janhardo

210 Reputation

5 Badges

7 years, 210 days

MaplePrimes Activity


These are answers submitted by janhardo

Manual adding table in Maple and then add plots into the cells is probably not useful for you?

Got this from someone else here on forum

restart

NULL

NULLz := x+I*y

````

Plts := seq(plot3d([Re(k*log(z)), Im(k*log(z))], x = -3 .. 3, y = -3 .. 3, labels = ["Re(z)", "Im(z)", " ln(z)"], size = [800, 800]), k = [1, 2, 4, 6])
NULL

NULL

 

Plts[1]

Plts[2]

Plts[3]

Plts[4]

 

 

plots:-display(Plts)

NULL

Download complex_log_plot.mw




f := x -> x^sin(x):

Inflpts := [fsolve(D(D(f))(x), x=0..16, maxsols=6)];

Q := map(p->[p,f(p)], Inflpts):

T := seq(plot(D(f)(p)*(x-p)+f(p), x=p-1..p+1, color=red), p=Inflpts):

plots:-display(plot(f, 0.0..16.0, color=black), T,

        plots:-pointplot(Q, symbolsize=10, symbol=solidcircle, color=blue),

        map(p->plots:-textplot(evalf[4]([p[1]-sign(D(f)(p[1]))*2/3,p[2]+1,p]),

                               font=[Times,8]),Q), size=[800,400]);

a example fo infliction points, can be adjusted for find min/max  :to give a idea

with(Student[Basics]);
  [ExpandSteps, FactorSteps, LinearSolveSteps, LongDivision, 

    OutputStepsRecord, PracticeSheet, SolveSteps]


-----------------------------------------------------------------

FactorSteps(Y^2*x^3-x^3);  
How about for complex numbers ?

Given a polynome in C : z^4-2.z^3+ 3.z^2-2.z+2

Page 1 of 1