janhardo

745 Reputation

12 Badges

11 years, 131 days

MaplePrimes Activity


These are replies submitted by janhardo

@janhardo 

 

         
J:= Int(exp(t*x), x);
J1:= subs(t= alpha+beta*I, J);
evalc(J1);
value(%);
simplify(convert(diff(%, x), exp), {a+b*I= t});

Int(exp(t*x), x)

 

Int(exp((alpha+I*beta)*x), x)

 

Int(exp(x*alpha)*cos(x*beta), x)+I*(Int(exp(x*alpha)*sin(x*beta), x))

 

alpha*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+beta*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2)+I*(-beta*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+alpha*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2))

 

exp((alpha+I*beta)*x)

(1)

#==========================================

restart;         
J:= Int(exp(t*x), x);
J1:= subs((SUB:= t= alpha+beta*I), J);
J2:= evalc([Re,Im](J1));
J3:= J2 =~ simplify(value(J2));
print~(J3):
 
#reversion to original integrand:
simplify(
    convert(diff(evalc(Complex(rhs~(J3)[])), x), exp),
    {rhs=lhs}(SUB)
);

Int(exp(t*x), x)

 

Int(exp((alpha+I*beta)*x), x)

 

[Int(exp(x*alpha)*cos(x*beta), x), Int(exp(x*alpha)*sin(x*beta), x)]

 

[Int(exp(x*alpha)*cos(x*beta), x) = exp(x*alpha)*(beta*sin(x*beta)+cos(x*beta)*alpha)/(alpha^2+beta^2), Int(exp(x*alpha)*sin(x*beta), x) = exp(x*alpha)*(sin(x*beta)*alpha-beta*cos(x*beta))/(alpha^2+beta^2)]

 

Int(exp(x*alpha)*cos(x*beta), x) = exp(x*alpha)*(beta*sin(x*beta)+cos(x*beta)*alpha)/(alpha^2+beta^2)

 

Int(exp(x*alpha)*sin(x*beta), x) = exp(x*alpha)*(sin(x*beta)*alpha-beta*cos(x*beta))/(alpha^2+beta^2)

 

exp(t*x)

(2)

#================================================

 

The difference in code starts with  evalc and the use of  J,J1,J2 and J3 makes it easier to read

Its a difficult command : J2:= evalc([Re,Im](J1)); in order to get rid of the I symbol, and probably there is no need for?
I must study further this to see how it excactly works.

 

Can you explain in your own words how this second code works ?       

Download complex_integration-tom_apostel_example_-bernouille.mw

@acer 

Thanks

Your code is also a difficult one to understand quick , so perhaps you can explain this in your own words too for me to get a idea for me.

It was tricky, because this  expression written (see hereunder)i s not the same in Holland or America/England? 
Log and ln are the same in America ( and in the book example too probably) and not in Holland
Log and ln are different. A = -(int(1/t, t = 1 .. t))/(2*bi) and -(int(1/t, t = 1 .. t))/(2*bi) = log[10](t)/(2*bi) and log[10](t)/(2*bi) = log[10]((b*i+z)/(b*i-z))/(2*bi)

So log written in the formula must read as ln then.
Your answer is almost correct , its only the I (imaginairy unit) is still there

In a another example of calculating a complex integral is used to remove the I   ....see hereunder

J:= Int(exp(t*x), x);
J1:= subs((SUB:= t= alpha+beta*I), J);
J2:= evalc([Re,Im](J1));

@Carl Love 

Thanks

There will be a reason why maple uses  log and ln for the same thing ..yes use in English math books ? 
In written math books here in Holland there is a distinction between the two: log and ln and they differ in meaning
Probably not in English math books : log and ln are the same then.

@Carl Love 

Thanks

I noticed the difference between input and output coloring, so its a mistake 
This second code piece construct the two wanted integrals from 

 J := Int(exp(t*x), x)

Amazing second code piece ,but it needs some clarifcation compared with the first code piece. 

@Carl Love 

I used 2d input expression palette and was writing , so it is not executable math then.
Was not further thinking on it , but it is possible to use the log and  ln for the same logaritme with  base e  : 

log[10](100);    can be used also in worksheet .
                             2
The book example use log as notation ( i assume with base 10 ) 

A  2 d input example                         

log[10](100);    
               2
ln(100.0);

             4.605170186
 

@janhardo 

Complex integration is somewhere started and ...

