[5]-(14750677171289864802689777535208275633240042840965486870307114225880777287665747804698609759478956056794673803582244469397712868474850864122546301597623655249381711897361069478584468832546475714364284325403658658066610612286409307663819888401906059045803416421/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[6]-(4482100674956372076732194894713075262462068282469434852297575578755540650593658912515047315610342015077563982195095866146587423727429067152175653576596671837659980542125713529218663541410646825417780521034991800660790982899899294380110469053021961111959603369/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[7]-(24763700981113854312655416673685480760613114728192856372866450112714788210812645601009572244730040028906525953811663510264722392395462507061783789092031086765615097506357239944699157502340434951994362408292660565261043305416805305754208038064630398301291122677/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805000000)*Y[8]+(7531536308046605895211506837695209148489502427710176976666028730605592769407816888570867643318707586927549167450431635036136860568566701240084470016126019582071058924063476829663311934012028703184212466166235936876950712891678102523024324617861730597623092353/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000000)*Y[9]; Y[15] := T1; T1 := -(399148389558468684864127937153843290898168851328150048873441593010960410958306521729433973849667013622783992882821893898035679632501981616092963471809861311071647104073622647942318988259477301429859984649297062964614400892066963984542425538866578074423907711/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[1]+(3601274650812999982759777568677717991216322490406945368646467771052433332255631967610737778268049802208312150115091328948947942418337060067139366198101885108892050742403538659427724254865929820772960132565710760984234231752604799239844486300229782408803226829/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[2]-(31253303891327832819425391573785488850097722476339777810658704488615248441960020895768967531967924570739034285928941012997488830856030401461473076462424068412160313571341560544407333024207433721345372725980481266432669978904226028220400318589015467723473211/6318521486289447634622058485042184229599859111927080593509696390057641056757695367424272372977546736703368087058756036847800193641736990623222840358829614362512696478211169358175257686474805234235294954352287703131331191609313133706670194500942552677813520125000)*Y[3]+(1146763896664694724423219746859376634995070781233689685962692030831833370772180321951155841535783126647063291621969092470887979213077655093025085410180822693826405596205215312349118168836281611660642561317215721679570648676079807018062444954903923383992653277/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[4]-(34446899351998756879511660152163771832170317739817604054664043508797305448293164259101186853597962410137538985591335365163223900190925769631955559615685245820547222377152085230922401983465368213255755671615539424475822283039441181007308723701887158015295273/1263704297257889526924411697008436845919971822385416118701939278011528211351539073484854474595509347340673617411751207369560038728347398124644568071765922872502539295642233871635051537294961046847058990870457540626266238321862626741334038900188510535562704025000)*Y[5]+(7030273309726975373967049746247570081290172336926313004087543741075315570615548652452551483096981572552378211682546188682205887816871906126032806602602241988335311130270288948091861213616086990701919354815003133621406803136963411419329837358996987173775767243/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000000)*Y[6]-(111926079834960618170070525114896436834026033988483402875365225214477872765711198111564942053773667468826800630915671421410121807446433606735801897315209115044084495218922210608734627404243932868627000377357564224956262467188974341111210462212175629121476273/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[7]-(6313103573772252773275348466027485684508592970615482671434628028436118861653676026342818922645483820153049558723347937556906199017127643349562192603489645278050692447127208124176537885692838603776502267214465407692682857805386930514522823821824709200370691323/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000000)*Y[8]+(1917802123496801718002890217307482031264181164205267644524952376825912659948116613959794158765796098623643238653790009335320408924632269166809130630440367947120647314886214567661959641797635575568912619302681980208577258264891954703994973870412504873596328299/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[9]; Y[16] := T1; T1 := -(3382050501099301581003086695869028087775463485160778589845537834299012817700950658545476334090127310697262380292163084262274656367836690902613846423011485049664762713409352346712666294552374199686310269282543557782648493847334123114617822107349153691257797/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400000)*Y[1]+(137209648159399472093780097477296899257407975931611790951136866019774743921970868367130190389640141326051097612167826314009758539285656342219258629884599578040669477529556792467040103390353887081754121579558230583560414405190928223869552200691686197099759579/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[2]+(370451075717713523700411759505653745094607046897647060415012994672100404197911572070926537860918904371392306262179049026032646669549607453084462645951460550043322963484925998359869217045086867667985917286837948015181830268993773216904711419396325550214942/52654345719078730288517154042018201913332159266059004945914136583813675472980794728535603108146222805861400725489633640398334947014474921860190336323580119687605803985093077984793814053956710285294124619602397526094426596744276114222251620841187938981779334375)*Y[3]+(3193790930665658235340270661316093836639385693957373352670858245119189227447767223764043024255595910237494999019004370050191899489453754141352136047790425929720384841135770342536151209316384056172879314062040915860822341893715100394765494950036438165197321/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000)*Y[4]+(7595775589361232948749052801587210619049111900659220020246318415257884281872395992766726726324543526710542761280507387509294128565463451470844155220261756984697098744331566682973896658548144087870553921267531338495037579061727494088462204819520752704127677/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000)*Y[5]-(977242379786198311423394643418309885250710475028713444191223758757608224487175847579245625124475028302725328015258270264535237312833274116619484722453493130542048156084162599539193052348855798587668518040927433283010690569117973322266608820347347362985769359/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[6]+(222929661703594804703345284617030706742488400417412257030415137352151062541305428759942910811250323427726808807426073127505805448806101277006028825631558604716114752769936997447357599019041510462548941562266066782985721819543502640396893482354292162009390973/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375000)*Y[7]-(510558222657833057442092651215380735622078123125160965699070923387011749293558506315275798590670108322256667552505566721316974030550636211548501305247202242836927064267531544031845366418422705133729210016262684773378947161449311435578086516407051735977294209/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[8]+(684691205030211729368286110011897925232457579071901134072570160260063184916029990818902488890340263328240730129596486023740539509750467853546847557292754894072553583776411510281570850563172026593192928537932785346855526817259576039824502451228896315560872361/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[9]; Y[17] := T1; Y[18] := 0; if N < 1 then return 0 end if; YP[1] := 0; T1 := (1226132305918348436375814276711565552691501145531998717569709060902294656541464867757007338446306962469800028141262846510788421621808818864480385843574136806658578530288093851606950093512987652464980417750724510731436839218429256476465951182649181130306746037/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750)*Y[1]-(5122799377417587639324190646852118364550663840987141047610178184201764772578459195032991037473283069805480427629464632201734025982101020019763574910749801638349803009118249165848500302119503010183678569905519037738143119874993679554330516720156902409563025698/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[2]-(12228649786992680838215434917496244064659212568569591350310663159274546857548630741087947189313589116843587165004054759779180455995754882334434018001150535872337700109491251573583140410177216604883646239715560962674748624012573852813132498425628436258797428143/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]+(4363450561385059482960434270068428430448939137766737242187179027295080557290144795408797848201098960749980957361170979113180312018867508763132756839143846765211128564927068978770503542730728224014610110905901010928452531747634899734567701956139821119508712551/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675)*Y[4]-(2592696508961799176643457127402065464546943710460733025880508183352190001128755252920878621439680835508559974764018553848523381941605312047444623753001398131418295898077723457278494232923437215264072016735070544507529860148126169430874755765611343006827606812/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805)*Y[5]+(8659953010881851105967967793578566130707497323446820587548151552147572840679789725860711007072971188817103025505280857246189202632124503722211951567458964200392061788936397497605369216289172938980259950496875021258233982415172562975069279401172598540085815041/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[6]-(1474955515519843830459966006864455598004385654544436850889299449116558052846406321803668803846866906229723025014425302699860093173022792529761886013660191456947015794642164075101956358436914817593869337879015657358454163971889070291237334517419615020045826132/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675)*Y[7]+(492587305346664614073937544660815575475218256643792253760523859419628340807146059710330293226339880776163835784727871801486586346003823785952446372165660245469137685491372040153574006888312819788126100085010631152822081881590251265902606241223805106713571983/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805)*Y[8]-(2262874066011973942630848659542165574018468886497256125484160143775924995821795896339399540506573035067361284472231305612334606394731504152007925600963461089321294768461374089964726482147777594210163439837265672615994460643757229769515224309723063204640079167/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000)*Y[9]; YP[2] := T1; T1 := -(161251934226836816958718472854690437864267645681108988948560374355866638146550849042855626072961886158757446606287752710777126027024198042242709705033280544665918807343675219613828497957482585465107855027161673440228920566318623941031533602402953015844592781/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[1]+(43044513009443016657563396942942128466753386649356635886603684493858394292321458581914762718715116162775213324641015638504058868181418845450419817852322525693287185472076256238255405171076498345253080283645207742082795944283750206211968554561467794709571911283/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[2]-(40954103884399491525356232680580218886495343717789520980081152511156394526979232745175669269501760304445856354880015828013675416240318064694819193498256999941461017906061798541888347760359175316459615195251730243189866787196074462434522480980664821466662740551/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[3]-(5473778647043241541865320615652215960386860138337457573560306179115956977149081778514523084202289124303568861619753312390698034568457997121471765106216417508655554153633378073081629207447503264576291289980955938778557326691119078450908207536919612148556959113/6739756252042077476930195717378329844906516386055552633077009482728150460541541725252557197842716519150259292862673105970986873217852789998104363049418255320013542910091913982053608198906458916517647951309106883340086604383267342620448207467672056189667754800)*Y[4]+(6354265169008035771390439485275352839882078464680346768968171375664619967743054990402815151937737409410320666063012998921283322613249748871464248413808003190121787908847338588350901727532935828352572824446242731523807293046777512387111059757818379728708327151/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440)*Y[5]-(1449064422166557732646105669079078190112783451166695022638801480017895206282146955740193759692235388522325893506448586753328592910999372701162066293689123563154429864685276061808351611662255505635520599137994582457656010399747942051788970317078802348583225997/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[6]+(4673876666745835732629650545446638383355986274214982023582036500998197836394415969625153844732687271921118105700600920875859703063156679884508836867578222408164743448865195326674410920952799366528287019636366888607499971754900417331465550195267873884800035661/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[7]+(5541184247825229378429844411773395704415324071381316492052390422610530116294234183366862551086975419764657137338706272603519609350055594711232796908697241885379767201942586600202896687140548397194513192755940883139513325305905653599282121806851457151847832577/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[8]-(722147444169182549222396385399220485556256432988660307904538212894503469612778795672635289867759776963857713883932852929240825174083474441020564800600665569342107842988071958242454682995643349664335632464210073573012060154703804266540321182845949869487702987/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000)*Y[9]; YP[3] := T1; T1 := -(2761837294394866846262421010678884032330647195352264072041648326824827017962025601156330719761441936555478268345575022815262159681159871290906460531103973882857584200037341827441104557214665494463443169756696597139639455216719530748290265125156569883278782351/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000)*Y[1]+(33205312582897125339336999274972934905188263344885319763514204970402805515106745119250498040868064578829946074257759497960329332386136529534291560233624571592495020097891223143439793155324133502651914275078664807737904839339676970205789452287404112432707539159/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[2]+(58853944391278292231616071043483751745903105127548281247561932556008791006431267520298698835764105029935918304695699349673556578124147235004794085923008445478267771370019639656987109404395457393507150128007049823875988391750069277256805392747918572643959398679/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000)*Y[3]-(41610050022984614988387480267069521549665294849813423331381520833350008503438431482037853187039879278005296382748397352202362491851658678766795408438390419390373706124643048892842294622046778272231423635834669165153376391945926240875484268568892699562086526053/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[4]+(6004879028650338470491508008366199161559144992728735177032206960444119384985306814600763725250779379994850115580987622248627252672234090445217309156968412962696798973725957768446738389899320103388649469674756905208025876019802542672463586568366206812498259051/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100)*Y[5]+(73987419547718813733934178482523401292054012528777482965215578508968299719479942284281616564448542767863169863468252290123104910039914531716475180486629784008959972968564453049482899842379907412681951955118440849813377114431974311458616531265969148389994750771/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[6]+(546622375734492985611016770756444192572239999747196046659524209906372055082936363968146739376189168968013921088603295605841022585478977607285456574780908227767274564225022078648909689077796118367071049814041276045430402912109159646893720315024270726470188187/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[7]+(22227030224556432204583084167170899702133054721311683518223885404094295771493898818421841536381101038938152507931045925977499818224494215807750352702307383149892034201000237188143386753575535629877515393733015203478655080473816665022139451313442234704136169711/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500)*Y[8]-(13322763355425067038334766735658202888932127721287481383674166878520478824216563018526660036003497588791034847073154219628654940298044871574630273481300231592268442033514213574231820807019915675340952340851167070795601627094731863027296104710515116338344079017/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000)*Y[9]; YP[4] := T1; T1 := -(1855204187018660535977698518091808671444135818281053632109908148521702316113840030980927940846136131287094476478064709738645969938955401536641394869137892151486063554147748847403802926386838088478821769120639186840652151472817993367926484011599320349283911/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548)*Y[1]+(24902132183052344798008551466745602118058806261464441686346970961946518505658970587620719711223967144464903279417040414845168620162542566459763437214012148033847724973118948800586979116629158003038538031203176179452671527441733660113360830152001686072536803/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774)*Y[2]+(32680893719906614453382476481165623998557929443836011326913986957681540457570263881195844126748951528312850913759449934769296002588833731118101896363625189052501107569431802875028985401767344760572694183483517660171771310012095661145323378812858533127189270/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161)*Y[3]+(27352581663505933804480375941907466862067486142271783149405708468053686020876194829252768943126510773943375658314583218433754309902624082631850525992804075785063387457908689361319569597714534585416144040982409640913701059542079370275401504991651965447212655/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774)*Y[4]-(4386863456776133945377184627715533915788616643885191181032697668218882593325750888524038670937249312980675647820412126196596826599338744774745056738530835347958530188561390149850852574792772043302735708971722624919642325922002059829075795495889230968024589119/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[5]+(164115991552155985751795808929056503258394418729429535961165730645678825592242348265450803689875658734645593992993904812282810565859433443792865792751324042528918658485286941210966907571729252196104710096346028003283370486879348259112048353127676650185507635/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644)*Y[6]+(10893587503501903817594116127248262206709512788981573607723063234279818889662150283350868199712627129905511311493263504759718552287175276812507507368395930791566719294220053936592913811664676845837080654863563959117723947397989239656737083767893245924034500/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387)*Y[7]+(74706519466028797132755638374643090517187807360061053989860710010253706946248786163155621689620597147115225014691247990636016762649698058190802520037139905989507014130616208067430872605515835017627778742281938289454140397224147539158565673481739035278785663/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322)*Y[8]-(3710423045953284689161154045393300669023185203073783313968028900834190052005804889062833853410762681268673056032772333877964482516948407583034168828098032394116914288761649884570850499213281369529076920823274270650107271461498263224914965196356339907694177/134795125040841549538603914347566596898130327721111052661540189654563009210830834505051143956854330383005185857253462119419737464357055799962087260988365106400270858201838279641072163978129178330352959026182137666801732087665346852408964149353441123793355096)*Y[9]; YP[5] := T1; T1 := -(6661237534250052847353584054624456212339540596093929965990933752529329031493999919829951784821387046664166377321367257652445791237228447395185584279487072225832361750180591354471467287004916169713940760801139386362330112804765276334534476419276735363694178197/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000)*Y[1]+(9261161861212443755166291014070416748391074223177775141996713889037530436931601309656542369634071068039737731836889272488939124798739693418943582834894987734883418265936711917720191737852281503524309863318995971219148709189267828711847268739058985154528177101/10530869143815746057703430808403640382666431853211800989182827316762735094596158945707120621629244561172280145097926728079666989402894984372038067264716023937521160797018615596958762810791342057058824923920479505218885319348855222844450324168237587796355866875)*Y[2]+(6560224503818456423346134055440077456189613968043908306741503998996555888946057654962782414039938051291041977879126261059242532239634083041033153804767162508387635712226167561528083651493680291299803500889044946540550644919168743947345733814910596439017098207/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500)*Y[3]+(6165163373965619845722814710680052236971274054651758536988484473848351046769375862968698884948529857943504842154901943670900388703895669644576717604602150731411973182040332830664157415375227590447616388847038057150040911002305066487209722522992376675640171487/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[4]+(6005198114469706229215365132031313141898898316837834775377633211313297816702028145423018354583786683632573711307511559391205196904559893831804661733349467545180922306848827392170508629591499519100556083497676614242058470061109457284716876559614257296973530791/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100)*Y[5]-(499325414728181458741354559468605778603273492587905296544739338773416282594625362610838216414396877213091808008914274742893041291578818055922416678225094154258144844032217244767336534327125828287724643475119999241987877729837460094334807705144780177741767379437/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[6]+(9809187169324797710418652055907758035266533678815755144759675394635003740385181124775846336235143322022647425827258639882964517784960824798873678737682129478505570916820687147963551158585291430087556662681632496958244569879466206232021414298102143220995071687/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[7]+(9961511076800474390032079078655255458761194543639385053230419814714616776872472143612638126250073559067246382078092074507370353034969791226512766617497846376166551107225745049850404966980930594993668827370453904514465763878403678795030029367496484586955199253/12637042972578895269244116970084368459199718223854161187019392780115282113515390734848544745955093473406736174117512073695600387283473981246445680717659228725025392956422338716350515372949610468470589908704575406262662383218626267413340389001885105355627040250)*Y[8]-(11047173524882425900978360133540901724465480974498976256164594657371997248296010239686878505795587979164919059257915130848465114211403303185757127083549527203824160699916426742991826245075582190025453507497180223031478173834742451926409260724343948253493474723/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000)*Y[9]; YP[6] := T1; T1 := -(361043443856954634178891242879391289615244418871043003149039087897124267608299171264006348734456228533217251233393366504861192493304185082532133709798183065465060298017923821787988278451168043677190584254701408503080381889505924192835652391190285650899521139/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[1]+(4617572732616250430271369355815465813589950919207988148170129437318690740955314774213920103639802292088230143836219692467778811914450218805474560808219718227931940748462261613202729488207253716594520600537193725400243028925658264232503605265220488494170326571/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[2]+(3505482041327537790038117470609167209786921494066580029249602769740703046257932396090458191837902406773364143428541431867779245522703441195164098844896362311496724913536652083528935735011011936767136078758666385572222597968340596290808370900737338578825429399/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]-(483039091689004898935023543562532712135728641927920839858219450068749806593585515491100553522567749481201300147304915466101690145426650870863932346941878954182081050403360873473995973294036936963878612642559488155836991250331840221778622942512908672969192809/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740)*Y[4]+(3177193026638852396478699815597365325240651799078180846240705214099391120021197448638752165305734820428757465774661708703332937854698880970331604870334275144755765074859705582293819177784118386736961664161048147125180717635495443931506988494871721919113578413/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[5]-(16422225951567633701212715507398179300117950941719018647547358604039108335964768423616643900128447089009157201433410508687443528710449831711568266391198743751773662583781916718268350220923202542643317939999527627300795280144582871394781229685709781280058899299/20219268756126232430790587152134989534719549158166657899231028448184451381624625175757671593528149557450777878588019317912960619653558369994313089148254765960040628730275741946160824596719376749552943853927320650020259813149802027861344622403016168569003264400)*Y[6]-(6825648667323280641934044761550964733531461561365642049360514015196406605825111764781758837598336084244248119032851080604989006671856609240995261488566956174059612562579119682951995111666613414155079288770605141344035401735573676575855773240750544545129537419/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700)*Y[7]+(64566481728733989539590977497195717410492263533119272971525539017924805812004317856400058913628034985256655804671564517912861381875618040968950890681842543840521004490307029163833240083076116399220946064866498622200871981820976863680325066957752743871901464003/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000)*Y[8]-(3225008620228282072046504893253264460950588341369152733926548016662824556091104260648247430996692778579948194121356671620204939737247183889270763779860043754210615720596036396933428887954301868203815685939258576271053611554776236224293598575910642865656851761/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000)*Y[9]; YP[7] := T1; T1 := -(2262908205781899772231359027738653995259315754074484842471881054793133985869504304763049478438821485090813080550711127336051377890921194278147229341496864265479625803336762503659269331044135530757728719768004281442704955550083628852326031638683731812062419759/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000)*Y[1]+(4104943510549985973160090854234229486810542542915913738272144416736794727755630484940131895072080714690857984910846718781829802199171804866458394208504388496965340110443468116464599766884071374724035889852871788308164310775337046296946280154914526396497008514/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[2]-(8849928266271338444518590865209284228887695717846785692106936465856106760114677742432357746977296525329342598825819987205322037117016167879162025109313160190517178351503393957924867128950823382514163488082828368062310919801390975164425599471142449417466642641/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]+(7216751407363285412674775149859598320989789224638508631617455870959920679692315028987138500945517632398873328354703531900618227378723397070285495553603562421075988113951739982186442485244598826609089234872095609032158551681021913365495745077579323962211042829/842469531505259684616274464672291230613314548256944079134626185341018807567692715656569649730339564893782411607834138246373359152231598749763045381177281915001692863761489247756701024863307364564705993913638360417510825547908417827556025933459007023708469350)*Y[4]-(5185485211242954718856185844026724107929952801486021355748583901408191018516454260401032972631163583013751514212867568068391450259312937690844888485858297293798802012181842466447630272922518354160916360663587197318327436574817378731684489312940283260377908663/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610)*Y[5]+(104724295686389410123210408101122363311604970097132174756045611166458708280647782736740294372812748563344316558287435211677976799747280434143846797404842905445141900604368110730019945456731988572015180947726819769734723271149362263649889080691396378431888988769/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[6]-(815256264281489264928441060056200775495335751077587102612703234867094613742815817001557197528054278270909719311559937360714551807885053884306661490153601429548405509732584277583184201568629290461740259998172582742862735970116325969961352814863946836971505207/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870)*Y[7]-(122946007402982914466343545621856870583346678708361423671543721049579842306859666073141690928580281036790249070801990333233386118166223452672695666750854301734405235221115125928040630739165052271279639787432398794339211734924935933389045018873396804958459533/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161)*Y[8]+(392359750068099980846415614884901615498905644711799767785349536659749438843665550677352003355507355603213701715282522245165162478997908895908317346965670401468785608754011520940017988749261578847506568631945463168828727185552610055303406722270362040944564623/1347951250408415495386039143475665968981303277211110526615401896545630092108308345050511439568543303830051858572534621194197374643570557999620872609883651064002708582018382796410721639781291783303529590261821376668017320876653468524089641493534411237933550960)*Y[9]; YP[8] := T1; YP[9] := 0; 0 end proc, proc (X, Y, FX, FY) FX[1 .. 9] := 0; FY[1 .. 9, 1 .. 9] := 0; FY[2, 1] := 1226132305918348436375814276711565552691501145531998717569709060902294656541464867757007338446306962469800028141262846510788421621808818864480385843574136806658578530288093851606950093512987652464980417750724510731436839218429256476465951182649181130306746037/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750; FY[3, 1] := -161251934226836816958718472854690437864267645681108988948560374355866638146550849042855626072961886158757446606287752710777126027024198042242709705033280544665918807343675219613828497957482585465107855027161673440228920566318623941031533602402953015844592781/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400; FY[4, 1] := -2761837294394866846262421010678884032330647195352264072041648326824827017962025601156330719761441936555478268345575022815262159681159871290906460531103973882857584200037341827441104557214665494463443169756696597139639455216719530748290265125156569883278782351/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000; FY[5, 1] := -1855204187018660535977698518091808671444135818281053632109908148521702316113840030980927940846136131287094476478064709738645969938955401536641394869137892151486063554147748847403802926386838088478821769120639186840652151472817993367926484011599320349283911/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548; FY[6, 1] := -6661237534250052847353584054624456212339540596093929965990933752529329031493999919829951784821387046664166377321367257652445791237228447395185584279487072225832361750180591354471467287004916169713940760801139386362330112804765276334534476419276735363694178197/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000; FY[7, 1] := -361043443856954634178891242879391289615244418871043003149039087897124267608299171264006348734456228533217251233393366504861192493304185082532133709798183065465060298017923821787988278451168043677190584254701408503080381889505924192835652391190285650899521139/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000; FY[8, 1] := -2262908205781899772231359027738653995259315754074484842471881054793133985869504304763049478438821485090813080550711127336051377890921194278147229341496864265479625803336762503659269331044135530757728719768004281442704955550083628852326031638683731812062419759/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000; FY[2, 2] := -5122799377417587639324190646852118364550663840987141047610178184201764772578459195032991037473283069805480427629464632201734025982101020019763574910749801638349803009118249165848500302119503010183678569905519037738143119874993679554330516720156902409563025698/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[3, 2] := 43044513009443016657563396942942128466753386649356635886603684493858394292321458581914762718715116162775213324641015638504058868181418845450419817852322525693287185472076256238255405171076498345253080283645207742082795944283750206211968554561467794709571911283/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000; FY[4, 2] := 33205312582897125339336999274972934905188263344885319763514204970402805515106745119250498040868064578829946074257759497960329332386136529534291560233624571592495020097891223143439793155324133502651914275078664807737904839339676970205789452287404112432707539159/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500; FY[5, 2] := 24902132183052344798008551466745602118058806261464441686346970961946518505658970587620719711223967144464903279417040414845168620162542566459763437214012148033847724973118948800586979116629158003038538031203176179452671527441733660113360830152001686072536803/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774; FY[6, 2] := 9261161861212443755166291014070416748391074223177775141996713889037530436931601309656542369634071068039737731836889272488939124798739693418943582834894987734883418265936711917720191737852281503524309863318995971219148709189267828711847268739058985154528177101/10530869143815746057703430808403640382666431853211800989182827316762735094596158945707120621629244561172280145097926728079666989402894984372038067264716023937521160797018615596958762810791342057058824923920479505218885319348855222844450324168237587796355866875; FY[7, 2] := 4617572732616250430271369355815465813589950919207988148170129437318690740955314774213920103639802292088230143836219692467778811914450218805474560808219718227931940748462261613202729488207253716594520600537193725400243028925658264232503605265220488494170326571/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[8, 2] := 4104943510549985973160090854234229486810542542915913738272144416736794727755630484940131895072080714690857984910846718781829802199171804866458394208504388496965340110443468116464599766884071374724035889852871788308164310775337046296946280154914526396497008514/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[2, 3] := -12228649786992680838215434917496244064659212568569591350310663159274546857548630741087947189313589116843587165004054759779180455995754882334434018001150535872337700109491251573583140410177216604883646239715560962674748624012573852813132498425628436258797428143/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[3, 3] := -40954103884399491525356232680580218886495343717789520980081152511156394526979232745175669269501760304445856354880015828013675416240318064694819193498256999941461017906061798541888347760359175316459615195251730243189866787196074462434522480980664821466662740551/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[4, 3] := 58853944391278292231616071043483751745903105127548281247561932556008791006431267520298698835764105029935918304695699349673556578124147235004794085923008445478267771370019639656987109404395457393507150128007049823875988391750069277256805392747918572643959398679/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000; FY[5, 3] := 32680893719906614453382476481165623998557929443836011326913986957681540457570263881195844126748951528312850913759449934769296002588833731118101896363625189052501107569431802875028985401767344760572694183483517660171771310012095661145323378812858533127189270/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161; FY[6, 3] := 