dharr

Dr. David Harrington

4066 Reputation

17 Badges

18 years, 205 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

I am a professor of chemistry at the University of Victoria, BC, Canada, where my research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are replies submitted by dharr

note that x=10 (log(x)=1) is plotted one unit of length to the left of x=100 (log(x)=2). So moving left one unit each time, we plot x values of 100 10 1 0.1 0.01 1e-3 1e-4 1e-5 1e-6 Since log(0)= -infinity, very far left we get very small positive values, but we never get to negative x values.
note that x=10 (log(x)=1) is plotted one unit of length to the left of x=100 (log(x)=2). So moving left one unit each time, we plot x values of 100 10 1 0.1 0.01 1e-3 1e-4 1e-5 1e-6 Since log(0)= -infinity, very far left we get very small positive values, but we never get to negative x values.
This perfectly represents the Maple learning curve, and is very much the way I go about things, i.e., you eventually get it, and then contract it down. In simple cases like this, where I know where I am headed and just want to check it, I simplify the difference of my starting expression and my guess and check for zero; in your case that would be: simplify((tan(a)+tan(b))/(1-tan(a)*tan(b))-tan(a+b)); But it doesn't work! A quick fiddle and it does simplify(expand(tan(a)+tan(b))/(1-tan(a)*tan(b))-tan(a+b))); Cheers, David.
Glad it worked for you. Just a tip: diff(y(x), x, x, x, x); is simpler as diff(y(x), x, x, x, x); which can be further abbreviated as diff(y(x), x$4);
Glad it worked for you. Just a tip: diff(y(x), x, x, x, x); is simpler as diff(y(x), x, x, x, x); which can be further abbreviated as diff(y(x), x$4);
That's interesting, and very mysterious. Do you get it OK with my example? I am using Maple 10 under Windows. The only other thing I can think of would be that using a list might force the order, and I was just lucky skipping it. display([points, curve]); display([curve,points]);
That's interesting, and very mysterious. Do you get it OK with my example? I am using Maple 10 under Windows. The only other thing I can think of would be that using a list might force the order, and I was just lucky skipping it. display([points, curve]); display([curve,points]);
Thanks, this works. I look forward to Maple 11 then.
Thanks, this works. I look forward to Maple 11 then.
Yes, sorry about that.
Yes, sorry about that.
Thanks for pointing me there, I would never have found. I can now do what I want to. BTW, you can save at least simple *.mw files as help pages with makehelp (which just reads the lines and calls INTERFACE_HELP), but not sure which features you might lose.
Thanks for pointing me there, I would never have found. I can now do what I want to. BTW, you can save at least simple *.mw files as help pages with makehelp (which just reads the lines and calls INTERFACE_HELP), but not sure which features you might lose.
I agree about the difficulty and annoyance in a long code of finding such problems. But qualified responses could quickly get complicated. Consider solve(a*x^2+b*x+c,x); This needs a qualification that a<>0, which is simple enough. But should it also be mentioned that there is one answer, not two, if b^2=4*a*c? And that if a=0, then the solution is -c/b unless b=0, in which case the equation doesn't have x in it any more ... Cheers, David.
I think Maple frequently gives results that have restrictions; a simpler example is simplify(c/c), which is also not true for c=0. Likewise solve(1=(x+1)/(x+1),x); returns x, but x=-1 is not acceptable. If Maple is too fussy, then one never gets to a useful result, so I don't consider this a bug as such.
First 34 35 36 37 38 Page 36 of 38