-------------------------------------------------------------------------------------------------info------------------------

So far, we’ve seen how to evaluate integrals of simple functions of a complex variable—that were defi ned in terms of a single real parameter we called t. Now it’s time to generalize and consider a more general case, where we just say we’re integrating a function of a complex variable f (z ), where ∈ C. This can be done using a technique called contour integration. The reason integrals of complex functions are done the way they are is that while an integral of a real-valued function is defi ned on an interval of the line, an integral  of a complex-valued function is defi ned on a curve in the complex plane.

@acer 

Thanks

Yes, there is leading minus sign ( as you mean A= - ....) , but forget a second one after the first one  A = -.. = - ...= 

A = -(int(1/t, t = 1 .. t))/(2*bi) and -(int(1/t, t = 1 .. t))/(2*bi) = log[10](t)/(2*bi) and log[10](t)/(2*bi) = log[10]((b*i+z)/(b*i-z))/(2*bi)

@vv 

Thanks

This example is from Johann Bernoulli [1702] who started with  A = .....
Interesting to know when the  "complex path integral". is invented ?

Do you think that Johann Bernoulli [1702] has this also in mind what you explained ?

@janhardo 
Don't get the right integral see , why not 

restart;

J:= Int(exp(t*x), x);
#J1:= subs(t= a+b*I, J);# heeft Carl gebruikt
J1:= subs(t= alpha+beta*I, J);
evalc(J1);
value(%);
simplify(convert(diff(%, x), exp), {a+b*I= t});
                            exp(x t)

Int(exp(t*x), x)

 

Int(exp((alpha+I*beta)*x), x)

 

Int(exp(x*alpha)*cos(x*beta), x)+I*(Int(exp(x*alpha)*sin(x*beta), x))

 

alpha*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+beta*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2)+I*(-beta*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+alpha*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2))

 

exp((alpha+I*beta)*x)

 

Error, missing operator or `;`

 

 

It is theorem about complex exponentials|, in this case with exp(1)as base

If f(x)=exp(t*x)for all real x and a fixed complex t , then f '(x) =  texp(1)"^(t x) "

 

If you take the integral : int(e^(t*x), x) = e^(t*x)/t(1)

When t ≠ 0, if we let t = α + i*betaand t = α +β and equate the real and imaginairy parts of equation (1)  , we obtain the integration formulas

 

"∫e^(alpha x)cos beta x  ⅆx =  " exp(alpha*x)*(alpha*cos(beta*x)+beta*sin(beta*x))/(alpha^2+beta^2)

int(e^(alpha*x)*sin*beta*x, x) = 2*exp(alpha*x)*(alpha*sin(beta*x)+beta*cos(beta*x))/(alpha^2+beta^2)

wich are valid if α and β are not both zero

 

 

Consider the differential equation :
`y"`+a*(diff(y(x), x))+b*y(x) = 0
The real and imaginairy parts of the function f(x)=exp(t*x)are solutions of this DE
Now as exercise i can solve this DE to check this
This exercise was for me how to use/find commands for complex variables

#alpha*exp(x*alpha)*cos(x*beta)/(alpha^2 + beta^2) + beta*exp(x*alpha)*sin(x*beta)/#(alpha^2 + beta^2);

 

#normal(%);

#simplify(%);

#a:=-beta*exp(x*alpha)*cos(x*beta)/(alpha^2 + beta^2) + alpha*exp(x*alpha)*sin(x*#beta)/(alpha^2 + beta^2);

#simplify(a);

restart;

Int(exp(x*alpha)*cos(x*beta), x)= alpha*exp(x*alpha)*cos(x*beta)/(alpha^2 + beta^2) + beta*exp(x*alpha)*sin(x*beta)/(alpha^2 + beta^2);

Int(exp(x*alpha)*cos(x*beta), x) = alpha*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+beta*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2)

(1)

simplify(%);

Int(exp(x*alpha)*cos(x*beta), x) = exp(x*alpha)*(cos(x*beta)*alpha+sin(x*beta)*beta)/(alpha^2+beta^2)

(2)