6560224503818456423346134055440077456189613968043908306741503998996555888946057654962782414039938051291041977879126261059242532239634083041033153804767162508387635712226167561528083651493680291299803500889044946540550644919168743947345733814910596439017098207/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500; FY[7, 3] := 3505482041327537790038117470609167209786921494066580029249602769740703046257932396090458191837902406773364143428541431867779245522703441195164098844896362311496724913536652083528935735011011936767136078758666385572222597968340596290808370900737338578825429399/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[8, 3] := -8849928266271338444518590865209284228887695717846785692106936465856106760114677742432357746977296525329342598825819987205322037117016167879162025109313160190517178351503393957924867128950823382514163488082828368062310919801390975164425599471142449417466642641/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[2, 4] := 4363450561385059482960434270068428430448939137766737242187179027295080557290144795408797848201098960749980957361170979113180312018867508763132756839143846765211128564927068978770503542730728224014610110905901010928452531747634899734567701956139821119508712551/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675; FY[3, 4] := -5473778647043241541865320615652215960386860138337457573560306179115956977149081778514523084202289124303568861619753312390698034568457997121471765106216417508655554153633378073081629207447503264576291289980955938778557326691119078450908207536919612148556959113/6739756252042077476930195717378329844906516386055552633077009482728150460541541725252557197842716519150259292862673105970986873217852789998104363049418255320013542910091913982053608198906458916517647951309106883340086604383267342620448207467672056189667754800; FY[4, 4] := -41610050022984614988387480267069521549665294849813423331381520833350008503438431482037853187039879278005296382748397352202362491851658678766795408438390419390373706124643048892842294622046778272231423635834669165153376391945926240875484268568892699562086526053/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[5, 4] := 27352581663505933804480375941907466862067486142271783149405708468053686020876194829252768943126510773943375658314583218433754309902624082631850525992804075785063387457908689361319569597714534585416144040982409640913701059542079370275401504991651965447212655/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774; FY[6, 4] := 6165163373965619845722814710680052236971274054651758536988484473848351046769375862968698884948529857943504842154901943670900388703895669644576717604602150731411973182040332830664157415375227590447616388847038057150040911002305066487209722522992376675640171487/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[7, 4] := -483039091689004898935023543562532712135728641927920839858219450068749806593585515491100553522567749481201300147304915466101690145426650870863932346941878954182081050403360873473995973294036936963878612642559488155836991250331840221778622942512908672969192809/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740; FY[8, 4] := 7216751407363285412674775149859598320989789224638508631617455870959920679692315028987138500945517632398873328354703531900618227378723397070285495553603562421075988113951739982186442485244598826609089234872095609032158551681021913365495745077579323962211042829/842469531505259684616274464672291230613314548256944079134626185341018807567692715656569649730339564893782411607834138246373359152231598749763045381177281915001692863761489247756701024863307364564705993913638360417510825547908417827556025933459007023708469350; FY[2, 5] := -2592696508961799176643457127402065464546943710460733025880508183352190001128755252920878621439680835508559974764018553848523381941605312047444623753001398131418295898077723457278494232923437215264072016735070544507529860148126169430874755765611343006827606812/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805; FY[3, 5] := 6354265169008035771390439485275352839882078464680346768968171375664619967743054990402815151937737409410320666063012998921283322613249748871464248413808003190121787908847338588350901727532935828352572824446242731523807293046777512387111059757818379728708327151/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440; FY[4, 5] := 6004879028650338470491508008366199161559144992728735177032206960444119384985306814600763725250779379994850115580987622248627252672234090445217309156968412962696798973725957768446738389899320103388649469674756905208025876019802542672463586568366206812498259051/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100; FY[5, 5] := -4386863456776133945377184627715533915788616643885191181032697668218882593325750888524038670937249312980675647820412126196596826599338744774745056738530835347958530188561390149850852574792772043302735708971722624919642325922002059829075795495889230968024589119/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[6, 5] := 6005198114469706229215365132031313141898898316837834775377633211313297816702028145423018354583786683632573711307511559391205196904559893831804661733349467545180922306848827392170508629591499519100556083497676614242058470061109457284716876559614257296973530791/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100; FY[7, 5] := 3177193026638852396478699815597365325240651799078180846240705214099391120021197448638752165305734820428757465774661708703332937854698880970331604870334275144755765074859705582293819177784118386736961664161048147125180717635495443931506988494871721919113578413/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[8, 5] := -5185485211242954718856185844026724107929952801486021355748583901408191018516454260401032972631163583013751514212867568068391450259312937690844888485858297293798802012181842466447630272922518354160916360663587197318327436574817378731684489312940283260377908663/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610; FY[2, 6] := 8659953010881851105967967793578566130707497323446820587548151552147572840679789725860711007072971188817103025505280857246189202632124503722211951567458964200392061788936397497605369216289172938980259950496875021258233982415172562975069279401172598540085815041/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[3, 6] := -1449064422166557732646105669079078190112783451166695022638801480017895206282146955740193759692235388522325893506448586753328592910999372701162066293689123563154429864685276061808351611662255505635520599137994582457656010399747942051788970317078802348583225997/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[4, 6] := 73987419547718813733934178482523401292054012528777482965215578508968299719479942284281616564448542767863169863468252290123104910039914531716475180486629784008959972968564453049482899842379907412681951955118440849813377114431974311458616531265969148389994750771/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000; FY[5, 6] := 164115991552155985751795808929056503258394418729429535961165730645678825592242348265450803689875658734645593992993904812282810565859433443792865792751324042528918658485286941210966907571729252196104710096346028003283370486879348259112048353127676650185507635/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644; FY[6, 6] := -499325414728181458741354559468605778603273492587905296544739338773416282594625362610838216414396877213091808008914274742893041291578818055922416678225094154258144844032217244767336534327125828287724643475119999241987877729837460094334807705144780177741767379437/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000; FY[7, 6] := -16422225951567633701212715507398179300117950941719018647547358604039108335964768423616643900128447089009157201433410508687443528710449831711568266391198743751773662583781916718268350220923202542643317939999527627300795280144582871394781229685709781280058899299/20219268756126232430790587152134989534719549158166657899231028448184451381624625175757671593528149557450777878588019317912960619653558369994313089148254765960040628730275741946160824596719376749552943853927320650020259813149802027861344622403016168569003264400; FY[8, 6] := 104724295686389410123210408101122363311604970097132174756045611166458708280647782736740294372812748563344316558287435211677976799747280434143846797404842905445141900604368110730019945456731988572015180947726819769734723271149362263649889080691396378431888988769/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[2, 7] := -1474955515519843830459966006864455598004385654544436850889299449116558052846406321803668803846866906229723025014425302699860093173022792529761886013660191456947015794642164075101956358436914817593869337879015657358454163971889070291237334517419615020045826132/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675; FY[3, 7] := 4673876666745835732629650545446638383355986274214982023582036500998197836394415969625153844732687271921118105700600920875859703063156679884508836867578222408164743448865195326674410920952799366528287019636366888607499971754900417331465550195267873884800035661/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400; FY[4, 7] := 546622375734492985611016770756444192572239999747196046659524209906372055082936363968146739376189168968013921088603295605841022585478977607285456574780908227767274564225022078648909689077796118367071049814041276045430402912109159646893720315024270726470188187/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[5, 7] := 10893587503501903817594116127248262206709512788981573607723063234279818889662150283350868199712627129905511311493263504759718552287175276812507507368395930791566719294220053936592913811664676845837080654863563959117723947397989239656737083767893245924034500/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387; FY[6, 7] := 9809187169324797710418652055907758035266533678815755144759675394635003740385181124775846336235143322022647425827258639882964517784960824798873678737682129478505570916820687147963551158585291430087556662681632496958244569879466206232021414298102143220995071687/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[7, 7] := -6825648667323280641934044761550964733531461561365642049360514015196406605825111764781758837598336084244248119032851080604989006671856609240995261488566956174059612562579119682951995111666613414155079288770605141344035401735573676575855773240750544545129537419/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700; FY[8, 7] := -815256264281489264928441060056200775495335751077587102612703234867094613742815817001557197528054278270909719311559937360714551807885053884306661490153601429548405509732584277583184201568629290461740259998172582742862735970116325969961352814863946836971505207/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870; FY[2, 8] := 492587305346664614073937544660815575475218256643792253760523859419628340807146059710330293226339880776163835784727871801486586346003823785952446372165660245469137685491372040153574006888312819788126100085010631152822081881590251265902606241223805106713571983/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805; FY[3, 8] := 5541184247825229378429844411773395704415324071381316492052390422610530116294234183366862551086975419764657137338706272603519609350055594711232796908697241885379767201942586600202896687140548397194513192755940883139513325305905653599282121806851457151847832577/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[4, 8] := 22227030224556432204583084167170899702133054721311683518223885404094295771493898818421841536381101038938152507931045925977499818224494215807750352702307383149892034201000237188143386753575535629877515393733015203478655080473816665022139451313442234704136169711/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500; FY[5, 8] := 74706519466028797132755638374643090517187807360061053989860710010253706946248786163155621689620597147115225014691247990636016762649698058190802520037139905989507014130616208067430872605515835017627778742281938289454140397224147539158565673481739035278785663/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322; FY[6, 8] := 9961511076800474390032079078655255458761194543639385053230419814714616776872472143612638126250073559067246382078092074507370353034969791226512766617497846376166551107225745049850404966980930594993668827370453904514465763878403678795030029367496484586955199253/12637042972578895269244116970084368459199718223854161187019392780115282113515390734848544745955093473406736174117512073695600387283473981246445680717659228725025392956422338716350515372949610468470589908704575406262662383218626267413340389001885105355627040250; FY[7, 8] := 64566481728733989539590977497195717410492263533119272971525539017924805812004317856400058913628034985256655804671564517912861381875618040968950890681842543840521004490307029163833240083076116399220946064866498622200871981820976863680325066957752743871901464003/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000; FY[8, 8] := -122946007402982914466343545621856870583346678708361423671543721049579842306859666073141690928580281036790249070801990333233386118166223452672695666750854301734405235221115125928040630739165052271279639787432398794339211734924935933389045018873396804958459533/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161; FY[2, 9] := -2262874066011973942630848659542165574018468886497256125484160143775924995821795896339399540506573035067361284472231305612334606394731504152007925600963461089321294768461374089964726482147777594210163439837265672615994460643757229769515224309723063204640079167/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000; FY[3, 9] := -722147444169182549222396385399220485556256432988660307904538212894503469612778795672635289867759776963857713883932852929240825174083474441020564800600665569342107842988071958242454682995643349664335632464210073573012060154703804266540321182845949869487702987/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000; FY[4, 9] := -13322763355425067038334766735658202888932127721287481383674166878520478824216563018526660036003497588791034847073154219628654940298044871574630273481300231592268442033514213574231820807019915675340952340851167070795601627094731863027296104710515116338344079017/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000; FY[5, 9] := -3710423045953284689161154045393300669023185203073783313968028900834190052005804889062833853410762681268673056032772333877964482516948407583034168828098032394116914288761649884570850499213281369529076920823274270650107271461498263224914965196356339907694177/134795125040841549538603914347566596898130327721111052661540189654563009210830834505051143956854330383005185857253462119419737464357055799962087260988365106400270858201838279641072163978129178330352959026182137666801732087665346852408964149353441123793355096; FY[6, 9] := -11047173524882425900978360133540901724465480974498976256164594657371997248296010239686878505795587979164919059257915130848465114211403303185757127083549527203824160699916426742991826245075582190025453507497180223031478173834742451926409260724343948253493474723/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000; FY[7, 9] := -3225008620228282072046504893253264460950588341369152733926548016662824556091104260648247430996692778579948194121356671620204939737247183889270763779860043754210615720596036396933428887954301868203815685939258576271053611554776236224293598575910642865656851761/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000; FY[8, 9] := 392359750068099980846415614884901615498905644711799767785349536659749438843665550677352003355507355603213701715282522245165162478997908895908317346965670401468785608754011520940017988749261578847506568631945463168828727185552610055303406722270362040944564623/1347951250408415495386039143475665968981303277211110526615401896545630092108308345050511439568543303830051858572534621194197374643570557999620872609883651064002708582018382796410721639781291783303529590261821376668017320876653468524089641493534411237933550960; 0 end proc, proc (X, Y, R) R[1] := Y[9]; R[2] := Y[1]; 0 end proc, proc (X, Y, J) J[1 .. 2, 1 .. 9] := 0; J[1, 9] := 1; J[2, 1] := 1; 0 end proc, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rosenbrock"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([proc (X, Y, R) R[1] := Y[9]; R[2] := Y[1]; 0 end proc, proc (X, Y, J) J[1 .. 2, 1 .. 