Int(exp(x*alpha)*sin(x*beta), x)= -beta*exp(x*alpha)*cos(x*beta)/(alpha^2 + beta^2) + alpha*exp(x*alpha)*sin(x*beta)/(alpha^2 + beta^2);

Int(exp(x*alpha)*sin(x*beta), x) = -beta*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+alpha*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2)

(3)

simplify(%);

Int(exp(x*alpha)*sin(x*beta), x) = -exp(x*alpha)*(cos(x*beta)*beta-sin(x*beta)*alpha)/(alpha^2+beta^2)

(4)

Int(exp(x*alpha)*sin(x*beta), x)*I= (-beta*exp(x*alpha)*cos(x*beta)/(alpha^2 + beta^2) + alpha*exp(x*alpha)*sin(x*beta)/(alpha^2 + beta^2))*I;

(Int(exp(x*alpha)*sin(x*beta), x))*I = (-beta*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+alpha*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2))*I

(5)

 

Download complexe_getallen_post_3_integral_(1).mw

@Carl Love 

Thanks
Yes, when i evaluate J1 integral i do get two integrals with their values
With some rearrangement i should get them in the wanted form?

restart;

J:= Int(exp(t*x), x);
J1:= subs(t= a+b*I, J);
evalc(J1);
value(%);
simplify(convert(diff(%, x), exp), {a+b*I= t});
                            exp(x t)

Int(exp(t*x), x)

 

Int(exp((a+I*b)*x), x)

 

Int(exp(x*a)*cos(x*b), x)+I*(Int(exp(x*a)*sin(x*b), x))

 

a*exp(x*a)*cos(x*b)/(a^2+b^2)+b*exp(x*a)*sin(x*b)/(a^2+b^2)+I*(-b*exp(x*a)*cos(x*b)/(a^2+b^2)+a*exp(x*a)*sin(x*b)/(a^2+b^2))

 

exp(t*x)

 

Error, missing operator or `;`

 

 

It is theorem about complex exponentials|, in this case with exp(1)as base

If f(x)=exp(t*x)for all real x and a fixed complex t , then f '(x) =  texp(1)"^(t x) "

 

If you take the integral : int(e^(t*x), x) = e^(t*x)/t(1)

When t ≠ 0, if we let t = α + i*betaand t = α +β and equate the real and imaginairy parts of equation (1)  , we obtain the integration formulas

 

"∫e^(alpha x)cos beta x  ⅆx =  " exp(alpha*x)*(sin(x*beta)*beta+cos(x*beta)*alpha)/(alpha^2+beta^2)

"∫e^(alpha x)sin beta x  ⅆx = "??

wich are valid if α and β are not both zero

 

 

Consider the differential equation :
`y"`+a*(diff(y(x), x))+b*y(x) = 0
The real and imaginairy parts of the function f(x)=exp(t*x)defined on whole x -axis, are solutions of this DE
Now as exercise i can solve this DE to check this
This exercise was for me how to use/find commands for complex variables

Download complexe_getallen_post_3_integral.mw

@acer 
Thanks

Yes, i know already earlier (realized)  that it make no sense the diff(%) command here.
That was the next step for me to figure out .( there was a x in it and other variables were symbolic )
I got the same result as in textbook with maple for this integral.
Unfortanely its still difficult to see the relation with the start integral and this integral ? 

@janhardo 

O i see the post is crossing from @Carl now ..

The expression (3) is the same as found in the textbook  and alpha and beta unknowns are real numbers..now only take the derative of this expression ? 

 

found this

 

exp((alpha + beta*I)*x)/(alpha + beta*I);

exp((alpha+I*beta)*x)/(alpha+I*beta)

(1)

evalc(exp((alpha + beta*I)*x)/(alpha + beta*I));

exp(x*alpha)*cos(x*beta)*alpha/(alpha^2+beta^2)+exp(x*alpha)*sin(x*beta)*beta/(alpha^2+beta^2)+I*(exp(x*alpha)*sin(x*beta)*alpha/(alpha^2+beta^2)-exp(x*alpha)*cos(x*beta)*beta/(alpha^2+beta^2))

(2)

simplify(exp(x*alpha)*cos(x*beta)*alpha/(alpha^2 + beta^2) + exp(x*alpha)*sin(x*beta)*beta/(alpha^2 + beta^2));

exp(x*alpha)*(sin(x*beta)*beta+cos(x*beta)*alpha)/(alpha^2+beta^2)

(3)

diff(%);

Error, invalid input: diff expects 2 or more arguments, but received 1

 

 

Now i must take the derative of this expression ..how ?  in order to say
"∫f ' ⅆx = f      to get the integral  "

 

Download complexe_som_tom_apostel_-integratie_deel_2.mw

@janhardo 

I think i must rewrite (4) in a exponential e form in order to split the formula in a real and imaginair part in x and y 
f(z)=f(x+i y) =u(x,y)+v(x,y)

Fill in (10):  x+i y .. i can solve the integral too?