9] := 0; J[1, 9] := 1; J[2, 1] := 1; 0 end proc, Array(1..9, {(1) = -0.4102067616e-13, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0}, datatype = float[8], order = C_order), [theta[9](t), theta[1](t)]]), ( 17 ) = ([proc (N, X, Y, YP) local T1; Y[10] := 0; T1 := -(34235027886134367281253134478584330196949100956133938297053879754718349985020616067458498346444099079286558336743799506676360880231786553802384157365238999969404770129607528763676274363759172646125204966935949862143642464758452656306141364052605008831769531/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[1]+(510561055596134201261177127220413246906171267628330021631961861321215763774316058749682133646925824927990326318099212354391898682329080124915289060645369697209146866734127791355136625554009055121658736019192194423547770369218570086004882459922662940178137997/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[2]-(535042505137951946761634183834132139771285117496720413040198838409795836396296600040589881452464948874749258531386164604056911063461967160868992151972635033977807829024480354746902914635680205952151823498789194163092617425444342307846416173439492209796419231/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100000)*Y[3]+(97731514662945304964541286645490730381598279815609485697496816717394507959729233227101486813177974966901131665901452123136941019303674397322263287890601302028831657381912842548568086937884580782681519579857437511575873091275286401659463076299358357897470293/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000)*Y[4]-(4558013989460672454583150390481892361306631659936420273576083135995919237680260399065358821203992746561741924226389031046975578239286761986768641685560475885731559582638986494873631027693377178079328077372622723713931096011197244063064912551233085183693681/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[5]-(47795387230885106377417844357325945964274298895656912345375331460154299027565169281354305344408804832003956734119392256073261858936024922831528780942297392432160456032701660684897935993990773242417380389037968366162669889662148980985819003227126379223463653/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[6]-(29645868410770869065065768298011496217886024930846493678771037921369770450904245514208309892947765728697747771747566645498610677171626063962159103780668831927103700859721564754511023125267699389943245462085745099009333787704787421846568732937443390059214147/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[7]-(823222409274082051206959105807831432731818183743166174502362940788918976067364697181415058683500918366056479908547649905231932230666186526907319999256892800204357399877358175961907737339547533618062304831648237717058282326124468631608386049409764966695653381/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000000)*Y[8]+(84546185082987271733628432763408909112837152451850355679911554908720286714500196334372105434146427724171075870618656078646950274344853388548148024810456834520447301419048919420156015881584721753324333607492865998474166871804339211556528837741099101097500619/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[9]; Y[11] := T1; T1 := -(119863858734184235846565822698392363546049541407576731583402649537866354242532489363275510230698169027237317439038498503432372994513850433569316785486839309851784284551926479798232776447150303232958507459402242254856735404421199749078962192880430573425035327/21061738287631492115406861616807280765332863706423601978365654633525470189192317891414241243258489122344560290195853456159333978805789968744076134529432047875042321594037231193917525621582684114117649847840959010437770638697710445688900648336475175592711733750000)*Y[1]+(4208759669516697559879358149686635915214273581415681126671907442967772081110315426324592362191330718822839816823434277190685868191835672403554503449491525986777762727110364016275759188616629379817699348307484634906681130389625465689731220956051018423135633983/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[2]+(671495430452785399765711867030102944820315669789254110843533713265936201017772509156743053504504049092507358751649389780498109152820434133402722287460187854070604020011784802292526468327651032821823757811434290218753406307382266109933279102064998628648024469/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[3]-(2343264221765323461986748267029121932214529827273852560280189985583297987711188528496018998637319337275071523365417965696977609320000299465949049228200431036256978962856625781012529907911470595314348380341295483755682983524549870738613614050868073719400639573/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[4]+(55102593826635379122782945696469529238951946455421975951163512248058982151245226661216195080582956498208218521004810959079276303560158181217493079313723202082298018403895483057410141680997463944298017924162937100483173239459101158655876774331293662868152059/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440000)*Y[5]-(215001819355851961723688730033446499856148847906928181883314477607741925223469966992672442582248431521477537922294704160137582510320538704414512907959225550761429859230781986543596165368830043844612888857303810621883925326706938392528797088952414634861208189/3159260743144723817311029242521092114799929555963540296754848195028820528378847683712136186488773368351684043529378018423900096820868495311611420179414807181256348239105584679087628843237402617117647477176143851565665595804656566853335097250471276338906760062500)*Y[6]+(41646866358932181910611576944494967796450232696940528569327606948419871534862942898546705538875458011939557701973385602725108264509497218700504238643679933849709084532119800375216099290837983351412514836803275003269285085651944175418589065739691843318403559/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[7]-(108035908250600846007198776246258260292385046096101768957718197104682075070066479119588249438021852669466432831791941090401672338699561241867020024875395967753320297335330155370220400745641379206580416951289544974342226661812899085112244544672344684319658517/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050000)*Y[8]+(798269728770515722994974743649450500219496805641420040169991917407958628533488223605412275062444438739822692046908259555281755433966493308762176553147992422670455566948796729218734992194331063023178157445613069715412187391760358888003138968924373869750525369/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[9]; Y[12] := T1; T1 := -(1506321754116627047509240431310068017970089148236212773272434868628382388386394473188670394995887453556751461619770255187634938740014093592324043269091555567430076878973171403511128041667692331293776909634788235968239215607142020571151036740830222385786323541/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[1]+(16509221310707777472006564655152164556078195727270401344082906627051373706974173398814177200818323570278149852189537010206658678655789256065160257374332712467906769022656123949380755374423716310056003082131121636087481103858121865788491405216724075869241680773/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[2]+(5378345748707016068390781245078156952111346446335187421734051806643111452812316467774829455392174562381123534839408958149441266586867609758793986688964670817591587383022368343101743115799815343165711525358016340302116308924474754411082854713217144865773024379/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000000)*Y[3]+(983491719127597568145052500470676258966399721908845105295462392121506182580955880306637097578550458999148156459431334022140070289363937326048301785499729864025665137057382193068872243885156718233957257249832787479582151181402916799419222679865844657138468013/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000000)*Y[4]-(269581828261722914482989736640780030005979772871355882888642132304367757963860520209249263304620579634539667424291380763799989808367046474138654459557208102757299714614600586277588300347124053759980673511198906124939205020361888444501041450096299014058169783/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100000)*Y[5]-(23542475577859401436665725215078709478356150537224885187861259387876661632305833697072009870852496013011329512625780968293866030602228009679112931515877415141191354263536306223849513712970731533690478396347258132096941416040518901806984133638757538836712513821/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[6]-(811549245159219968192938918978626249167716522539498157929675539308347960737275324768803607627670903669448135600433965402630571106626093087375173229125125257893014718375866231836005119294504600598875557875165762954906998724473960763573046770829150116552178277/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500000)*Y[7]-(30158912123508815363464200530817790716359213706380772051219699456406728058611776272149712453162536510738170157851212613828150712244776036789657967560706941614134887381211944105222210342775801820506046071623111797192350755413984561654602536969452517347522807479/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[8]+(4952918793512269973649572764509600992534234136174795180066178854290993465716350969617097748935532468501865696083070781783618492996418950461313491549665863954885094940783623443740219633562727215997276392470183153426848021211315171094636123893363506306475170533/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000000)*Y[9]; Y[13] := T1; T1 := -(163130010863936036136168892623832061285314601036088131860184349563567760031971174952107492007287531099590468147639496011880002634672505452038865619766647438695245851279344734569692776554520579202222236357943825052794453846106378994027859309419179928318373/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[1]+(3413367687743847140349633232329408341034802112821988448614961014658475223646554541189975629275633087610921937507110485568303349145835129151757905797652280595153444128287579111777371780617785716047960860864848350569372912915403662191186811301679668870905001/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[2]+(2476048913843346651361468018961201746006159958529889417910771017729271429545427012971368469995591233756858721778545035602099141232628283712177666832146294198175821357533420377338052583723263417056530474366690394762284501917914277459054924560465925605543693/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[3]+(2732464814108453158277726591622621098120355101652510250235420622393943166200031316075766416842718245663999920437601844683252889082504662631219305259297763506713304768286204501882757109112556506301567422568742134841912854623983534368800445776267035138599759/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[4]-(18276799687493261608992370138415653001542365110775402721588118253167677022971913898267956063890451742834925175288904327723030881229560568033275184568662071445379254671129332171375755460713633333680835497455507990423005959918648914373362386119213840407/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[5]-(16394197327849548713885018421847255961345178196009815565277198248239949503201609222398318731127137211911488211746787660732164860601237987468827690841121280766108984387441235094102136081995106096069480184566603323915255967754762046833102291251806012361869899/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644000)*Y[6]-(82540228994372520478534563128848269297396952613625234298591080166475385220528213767830427577875682289749784083404869063080209137836047047385426562786929691385270606797498110933281922528932165620755420199062938694637480729667434966279801221214037785684659/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[7]-(8192033375067711816472599178079559480198174588225524031105087417135068784291895577555863428500687479738262878351769997646801946951498088547501371232364664663768252426918749287017985403367513050330968577250573597912538480020231179428939297794974667983962561/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[8]+(2610052640933598403121315328972851796837367201022354952493442623328570025133737474709069011019629977078066011919818059135328863294769580142868351008056365067142227462995712799341131365688260340247429315172462445259717997016315909405038468204766132656268869/673975625204207747693019571737832984490651638605555263307700948272815046054154172525255719784271651915025929286267310597098687321785278999810436304941825532001354291009191398205360819890645891651764795130910688334008660438326734262044820746767205618966775480000)*Y[9]; Y[14] := T1; T1 := -(247650643570273705033026707506450792330547361141148652110626462007276179628567065272677451695871120271895613667963996979476139532696668770651510332312097228156660157017139484517637125629898110611535658069147533807251670626239534705441021283486111080667178679/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[1]+(5026540103875146896845970928898119189880118019853199553395023780300708719166125243852141293015133131098754661674327522899825138795295699458098613502993060320321725296228515421376200589857596272464804951772661143764084420133793461984786319687056314804069947467/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[2]+(486878708063917778974062657713060101006235611716967640886912514402664395199183802658890883238703399146129417616691081513788080642663745984729034479493762891107497110218846951774964872040221031959990026182951247316002633557788832087071848896520704021031665961/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500000)*Y[3]+(784810297174036485043258102543392181632168499987675295657360551936282354246237413748854682045966633300744382302059213380620198469733968252631056586997218309628165766399268905396197427657613898027541615270091221014167260391409072691882758173115337172627398729/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[4]+(134780012262565589223582048134818483553363191120363281780131331401877762655154104366863765066963299066831128685456038716858916734692863727588125430893922591239652333138132789040251298180974042704932338877550078850151300903741902749672299691469823216282747797/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050000)*Y[5]-(14750677171289864802689777535208275633240042840965486870307114225880777287665747804698609759478956056794673803582244469397712868474850864122546301597623655249381711897361069478584468832546475714364284325403658658066610612286409307663819888401906059045803416421/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610000000)*Y[6]-(4482100674956372076732194894713075262462068282469434852297575578755540650593658912515047315610342015077563982195095866146587423727429067152175653576596671837659980542125713529218663541410646825417780521034991800660790982899899294380110469053021961111959603369/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[7]-(24763700981113854312655416673685480760613114728192856372866450112714788210812645601009572244730040028906525953811663510264722392395462507061783789092031086765615097506357239944699157502340434951994362408292660565261043305416805305754208038064630398301291122677/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805000000)*Y[8]+(7531536308046605895211506837695209148489502427710176976666028730605592769407816888570867643318707586927549167450431635036136860568566701240084470016126019582071058924063476829663311934012028703184212466166235936876950712891678102523024324617861730597623092353/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000000)*Y[9]; Y[15] := T1; T1 := -(399148389558468684864127937153843290898168851328150048873441593010960410958306521729433973849667013622783992882821893898035679632501981616092963471809861311071647104073622647942318988259477301429859984649297062964614400892066963984542425538866578074423907711/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[1]+(3601274650812999982759777568677717991216322490406945368646467771052433332255631967610737778268049802208312150115091328948947942418337060067139366198101885108892050742403538659427724254865929820772960132565710760984234231752604799239844486300229782408803226829/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000000)*Y[2]-(31253303891327832819425391573785488850097722476339777810658704488615248441960020895768967531967924570739034285928941012997488830856030401461473076462424068412160313571341560544407333024207433721345372725980481266432669978904226028220400318589015467723473211/6318521486289447634622058485042184229599859111927080593509696390057641056757695367424272372977546736703368087058756036847800193641736990623222840358829614362512696478211169358175257686474805234235294954352287703131331191609313133706670194500942552677813520125000)*Y[3]+(1146763896664694724423219746859376634995070781233689685962692030831833370772180321951155841535783126647063291621969092470887979213077655093025085410180822693826405596205215312349118168836281611660642561317215721679570648676079807018062444954903923383992653277/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[4]-(34446899351998756879511660152163771832170317739817604054664043508797305448293164259101186853597962410137538985591335365163223900190925769631955559615685245820547222377152085230922401983465368213255755671615539424475822283039441181007308723701887158015295273/1263704297257889526924411697008436845919971822385416118701939278011528211351539073484854474595509347340673617411751207369560038728347398124644568071765922872502539295642233871635051537294961046847058990870457540626266238321862626741334038900188510535562704025000)*Y[5]+(7030273309726975373967049746247570081290172336926313004087543741075315570615548652452551483096981572552378211682546188682205887816871906126032806602602241988335311130270288948091861213616086990701919354815003133621406803136963411419329837358996987173775767243/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000000)*Y[6]-(111926079834960618170070525114896436834026033988483402875365225214477872765711198111564942053773667468826800630915671421410121807446433606735801897315209115044084495218922210608734627404243932868627000377357564224956262467188974341111210462212175629121476273/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[7]-(6313103573772252773275348466027485684508592970615482671434628028436118861653676026342818922645483820153049558723347937556906199017127643349562192603489645278050692447127208124176537885692838603776502267214465407692682857805386930514522823821824709200370691323/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000000)*Y[8]+(1917802123496801718002890217307482031264181164205267644524952376825912659948116613959794158765796098623643238653790009335320408924632269166809130630440367947120647314886214567661959641797635575568912619302681980208577258264891954703994973870412504873596328299/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000000)*Y[9]; Y[16] := T1; T1 := -(3382050501099301581003086695869028087775463485160778589845537834299012817700950658545476334090127310697262380292163084262274656367836690902613846423011485049664762713409352346712666294552374199686310269282543557782648493847334123114617822107349153691257797/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400000)*Y[1]+(137209648159399472093780097477296899257407975931611790951136866019774743921970868367130190389640141326051097612167826314009758539285656342219258629884599578040669477529556792467040103390353887081754121579558230583560414405190928223869552200691686197099759579/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500000)*Y[2]+(370451075717713523700411759505653745094607046897647060415012994672100404197911572070926537860918904371392306262179049026032646669549607453084462645951460550043322963484925998359869217045086867667985917286837948015181830268993773216904711419396325550214942/52654345719078730288517154042018201913332159266059004945914136583813675472980794728535603108146222805861400725489633640398334947014474921860190336323580119687605803985093077984793814053956710285294124619602397526094426596744276114222251620841187938981779334375)*Y[3]+(3193790930665658235340270661316093836639385693957373352670858245119189227447767223764043024255595910237494999019004370050191899489453754141352136047790425929720384841135770342536151209316384056172879314062040915860822341893715100394765494950036438165197321/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700000)*Y[4]+(7595775589361232948749052801587210619049111900659220020246318415257884281872395992766726726324543526710542761280507387509294128565463451470844155220261756984697098744331566682973896658548144087870553921267531338495037579061727494088462204819520752704127677/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000)*Y[5]-(977242379786198311423394643418309885250710475028713444191223758757608224487175847579245625124475028302725328015258270264535237312833274116619484722453493130542048156084162599539193052348855798587668518040927433283010690569117973322266608820347347362985769359/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000000)*Y[6]+(222929661703594804703345284617030706742488400417412257030415137352151062541305428759942910811250323427726808807426073127505805448806101277006028825631558604716114752769936997447357599019041510462548941562266066782985721819543502640396893482354292162009390973/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375000)*Y[7]-(510558222657833057442092651215380735622078123125160965699070923387011749293558506315275798590670108322256667552505566721316974030550636211548501305247202242836927064267531544031845366418422705133729210016262684773378947161449311435578086516407051735977294209/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750000)*Y[8]+(684691205030211729368286110011897925232457579071901134072570160260063184916029990818902488890340263328240730129596486023740539509750467853546847557292754894072553583776411510281570850563172026593192928537932785346855526817259576039824502451228896315560872361/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000000)*Y[9]; Y[17] := T1; Y[18] := 0; if N < 1 then return 0 end if; YP[1] := 0; T1 := (1226132305918348436375814276711565552691501145531998717569709060902294656541464867757007338446306962469800028141262846510788421621808818864480385843574136806658578530288093851606950093512987652464980417750724510731436839218429256476465951182649181130306746037/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750)*Y[1]-(5122799377417587639324190646852118364550663840987141047610178184201764772578459195032991037473283069805480427629464632201734025982101020019763574910749801638349803009118249165848500302119503010183678569905519037738143119874993679554330516720156902409563025698/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[2]-(12228649786992680838215434917496244064659212568569591350310663159274546857548630741087947189313589116843587165004054759779180455995754882334434018001150535872337700109491251573583140410177216604883646239715560962674748624012573852813132498425628436258797428143/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]+(4363450561385059482960434270068428430448939137766737242187179027295080557290144795408797848201098960749980957361170979113180312018867508763132756839143846765211128564927068978770503542730728224014610110905901010928452531747634899734567701956139821119508712551/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675)*Y[4]-(2592696508961799176643457127402065464546943710460733025880508183352190001128755252920878621439680835508559974764018553848523381941605312047444623753001398131418295898077723457278494232923437215264072016735070544507529860148126169430874755765611343006827606812/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805)*Y[5]+(8659953010881851105967967793578566130707497323446820587548151552147572840679789725860711007072971188817103025505280857246189202632124503722211951567458964200392061788936397497605369216289172938980259950496875021258233982415172562975069279401172598540085815041/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[6]-(1474955515519843830459966006864455598004385654544436850889299449116558052846406321803668803846866906229723025014425302699860093173022792529761886013660191456947015794642164075101956358436914817593869337879015657358454163971889070291237334517419615020045826132/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675)*Y[7]+(492587305346664614073937544660815575475218256643792253760523859419628340807146059710330293226339880776163835784727871801486586346003823785952446372165660245469137685491372040153574006888312819788126100085010631152822081881590251265902606241223805106713571983/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805)*Y[8]-(2262874066011973942630848659542165574018468886497256125484160143775924995821795896339399540506573035067361284472231305612334606394731504152007925600963461089321294768461374089964726482147777594210163439837265672615994460643757229769515224309723063204640079167/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000)*Y[9]; YP[2] := T1; T1 := -(161251934226836816958718472854690437864267645681108988948560374355866638146550849042855626072961886158757446606287752710777126027024198042242709705033280544665918807343675219613828497957482585465107855027161673440228920566318623941031533602402953015844592781/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[1]+(43044513009443016657563396942942128466753386649356635886603684493858394292321458581914762718715116162775213324641015638504058868181418845450419817852322525693287185472076256238255405171076498345253080283645207742082795944283750206211968554561467794709571911283/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[2]-(40954103884399491525356232680580218886495343717789520980081152511156394526979232745175669269501760304445856354880015828013675416240318064694819193498256999941461017906061798541888347760359175316459615195251730243189866787196074462434522480980664821466662740551/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[3]-(5473778647043241541865320615652215960386860138337457573560306179115956977149081778514523084202289124303568861619753312390698034568457997121471765106216417508655554153633378073081629207447503264576291289980955938778557326691119078450908207536919612148556959113/6739756252042077476930195717378329844906516386055552633077009482728150460541541725252557197842716519150259292862673105970986873217852789998104363049418255320013542910091913982053608198906458916517647951309106883340086604383267342620448207467672056189667754800)*Y[4]+(6354265169008035771390439485275352839882078464680346768968171375664619967743054990402815151937737409410320666063012998921283322613249748871464248413808003190121787908847338588350901727532935828352572824446242731523807293046777512387111059757818379728708327151/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440)*Y[5]-(1449064422166557732646105669079078190112783451166695022638801480017895206282146955740193759692235388522325893506448586753328592910999372701162066293689123563154429864685276061808351611662255505635520599137994582457656010399747942051788970317078802348583225997/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[6]+(4673876666745835732629650545446638383355986274214982023582036500998197836394415969625153844732687271921118105700600920875859703063156679884508836867578222408164743448865195326674410920952799366528287019636366888607499971754900417331465550195267873884800035661/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400)*Y[7]+(5541184247825229378429844411773395704415324071381316492052390422610530116294234183366862551086975419764657137338706272603519609350055594711232796908697241885379767201942586600202896687140548397194513192755940883139513325305905653599282121806851457151847832577/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[8]-(722147444169182549222396385399220485556256432988660307904538212894503469612778795672635289867759776963857713883932852929240825174083474441020564800600665569342107842988071958242454682995643349664335632464210073573012060154703804266540321182845949869487702987/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000)*Y[9]; YP[3] := T1; T1 := -(2761837294394866846262421010678884032330647195352264072041648326824827017962025601156330719761441936555478268345575022815262159681159871290906460531103973882857584200037341827441104557214665494463443169756696597139639455216719530748290265125156569883278782351/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000)*Y[1]+(33205312582897125339336999274972934905188263344885319763514204970402805515106745119250498040868064578829946074257759497960329332386136529534291560233624571592495020097891223143439793155324133502651914275078664807737904839339676970205789452287404112432707539159/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500)*Y[2]+(58853944391278292231616071043483751745903105127548281247561932556008791006431267520298698835764105029935918304695699349673556578124147235004794085923008445478267771370019639656987109404395457393507150128007049823875988391750069277256805392747918572643959398679/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000)*Y[3]-(41610050022984614988387480267069521549665294849813423331381520833350008503438431482037853187039879278005296382748397352202362491851658678766795408438390419390373706124643048892842294622046778272231423635834669165153376391945926240875484268568892699562086526053/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[4]+(6004879028650338470491508008366199161559144992728735177032206960444119384985306814600763725250779379994850115580987622248627252672234090445217309156968412962696798973725957768446738389899320103388649469674756905208025876019802542672463586568366206812498259051/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100)*Y[5]+(73987419547718813733934178482523401292054012528777482965215578508968299719479942284281616564448542767863169863468252290123104910039914531716475180486629784008959972968564453049482899842379907412681951955118440849813377114431974311458616531265969148389994750771/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[6]+(546622375734492985611016770756444192572239999747196046659524209906372055082936363968146739376189168968013921088603295605841022585478977607285456574780908227767274564225022078648909689077796118367071049814041276045430402912109159646893720315024270726470188187/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[7]+(22227030224556432204583084167170899702133054721311683518223885404094295771493898818421841536381101038938152507931045925977499818224494215807750352702307383149892034201000237188143386753575535629877515393733015203478655080473816665022139451313442234704136169711/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500)*Y[8]-(13322763355425067038334766735658202888932127721287481383674166878520478824216563018526660036003497588791034847073154219628654940298044871574630273481300231592268442033514213574231820807019915675340952340851167070795601627094731863027296104710515116338344079017/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000)*Y[9]; YP[4] := T1; T1 := -(1855204187018660535977698518091808671444135818281053632109908148521702316113840030980927940846136131287094476478064709738645969938955401536641394869137892151486063554147748847403802926386838088478821769120639186840652151472817993367926484011599320349283911/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548)*Y[1]+(24902132183052344798008551466745602118058806261464441686346970961946518505658970587620719711223967144464903279417040414845168620162542566459763437214012148033847724973118948800586979116629158003038538031203176179452671527441733660113360830152001686072536803/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774)*Y[2]+(32680893719906614453382476481165623998557929443836011326913986957681540457570263881195844126748951528312850913759449934769296002588833731118101896363625189052501107569431802875028985401767344760572694183483517660171771310012095661145323378812858533127189270/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161)*Y[3]+(27352581663505933804480375941907466862067486142271783149405708468053686020876194829252768943126510773943375658314583218433754309902624082631850525992804075785063387457908689361319569597714534585416144040982409640913701059542079370275401504991651965447212655/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774)*Y[4]-(4386863456776133945377184627715533915788616643885191181032697668218882593325750888524038670937249312980675647820412126196596826599338744774745056738530835347958530188561390149850852574792772043302735708971722624919642325922002059829075795495889230968024589119/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[5]+(164115991552155985751795808929056503258394418729429535961165730645678825592242348265450803689875658734645593992993904812282810565859433443792865792751324042528918658485286941210966907571729252196104710096346028003283370486879348259112048353127676650185507635/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644)*Y[6]+(10893587503501903817594116127248262206709512788981573607723063234279818889662150283350868199712627129905511311493263504759718552287175276812507507368395930791566719294220053936592913811664676845837080654863563959117723947397989239656737083767893245924034500/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387)*Y[7]+(74706519466028797132755638374643090517187807360061053989860710010253706946248786163155621689620597147115225014691247990636016762649698058190802520037139905989507014130616208067430872605515835017627778742281938289454140397224147539158565673481739035278785663/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322)*Y[8]-(3710423045953284689161154045393300669023185203073783313968028900834190052005804889062833853410762681268673056032772333877964482516948407583034168828098032394116914288761649884570850499213281369529076920823274270650107271461498263224914965196356339907694177/134795125040841549538603914347566596898130327721111052661540189654563009210830834505051143956854330383005185857253462119419737464357055799962087260988365106400270858201838279641072163978129178330352959026182137666801732087665346852408964149353441123793355096)*Y[9]; YP[5] := T1; T1 := -(6661237534250052847353584054624456212339540596093929965990933752529329031493999919829951784821387046664166377321367257652445791237228447395185584279487072225832361750180591354471467287004916169713940760801139386362330112804765276334534476419276735363694178197/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000)*Y[1]+(9261161861212443755166291014070416748391074223177775141996713889037530436931601309656542369634071068039737731836889272488939124798739693418943582834894987734883418265936711917720191737852281503524309863318995971219148709189267828711847268739058985154528177101/10530869143815746057703430808403640382666431853211800989182827316762735094596158945707120621629244561172280145097926728079666989402894984372038067264716023937521160797018615596958762810791342057058824923920479505218885319348855222844450324168237587796355866875)*Y[2]+(6560224503818456423346134055440077456189613968043908306741503998996555888946057654962782414039938051291041977879126261059242532239634083041033153804767162508387635712226167561528083651493680291299803500889044946540550644919168743947345733814910596439017098207/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500)*Y[3]+(6165163373965619845722814710680052236971274054651758536988484473848351046769375862968698884948529857943504842154901943670900388703895669644576717604602150731411973182040332830664157415375227590447616388847038057150040911002305066487209722522992376675640171487/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[4]+(6005198114469706229215365132031313141898898316837834775377633211313297816702028145423018354583786683632573711307511559391205196904559893831804661733349467545180922306848827392170508629591499519100556083497676614242058470061109457284716876559614257296973530791/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100)*Y[5]-(499325414728181458741354559468605778603273492587905296544739338773416282594625362610838216414396877213091808008914274742893041291578818055922416678225094154258144844032217244767336534327125828287724643475119999241987877729837460094334807705144780177741767379437/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000)*Y[6]+(9809187169324797710418652055907758035266533678815755144759675394635003740385181124775846336235143322022647425827258639882964517784960824798873678737682129478505570916820687147963551158585291430087556662681632496958244569879466206232021414298102143220995071687/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[7]+(9961511076800474390032079078655255458761194543639385053230419814714616776872472143612638126250073559067246382078092074507370353034969791226512766617497846376166551107225745049850404966980930594993668827370453904514465763878403678795030029367496484586955199253/12637042972578895269244116970084368459199718223854161187019392780115282113515390734848544745955093473406736174117512073695600387283473981246445680717659228725025392956422338716350515372949610468470589908704575406262662383218626267413340389001885105355627040250)*Y[8]-(11047173524882425900978360133540901724465480974498976256164594657371997248296010239686878505795587979164919059257915130848465114211403303185757127083549527203824160699916426742991826245075582190025453507497180223031478173834742451926409260724343948253493474723/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000)*Y[9]; YP[6] := T1; T1 := -(361043443856954634178891242879391289615244418871043003149039087897124267608299171264006348734456228533217251233393366504861192493304185082532133709798183065465060298017923821787988278451168043677190584254701408503080381889505924192835652391190285650899521139/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000)*Y[1]+(4617572732616250430271369355815465813589950919207988148170129437318690740955314774213920103639802292088230143836219692467778811914450218805474560808219718227931940748462261613202729488207253716594520600537193725400243028925658264232503605265220488494170326571/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500)*Y[2]+(3505482041327537790038117470609167209786921494066580029249602769740703046257932396090458191837902406773364143428541431867779245522703441195164098844896362311496724913536652083528935735011011936767136078758666385572222597968340596290808370900737338578825429399/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]-(483039091689004898935023543562532712135728641927920839858219450068749806593585515491100553522567749481201300147304915466101690145426650870863932346941878954182081050403360873473995973294036936963878612642559488155836991250331840221778622942512908672969192809/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740)*Y[4]+(3177193026638852396478699815597365325240651799078180846240705214099391120021197448638752165305734820428757465774661708703332937854698880970331604870334275144755765074859705582293819177784118386736961664161048147125180717635495443931506988494871721919113578413/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220)*Y[5]-(16422225951567633701212715507398179300117950941719018647547358604039108335964768423616643900128447089009157201433410508687443528710449831711568266391198743751773662583781916718268350220923202542643317939999527627300795280144582871394781229685709781280058899299/20219268756126232430790587152134989534719549158166657899231028448184451381624625175757671593528149557450777878588019317912960619653558369994313089148254765960040628730275741946160824596719376749552943853927320650020259813149802027861344622403016168569003264400)*Y[6]-(6825648667323280641934044761550964733531461561365642049360514015196406605825111764781758837598336084244248119032851080604989006671856609240995261488566956174059612562579119682951995111666613414155079288770605141344035401735573676575855773240750544545129537419/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700)*Y[7]+(64566481728733989539590977497195717410492263533119272971525539017924805812004317856400058913628034985256655804671564517912861381875618040968950890681842543840521004490307029163833240083076116399220946064866498622200871981820976863680325066957752743871901464003/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000)*Y[8]-(3225008620228282072046504893253264460950588341369152733926548016662824556091104260648247430996692778579948194121356671620204939737247183889270763779860043754210615720596036396933428887954301868203815685939258576271053611554776236224293598575910642865656851761/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000)*Y[9]; YP[7] := T1; T1 := -(2262908205781899772231359027738653995259315754074484842471881054793133985869504304763049478438821485090813080550711127336051377890921194278147229341496864265479625803336762503659269331044135530757728719768004281442704955550083628852326031638683731812062419759/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000)*Y[1]+(4104943510549985973160090854234229486810542542915913738272144416736794727755630484940131895072080714690857984910846718781829802199171804866458394208504388496965340110443468116464599766884071374724035889852871788308164310775337046296946280154914526396497008514/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375)*Y[2]-(8849928266271338444518590865209284228887695717846785692106936465856106760114677742432357746977296525329342598825819987205322037117016167879162025109313160190517178351503393957924867128950823382514163488082828368062310919801390975164425599471142449417466642641/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050)*Y[3]+(7216751407363285412674775149859598320989789224638508631617455870959920679692315028987138500945517632398873328354703531900618227378723397070285495553603562421075988113951739982186442485244598826609089234872095609032158551681021913365495745077579323962211042829/842469531505259684616274464672291230613314548256944079134626185341018807567692715656569649730339564893782411607834138246373359152231598749763045381177281915001692863761489247756701024863307364564705993913638360417510825547908417827556025933459007023708469350)*Y[4]-(5185485211242954718856185844026724107929952801486021355748583901408191018516454260401032972631163583013751514212867568068391450259312937690844888485858297293798802012181842466447630272922518354160916360663587197318327436574817378731684489312940283260377908663/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610)*Y[5]+(104724295686389410123210408101122363311604970097132174756045611166458708280647782736740294372812748563344316558287435211677976799747280434143846797404842905445141900604368110730019945456731988572015180947726819769734723271149362263649889080691396378431888988769/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200)*Y[6]-(815256264281489264928441060056200775495335751077587102612703234867094613742815817001557197528054278270909719311559937360714551807885053884306661490153601429548405509732584277583184201568629290461740259998172582742862735970116325969961352814863946836971505207/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870)*Y[7]-(122946007402982914466343545621856870583346678708361423671543721049579842306859666073141690928580281036790249070801990333233386118166223452672695666750854301734405235221115125928040630739165052271279639787432398794339211734924935933389045018873396804958459533/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161)*Y[8]+(392359750068099980846415614884901615498905644711799767785349536659749438843665550677352003355507355603213701715282522245165162478997908895908317346965670401468785608754011520940017988749261578847506568631945463168828727185552610055303406722270362040944564623/1347951250408415495386039143475665968981303277211110526615401896545630092108308345050511439568543303830051858572534621194197374643570557999620872609883651064002708582018382796410721639781291783303529590261821376668017320876653468524089641493534411237933550960)*Y[9]; YP[8] := T1; YP[9] := 0; 0 end proc, proc (X, Y, FX, FY) FX[1 .. 9] := 0; FY[1 .. 9, 1 .. 9] := 0; FY[2, 1] := 1226132305918348436375814276711565552691501145531998717569709060902294656541464867757007338446306962469800028141262846510788421621808818864480385843574136806658578530288093851606950093512987652464980417750724510731436839218429256476465951182649181130306746037/4212347657526298423081372323361456153066572741284720395673130926705094037838463578282848248651697824468912058039170691231866795761157993748815226905886409575008464318807446238783505124316536822823529969568191802087554127739542089137780129667295035118542346750; FY[3, 1] := -161251934226836816958718472854690437864267645681108988948560374355866638146550849042855626072961886158757446606287752710777126027024198042242709705033280544665918807343675219613828497957482585465107855027161673440228920566318623941031533602402953015844592781/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400; FY[4, 1] := -2761837294394866846262421010678884032330647195352264072041648326824827017962025601156330719761441936555478268345575022815262159681159871290906460531103973882857584200037341827441104557214665494463443169756696597139639455216719530748290265125156569883278782351/84246953150525968461627446467229123061331454825694407913462618534101880756769271565656964973033956489378241160783413824637335915223159874976304538117728191500169286376148924775670102486330736456470599391363836041751082554790841782755602593345900702370846935000; FY[5, 1] := -1855204187018660535977698518091808671444135818281053632109908148521702316113840030980927940846136131287094476478064709738645969938955401536641394869137892151486063554147748847403802926386838088478821769120639186840652151472817993367926484011599320349283911/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548; FY[6, 1] := -6661237534250052847353584054624456212339540596093929965990933752529329031493999919829951784821387046664166377321367257652445791237228447395185584279487072225832361750180591354471467287004916169713940760801139386362330112804765276334534476419276735363694178197/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870000; FY[7, 1] := -361043443856954634178891242879391289615244418871043003149039087897124267608299171264006348734456228533217251233393366504861192493304185082532133709798183065465060298017923821787988278451168043677190584254701408503080381889505924192835652391190285650899521139/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000; FY[8, 1] := -2262908205781899772231359027738653995259315754074484842471881054793133985869504304763049478438821485090813080550711127336051377890921194278147229341496864265479625803336762503659269331044135530757728719768004281442704955550083628852326031638683731812062419759/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000; FY[2, 2] := -5122799377417587639324190646852118364550663840987141047610178184201764772578459195032991037473283069805480427629464632201734025982101020019763574910749801638349803009118249165848500302119503010183678569905519037738143119874993679554330516720156902409563025698/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[3, 2] := 43044513009443016657563396942942128466753386649356635886603684493858394292321458581914762718715116162775213324641015638504058868181418845450419817852322525693287185472076256238255405171076498345253080283645207742082795944283750206211968554561467794709571911283/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774000; FY[4, 2] := 33205312582897125339336999274972934905188263344885319763514204970402805515106745119250498040868064578829946074257759497960329332386136529534291560233624571592495020097891223143439793155324133502651914275078664807737904839339676970205789452287404112432707539159/42123476575262984230813723233614561530665727412847203956731309267050940378384635782828482486516978244689120580391706912318667957611579937488152269058864095750084643188074462387835051243165368228235299695681918020875541277395420891377801296672950351185423467500; FY[5, 2] := 24902132183052344798008551466745602118058806261464441686346970961946518505658970587620719711223967144464903279417040414845168620162542566459763437214012148033847724973118948800586979116629158003038538031203176179452671527441733660113360830152001686072536803/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774; FY[6, 2] := 9261161861212443755166291014070416748391074223177775141996713889037530436931601309656542369634071068039737731836889272488939124798739693418943582834894987734883418265936711917720191737852281503524309863318995971219148709189267828711847268739058985154528177101/10530869143815746057703430808403640382666431853211800989182827316762735094596158945707120621629244561172280145097926728079666989402894984372038067264716023937521160797018615596958762810791342057058824923920479505218885319348855222844450324168237587796355866875; FY[7, 2] := 4617572732616250430271369355815465813589950919207988148170129437318690740955314774213920103639802292088230143836219692467778811914450218805474560808219718227931940748462261613202729488207253716594520600537193725400243028925658264232503605265220488494170326571/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[8, 2] := 4104943510549985973160090854234229486810542542915913738272144416736794727755630484940131895072080714690857984910846718781829802199171804866458394208504388496965340110443468116464599766884071374724035889852871788308164310775337046296946280154914526396497008514/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[2, 3] := -12228649786992680838215434917496244064659212568569591350310663159274546857548630741087947189313589116843587165004054759779180455995754882334434018001150535872337700109491251573583140410177216604883646239715560962674748624012573852813132498425628436258797428143/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[3, 3] := -40954103884399491525356232680580218886495343717789520980081152511156394526979232745175669269501760304445856354880015828013675416240318064694819193498256999941461017906061798541888347760359175316459615195251730243189866787196074462434522480980664821466662740551/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[4, 3] := 58853944391278292231616071043483751745903105127548281247561932556008791006431267520298698835764105029935918304695699349673556578124147235004794085923008445478267771370019639656987109404395457393507150128007049823875988391750069277256805392747918572643959398679/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000; FY[5, 3] := 32680893719906614453382476481165623998557929443836011326913986957681540457570263881195844126748951528312850913759449934769296002588833731118101896363625189052501107569431802875028985401767344760572694183483517660171771310012095661145323378812858533127189270/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161; FY[6, 3] := 6560224503818456423346134055440077456189613968043908306741503998996555888946057654962782414039938051291041977879126261059242532239634083041033153804767162508387635712226167561528083651493680291299803500889044946540550644919168743947345733814910596439017098207/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500; FY[7, 3] := 3505482041327537790038117470609167209786921494066580029249602769740703046257932396090458191837902406773364143428541431867779245522703441195164098844896362311496724913536652083528935735011011936767136078758666385572222597968340596290808370900737338578825429399/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[8, 3] := -8849928266271338444518590865209284228887695717846785692106936465856106760114677742432357746977296525329342598825819987205322037117016167879162025109313160190517178351503393957924867128950823382514163488082828368062310919801390975164425599471142449417466642641/2527408594515779053848823394016873691839943644770832237403878556023056422703078146969708949191018694681347234823502414739120077456694796249289136143531845745005078591284467743270103074589922093694117981740915081252532476643725253482668077800377021071125408050; FY[2, 4] := 4363450561385059482960434270068428430448939137766737242187179027295080557290144795408797848201098960749980957361170979113180312018867508763132756839143846765211128564927068978770503542730728224014610110905901010928452531747634899734567701956139821119508712551/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675; FY[3, 4] := -5473778647043241541865320615652215960386860138337457573560306179115956977149081778514523084202289124303568861619753312390698034568457997121471765106216417508655554153633378073081629207447503264576291289980955938778557326691119078450908207536919612148556959113/6739756252042077476930195717378329844906516386055552633077009482728150460541541725252557197842716519150259292862673105970986873217852789998104363049418255320013542910091913982053608198906458916517647951309106883340086604383267342620448207467672056189667754800; FY[4, 4] := -41610050022984614988387480267069521549665294849813423331381520833350008503438431482037853187039879278005296382748397352202362491851658678766795408438390419390373706124643048892842294622046778272231423635834669165153376391945926240875484268568892699562086526053/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[5, 4] := 27352581663505933804480375941907466862067486142271783149405708468053686020876194829252768943126510773943375658314583218433754309902624082631850525992804075785063387457908689361319569597714534585416144040982409640913701059542079370275401504991651965447212655/33698781260210387384650978586891649224532581930277763165385047413640752302707708626262785989213582595751296464313365529854934366089263949990521815247091276600067714550459569910268040994532294582588239756545534416700433021916336713102241037338360280948338774; FY[6, 4] := 6165163373965619845722814710680052236971274054651758536988484473848351046769375862968698884948529857943504842154901943670900388703895669644576717604602150731411973182040332830664157415375227590447616388847038057150040911002305066487209722522992376675640171487/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[7, 4] := -483039091689004898935023543562532712135728641927920839858219450068749806593585515491100553522567749481201300147304915466101690145426650870863932346941878954182081050403360873473995973294036936963878612642559488155836991250331840221778622942512908672969192809/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740; FY[8, 4] := 7216751407363285412674775149859598320989789224638508631617455870959920679692315028987138500945517632398873328354703531900618227378723397070285495553603562421075988113951739982186442485244598826609089234872095609032158551681021913365495745077579323962211042829/842469531505259684616274464672291230613314548256944079134626185341018807567692715656569649730339564893782411607834138246373359152231598749763045381177281915001692863761489247756701024863307364564705993913638360417510825547908417827556025933459007023708469350; FY[2, 5] := -2592696508961799176643457127402065464546943710460733025880508183352190001128755252920878621439680835508559974764018553848523381941605312047444623753001398131418295898077723457278494232923437215264072016735070544507529860148126169430874755765611343006827606812/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805; FY[3, 5] := 6354265169008035771390439485275352839882078464680346768968171375664619967743054990402815151937737409410320666063012998921283322613249748871464248413808003190121787908847338588350901727532935828352572824446242731523807293046777512387111059757818379728708327151/2021926875612623243079058715213498953471954915816665789923102844818445138162462517575767159352814955745077787858801931791296061965355836999431308914825476596004062873027574194616082459671937674955294385392732065002025981314980202786134462240301616856900326440; FY[4, 