@Carl Love 
Thanks

Its only limit that has a complex option
By using I in the calculation for calculus is enough ?

We can also get Maple to show the steps of the solution by using the same template of commands as before.

restart;

 

 

x^2-4*x+5=0;
eq1 := %:
if rhs(eq1)<>0 then eq2 := lhs(eq1)-rhs(eq1)=0 else eq2 := eq1 end if:
eq3 := student[completesquare](eq2,x):
if patmatch(lhs(eq3),_a::algebraic*(x+_p::algebraic)^2+_q::algebraic,'la') then
   pp := subs(la,_p): aa := subs(la,_a): qq := subs(la,_q):
   bb := simplify(2*aa*pp): cc := simplify(qq+bb^2/(4*aa)):
   eq4 := x^2+bb/aa*x+cc/aa=0:
   if eq4<>eq2 and eq4<>eq1 then print(eq4) end if;
   eq5 := x^2+bb/aa*x=-cc/aa:
   if eq5<>eq1 then print(eq5) end if;
   rr := simplify((bb^2-4*aa*cc)/(4*aa^2));
   print(x^2+bb/aa*x+pp^2=rr);
   print((x+pp)^2=rr);
   ss := simplify(bb^2-4*aa*cc);
   print(x+pp=sqrt(ss)/(2*aa),x+pp=-sqrt(ss)/(2*aa));
   print(x=-pp+sqrt(ss)/(2*aa),x=-pp-sqrt(ss)/(2*aa));
end if:

x^2-4*x+5 = 0

 

x^2-4*x = -5

 

x^2-4*x+4 = -1

 

(x-2)^2 = -1

 

x-2 = I, x-2 = -I

 

x = 2+I, x = 2-I

(1)

;

solve(x^2-4*x+5=0, x);# Complex numbers are the default numbersystem

2+I, 2-I

(2)

fsolve(x^2-4*x+5=0, x,complex);

2.000000000-1.000000000*I, 2.+1.*I

(3)

 

 

Did not found not yet other commands that you mentioned for complex calculus, that makes it easier for doing math with complex numbers

 

 

Note : the step by step calculation made by Peter Stone makes no distinction in  x1  and x2  as roots , so that's not clear

 

 

int(exp(t*x), x)NULL

 

Int(exp(t*x),x)=int(exp(t*x),x);# page 370 ,calculus volume 1, tom.m.apostal

Int(exp(t*x), x) = exp(t*x)/t

(4)

 

When t ≠ 0, .If we let  t = α+ Iβ , so t becomes now a complex number and equate the real and imaginary parts of equation (4) we obtain some integration formulas
How to do this ? , z= a + bI , it is only by using I that maple is using the complex number system.

t:=alpha + beta*I;

alpha+I*beta

(5)

 

 

Gauss (1777 - 1855) first used the notation a+bi.
"a" is called the real part and
"b" is called the imaginary part.
Also Maple knows this:

Re(2+4*I);

2

(6)

Im(2+4*I);

4

(7)

 

 

Re(alpha + beta*I);

Re(alpha)-Im(beta)

(8)

Im(alpha + beta*I);

Im(alpha)+Re(beta)

(9)

Int(exp((alpha + beta*I)*x), x)=int(exp((alpha + beta*I)*x), x);

Int(exp((alpha+I*beta)*x), x) = exp((alpha+I*beta)*x)/(alpha+I*beta)

(10)

 

Try to find the two integrationformulas ?,   but the idea using I  maple comes in the complex mode

Download complexe_getallen_post.mw

@janhardo 

I will look at all commands , but using them is another story 
Got here book with some examples for signal processing, but never did something with it

First 47 48 49 50 51 52 53 Last Page 49 of 78