5] := 6004879028650338470491508008366199161559144992728735177032206960444119384985306814600763725250779379994850115580987622248627252672234090445217309156968412962696798973725957768446738389899320103388649469674756905208025876019802542672463586568366206812498259051/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100; FY[5, 5] := -4386863456776133945377184627715533915788616643885191181032697668218882593325750888524038670937249312980675647820412126196596826599338744774745056738530835347958530188561390149850852574792772043302735708971722624919642325922002059829075795495889230968024589119/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[6, 5] := 6005198114469706229215365132031313141898898316837834775377633211313297816702028145423018354583786683632573711307511559391205196904559893831804661733349467545180922306848827392170508629591499519100556083497676614242058470061109457284716876559614257296973530791/5054817189031558107697646788033747383679887289541664474807757112046112845406156293939417898382037389362694469647004829478240154913389592498578272287063691490010157182568935486540206149179844187388235963481830162505064953287450506965336155600754042142250816100; FY[7, 5] := 3177193026638852396478699815597365325240651799078180846240705214099391120021197448638752165305734820428757465774661708703332937854698880970331604870334275144755765074859705582293819177784118386736961664161048147125180717635495443931506988494871721919113578413/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[8, 5] := -5185485211242954718856185844026724107929952801486021355748583901408191018516454260401032972631163583013751514212867568068391450259312937690844888485858297293798802012181842466447630272922518354160916360663587197318327436574817378731684489312940283260377908663/505481718903155810769764678803374738367988728954166447480775711204611284540615629393941789838203738936269446964700482947824015491338959249857827228706369149001015718256893548654020614917984418738823596348183016250506495328745050696533615560075404214225081610; FY[2, 6] := 8659953010881851105967967793578566130707497323446820587548151552147572840679789725860711007072971188817103025505280857246189202632124503722211951567458964200392061788936397497605369216289172938980259950496875021258233982415172562975069279401172598540085815041/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[3, 6] := -1449064422166557732646105669079078190112783451166695022638801480017895206282146955740193759692235388522325893506448586753328592910999372701162066293689123563154429864685276061808351611662255505635520599137994582457656010399747942051788970317078802348583225997/1010963437806311621539529357606749476735977457908332894961551422409222569081231258787883579676407477872538893929400965895648030982677918499715654457412738298002031436513787097308041229835968837477647192696366032501012990657490101393067231120150808428450163220; FY[4, 6] := 73987419547718813733934178482523401292054012528777482965215578508968299719479942284281616564448542767863169863468252290123104910039914531716475180486629784008959972968564453049482899842379907412681951955118440849813377114431974311458616531265969148389994750771/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000; FY[5, 6] := 164115991552155985751795808929056503258394418729429535961165730645678825592242348265450803689875658734645593992993904812282810565859433443792865792751324042528918658485286941210966907571729252196104710096346028003283370486879348259112048353127676650185507635/202192687561262324307905871521349895347195491581666578992310284481844513816246251757576715935281495574507778785880193179129606196535583699943130891482547659600406287302757419461608245967193767495529438539273206500202598131498020278613446224030161685690032644; FY[6, 6] := -499325414728181458741354559468605778603273492587905296544739338773416282594625362610838216414396877213091808008914274742893041291578818055922416678225094154258144844032217244767336534327125828287724643475119999241987877729837460094334807705144780177741767379437/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322000; FY[7, 6] := -16422225951567633701212715507398179300117950941719018647547358604039108335964768423616643900128447089009157201433410508687443528710449831711568266391198743751773662583781916718268350220923202542643317939999527627300795280144582871394781229685709781280058899299/20219268756126232430790587152134989534719549158166657899231028448184451381624625175757671593528149557450777878588019317912960619653558369994313089148254765960040628730275741946160824596719376749552943853927320650020259813149802027861344622403016168569003264400; FY[8, 6] := 104724295686389410123210408101122363311604970097132174756045611166458708280647782736740294372812748563344316558287435211677976799747280434143846797404842905445141900604368110730019945456731988572015180947726819769734723271149362263649889080691396378431888988769/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[2, 7] := -1474955515519843830459966006864455598004385654544436850889299449116558052846406321803668803846866906229723025014425302699860093173022792529761886013660191456947015794642164075101956358436914817593869337879015657358454163971889070291237334517419615020045826132/421234765752629842308137232336145615306657274128472039567313092670509403783846357828284824865169782446891205803917069123186679576115799374881522690588640957500846431880744623878350512431653682282352996956819180208755412773954208913778012966729503511854234675; FY[3, 7] := 4673876666745835732629650545446638383355986274214982023582036500998197836394415969625153844732687271921118105700600920875859703063156679884508836867578222408164743448865195326674410920952799366528287019636366888607499971754900417331465550195267873884800035661/3369878126021038738465097858689164922453258193027776316538504741364075230270770862626278598921358259575129646431336552985493436608926394999052181524709127660006771455045956991026804099453229458258823975654553441670043302191633671310224103733836028094833877400; FY[4, 7] := 546622375734492985611016770756444192572239999747196046659524209906372055082936363968146739376189168968013921088603295605841022585478977607285456574780908227767274564225022078648909689077796118367071049814041276045430402912109159646893720315024270726470188187/2106173828763149211540686161680728076533286370642360197836565463352547018919231789141424124325848912234456029019585345615933397880578996874407613452943204787504232159403723119391752562158268411411764984784095901043777063869771044568890064833647517559271173375; FY[5, 7] := 10893587503501903817594116127248262206709512788981573607723063234279818889662150283350868199712627129905511311493263504759718552287175276812507507368395930791566719294220053936592913811664676845837080654863563959117723947397989239656737083767893245924034500/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387; FY[6, 7] := 9809187169324797710418652055907758035266533678815755144759675394635003740385181124775846336235143322022647425827258639882964517784960824798873678737682129478505570916820687147963551158585291430087556662681632496958244569879466206232021414298102143220995071687/8424695315052596846162744646722912306133145482569440791346261853410188075676927156565696497303395648937824116078341382463733591522315987497630453811772819150016928637614892477567010248633073645647059939136383604175108255479084178275560259334590070237084693500; FY[7, 7] := -6825648667323280641934044761550964733531461561365642049360514015196406605825111764781758837598336084244248119032851080604989006671856609240995261488566956174059612562579119682951995111666613414155079288770605141344035401735573676575855773240750544545129537419/1684939063010519369232548929344582461226629096513888158269252370682037615135385431313139299460679129787564823215668276492746718304463197499526090762354563830003385727522978495513402049726614729129411987827276720835021651095816835655112051866918014047416938700; FY[8, 7] := -815256264281489264928441060056200775495335751077587102612703234867094613742815817001557197528054278270909719311559937360714551807885053884306661490153601429548405509732584277583184201568629290461740259998172582742862735970116325969961352814863946836971505207/168493906301051936923254892934458246122662909651388815826925237068203761513538543131313929946067912978756482321566827649274671830446319749952609076235456383000338572752297849551340204972661472912941198782727672083502165109581683565511205186691801404741693870; FY[2, 8] := 492587305346664614073937544660815575475218256643792253760523859419628340807146059710330293226339880776163835784727871801486586346003823785952446372165660245469137685491372040153574006888312819788126100085010631152822081881590251265902606241223805106713571983/252740859451577905384882339401687369183994364477083223740387855602305642270307814696970894919101869468134723482350241473912007745669479624928913614353184574500507859128446774327010307458992209369411798174091508125253247664372525348266807780037702107112540805; FY[3, 8] := 5541184247825229378429844411773395704415324071381316492052390422610530116294234183366862551086975419764657137338706272603519609350055594711232796908697241885379767201942586600202896687140548397194513192755940883139513325305905653599282121806851457151847832577/10109634378063116215395293576067494767359774579083328949615514224092225690812312587878835796764074778725388939294009658956480309826779184997156544574127382980020314365137870973080412298359688374776471926963660325010129906574901013930672311201508084284501632200; FY[4, 8] := 22227030224556432204583084167170899702133054721311683518223885404094295771493898818421841536381101038938152507931045925977499818224494215807750352702307383149892034201000237188143386753575535629877515393733015203478655080473816665022139451313442234704136169711/25274085945157790538488233940168736918399436447708322374038785560230564227030781469697089491910186946813472348235024147391200774566947962492891361435318457450050785912844677432701030745899220936941179817409150812525324766437252534826680778003770210711254080500; FY[5, 8] := 74706519466028797132755638374643090517187807360061053989860710010253706946248786163155621689620597147115225014691247990636016762649698058190802520037139905989507014130616208067430872605515835017627778742281938289454140397224147539158565673481739035278785663/101096343780631162153952935760674947673597745790833289496155142240922256908123125878788357967640747787253889392940096589564803098267791849971565445741273829800203143651378709730804122983596883747764719269636603250101299065749010139306723112015080842845016322; FY[6, 8] := 9961511076800474390032079078655255458761194543639385053230419814714616776872472143612638126250073559067246382078092074507370353034969791226512766617497846376166551107225745049850404966980930594993668827370453904514465763878403678795030029367496484586955199253/12637042972578895269244116970084368459199718223854161187019392780115282113515390734848544745955093473406736174117512073695600387283473981246445680717659228725025392956422338716350515372949610468470589908704575406262662383218626267413340389001885105355627040250; FY[7, 8] := 64566481728733989539590977497195717410492263533119272971525539017924805812004317856400058913628034985256655804671564517912861381875618040968950890681842543840521004490307029163833240083076116399220946064866498622200871981820976863680325066957752743871901464003/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161000; FY[8, 8] := -122946007402982914466343545621856870583346678708361423671543721049579842306859666073141690928580281036790249070801990333233386118166223452672695666750854301734405235221115125928040630739165052271279639787432398794339211734924935933389045018873396804958459533/50548171890315581076976467880337473836798872895416644748077571120461128454061562939394178983820373893626944696470048294782401549133895924985782722870636914900101571825689354865402061491798441873882359634818301625050649532874505069653361556007540421422508161; FY[2, 9] := -2262874066011973942630848659542165574018468886497256125484160143775924995821795896339399540506573035067361284472231305612334606394731504152007925600963461089321294768461374089964726482147777594210163439837265672615994460643757229769515224309723063204640079167/16849390630105193692325489293445824612266290965138881582692523706820376151353854313131392994606791297875648232156682764927467183044631974995260907623545638300033857275229784955134020497266147291294119878272767208350216510958168356551120518669180140474169387000; FY[3, 9] := -722147444169182549222396385399220485556256432988660307904538212894503469612778795672635289867759776963857713883932852929240825174083474441020564800600665569342107842988071958242454682995643349664335632464210073573012060154703804266540321182845949869487702987/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000; FY[4, 9] := -13322763355425067038334766735658202888932127721287481383674166878520478824216563018526660036003497588791034847073154219628654940298044871574630273481300231592268442033514213574231820807019915675340952340851167070795601627094731863027296104710515116338344079017/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000; FY[5, 9] := -3710423045953284689161154045393300669023185203073783313968028900834190052005804889062833853410762681268673056032772333877964482516948407583034168828098032394116914288761649884570850499213281369529076920823274270650107271461498263224914965196356339907694177/134795125040841549538603914347566596898130327721111052661540189654563009210830834505051143956854330383005185857253462119419737464357055799962087260988365106400270858201838279641072163978129178330352959026182137666801732087665346852408964149353441123793355096; FY[6, 9] := -11047173524882425900978360133540901724465480974498976256164594657371997248296010239686878505795587979164919059257915130848465114211403303185757127083549527203824160699916426742991826245075582190025453507497180223031478173834742451926409260724343948253493474723/336987812602103873846509785868916492245325819302777631653850474136407523027077086262627859892135825957512964643133655298549343660892639499905218152470912766000677145504595699102680409945322945825882397565455344167004330219163367131022410373383602809483387740000; FY[7, 9] := -3225008620228282072046504893253264460950588341369152733926548016662824556091104260648247430996692778579948194121356671620204939737247183889270763779860043754210615720596036396933428887954301868203815685939258576271053611554776236224293598575910642865656851761/67397562520420774769301957173783298449065163860555526330770094827281504605415417252525571978427165191502592928626731059709868732178527899981043630494182553200135429100919139820536081989064589165176479513091068833400866043832673426204482074676720561896677548000; FY[8, 9] := 392359750068099980846415614884901615498905644711799767785349536659749438843665550677352003355507355603213701715282522245165162478997908895908317346965670401468785608754011520940017988749261578847506568631945463168828727185552610055303406722270362040944564623/1347951250408415495386039143475665968981303277211110526615401896545630092108308345050511439568543303830051858572534621194197374643570557999620872609883651064002708582018382796410721639781291783303529590261821376668017320876653468524089641493534411237933550960; 0 end proc, proc (X, Y, R) R[1] := Y[9]; R[2] := Y[1]; 0 end proc, proc (X, Y, J) J[1 .. 2, 1 .. 9] := 0; J[1, 9] := 1; J[2, 1] := 1; 0 end proc, 0, 0, 0, 0]), ( 20 ) = ([]), ( 21 ) = (0)  ] ))  ] ); _y0 := Array(0..18, {(1) = 0., (2) = 0., (3) = 0.3826834325e-4, (4) = 0.7071067813e-4, (5) = 0.9238795325e-4, (6) = 0.1e-3, (7) = 0.9238795323e-4, (8) = 0.7071067813e-4, (9) = 0.3826834323e-4, (10) = -0.4102067616e-13, (11) = Float(undefined), (12) = Float(undefined), (13) = Float(undefined), (14) = Float(undefined), (15) = Float(undefined), (16) = Float(undefined), (17) = Float(undefined), (18) = Float(undefined)}); _vmap := array( 1 .. 18, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 4 ) = (4), ( 5 ) = (5), ( 6 ) = (6), ( 7 ) = (7), ( 9 ) = (9), ( 8 ) = (8), ( 11 ) = (11), ( 10 ) = (10), ( 13 ) = (13), ( 12 ) = (12), ( 15 ) = (15), ( 14 ) = (14), ( 18 ) = (18), ( 16 ) = (16), ( 17 ) = (17)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 10 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 10 and 10 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 10 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-10 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-10; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 10 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 10 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif 10 < _dat[4][9] then if _dat[4][9]-10 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-10 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-10, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, theta[1](t), theta[2](t), theta[3](t), theta[4](t), theta[5](t), theta[6](t), theta[7](t), theta[8](t), theta[9](t), v[1](t), v[2](t), v[3](t), v[4](t), v[5](t), v[6](t), v[7](t), v[8](t), v[9](t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rosenbrock_dae, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rosenbrock_dae, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rosenbrock_dae, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rosenbrock_dae, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rosenbrock_dae), 'string') = rhs(x_rosenbrock_dae); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rosenbrock_dae), 'string') = rhs(x_rosenbrock_dae)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rosenbrock_dae) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rosenbrock_dae) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

Answer at t=0.2

ans(.2)

[t = .2, theta[1](t) = HFloat(0.0), theta[2](t) = HFloat(5.2786342069326965e-5), theta[3](t) = HFloat(6.899599443021553e-5), theta[4](t) = HFloat(7.817965872067103e-5), theta[5](t) = HFloat(8.15452666025142e-5), theta[6](t) = HFloat(7.817966409001719e-5), theta[7](t) = HFloat(6.899599798132949e-5), theta[8](t) = HFloat(5.2786325778251536e-5), theta[9](t) = HFloat(0.0), v[1](t) = HFloat(0.0), v[2](t) = HFloat(-1.5400621454598581e-9), v[3](t) = HFloat(-2.0239478208554e-9), v[4](t) = HFloat(-1.3444907957371938e-9), v[5](t) = HFloat(-7.095545870263947e-17), v[6](t) = HFloat(1.3444906226987864e-9), v[7](t) = HFloat(2.023947690069422e-9), v[8](t) = HFloat(1.5400621881971793e-9), v[9](t) = HFloat(0.0)]

NULL

 

Download DQ.mw

Since the system is linear for the variables you want to solve for (for a given t), you can use LinearSolve.

restart

with(LinearAlgebra):

EQ := Matrix(4, 1, {(1, 1) = 32.1640740637930*Tau[1]-0.172224519601111e-4*Tau[2]-0.270626540730518e-3*Tau[3]+0.1570620334e-9*P[1]+0.3715450960e-14*sin(t), (2, 1) = -0.172224519601111e-4*Tau[1]+32.1667045885952*Tau[2]+0.587369829416537e-4*Tau[3]-0.1589565489e-8*P[1]+0.1004220091e-12*sin(t), (3, 1) = -0.270626540730518e-3*Tau[1]+0.587369829416537e-4*Tau[2]+32.1816411689934*Tau[3]-0.7419658527e-8*P[1]+0.5201228088e-12*sin(t), (4, 1) = 0.1570620334e-9*Tau[1]-0.1589565489e-8*Tau[2]-0.7419658527e-8*Tau[3]+601.876235436204*P[1]})

EQlist := convert(EQ, list);

[32.1640740637930*Tau[1]-0.172224519601111e-4*Tau[2]-0.270626540730518e-3*Tau[3]+0.1570620334e-9*P[1]+0.3715450960e-14*sin(t), -0.172224519601111e-4*Tau[1]+32.1667045885952*Tau[2]+0.587369829416537e-4*Tau[3]-0.1589565489e-8*P[1]+0.1004220091e-12*sin(t), -0.270626540730518e-3*Tau[1]+0.587369829416537e-4*Tau[2]+32.1816411689934*Tau[3]-0.7419658527e-8*P[1]+0.5201228088e-12*sin(t), 0.1570620334e-9*Tau[1]-0.1589565489e-8*Tau[2]-0.7419658527e-8*Tau[3]+601.876235436204*P[1]]

V := convert(Matrix(1, 4, {(1, 1) = Tau[1], (1, 2) = Tau[2], (1, 3) = Tau[3], (1, 4) = P[1]}), list)

[Tau[1], Tau[2], Tau[3], P[1]]

A, b := GenerateMatrix(EQlist, V)

A, b := Matrix(4, 4, {(1, 1) = 32.1640740637930, (1, 2) = -0.172224519601111e-4, (1, 3) = -0.270626540730518e-3, (1, 4) = 0.1570620334e-9, (2, 1) = -0.172224519601111e-4, (2, 2) = 32.1667045885952, (2, 3) = 0.587369829416537e-4, (2, 4) = -0.1589565489e-8, (3, 1) = -0.270626540730518e-3, (3, 2) = 0.587369829416537e-4, (3, 3) = 32.1816411689934, (3, 4) = -0.7419658527e-8, (4, 1) = 0.1570620334e-9, (4, 2) = -0.1589565489e-8, (4, 3) = -0.7419658527e-8, (4, 4) = 601.876235436204}), Vector(4, {(1) = -0.3715450960e-14*sin(t), (2) = -0.1004220091e-12*sin(t), (3) = -0.5201228088e-12*sin(t), (4) = 0})

soln := Equate(V, LinearSolve(A, b));

[Tau[1] = -0.1156532164e-15*sin(t), Tau[2] = -0.3121894613e-14*sin(t), Tau[3] = -0.1616209236e-13*sin(t), P[1] = -0.2074537757e-24*sin(t)]

For t = 1

eval(soln, t = 1.);

[Tau[1] = -0.9731882590e-16, Tau[2] = -0.2626983734e-14, Tau[3] = -0.1359993177e-13, P[1] = -0.1745663329e-24]

NULL

Download SoalNewton.mw

It is not very clear what information you want to show, or what form you have the data in. There are two sets of data in the table, but only one set of heights in the image, and those heights are larger than the values in the table. The lines in between the points do not seem to mean anything. The grid of x1, x2 values is not complete - are heights for missing values to be set to zero?

If only the heights in one column, say the first one, are of interest, then you could use plot with style=point (or pointplot) to plot the heights at the various x1,x2 points.

Download plot.mw

To find which value(s) of f(x) make the equation a*f(x)=0 the same on both sides, use solve:
solve(a*f(x) = 0, f(x)) assuming a>0

gives 0 for f(x). Simplify will simplify each side of the equation separately, but does not know that you want to find f(x).

First 40 41 42 43 44 45 46 Last Page 42 of 81