maple2015

145 Reputation

7 Badges

9 years, 304 days

MaplePrimes Activity


These are questions asked by maple2015

Hi

How we can reduce run time for Cases III and IV ? (Maple 2016)

Thanks alot

Formula_II.mw

Hi

The following code is time consuming. Please improve the code, if it is possible. Thanks for taking your time

restart;

T := time(): 
M := 50: 
Digits := 30: 
L := 500: 
R := (1/2): 
nu := 0.3: 
Em := 0.70e11: 
N := 1: 
Ec := 0.380e12: 
E:= Em*(1-(y/h+1/2)^N)+Ec*(y/h+1/2)^N: 
X :=(int(E*(z+(1/2)*R), [z = y-(1/2)*R .. 0, y = -(1/2)*R .. (1/2)*R]))/(int(E, [z = y-(1/2)*R .. 0, y = -(1/2)*R .. (1/2)*R])): 
beta := Pi^2/L^2: 
G := E/(2*(1+nu)): 
phi := add(b[n]*y^n, n = 0 .. M): 
Eq := diff(phi, y$2)+(diff(E, y))*(diff(phi, y))/E+((diff(E, y$2))/E-((diff(E, y))/E)^2)*phi-2*beta*(1+nu)*(phi-1): 
st := [seq(coeftayl(Eq, y = 0, j), j = 0 .. M-2)]: 
for k to M-1 do 
b[k+1] := solve(st[k], b[k+1]) 
end do: 
phi := subs(y = y-X, phi): 
phi := subs(solve({eval(phi, y = -(1/2)*R+X), subs(y = f, phi)}, {b[0], b[1]}), phi): 
f := piecewise(`and`(z >= -R, z <= 0), z+(1/2)*R+X, -z+(1/2)*R+X): 
Digits := 4: 
int(phi*G, [z = y-(1/2)*R .. 0, y = -(1/2)*R .. (1/2)*R], numeric)+int(phi*G, [z = 0 .. -y+(1/2)*R, y = -(1/2)*R .. (1/2)*R], numeric);

Time = Time()-T;

Note that the calculation of the integration requires alot of time. Both returns a similar result (calculation of an integration is sufficient)

Hi

I want to employ FDM to solve nonlinear ODE. Since large expressions in terms of s[1] are generated, the program lose its efficiency for N>6 (It requires long run-time). Please amend the program, if it is possible to reach more precision for N>10. Moreover, is there a Maple command to dsolve this ode?

Thanks alot

restart;

sy := 2400.:

Hp := 0.1e9:

P := -900.:

a := 20.:

c := 21.:

N := 6:

s[0] := P:

h := (c-a)/N:

Et := (r*(diff(sr(r), r))-sy)/Hp:

Er := (sy-r*(diff(sr(r), r)))/Hp:

ode := simplify(Er-Et-r*(diff(Et, r))*(1+(diff(Et, r))*r/(2+4*Et))):

ode:=subs(diff(sr(r), r, r) = (s[k+1]-2*s[k]+s[k-1])/h^2, diff(sr(r), r) = (s[k+1]-s[k-1])/(2*h), r = h*k+a, ode):

for k to N-1 do

s[k+1] := solve(ode, s[k+1])[1]

end do:

s[1] := fsolve(s[N] = -200., s[1] = -900 .. -100);

plots[pointplot]([seq([h*k+a, s[k]], k = 0 .. N)]);

Hi

I use Maple 2016.

The following command calculates semicircle perimeter, but it returns infinity.

`assuming`([int(sqrt(1+(diff(sqrt(R^2-(x-R)^2), x))^2), x = 0 .. 2*R)], [R > 0])

Please download 1.txt.

Integrand := parse(FileTools[Text][ReadFile]("1.txt")):

int(Integrand, [z = -R .. R, y = 0 .. R], numeric);

plots[implicitplot3d](Phi = phi, z = -R .. R, y = 0 .. R, Phi = 0 .. 0.1e-1, color = ColorTools[Gradient]("Red" .. "Blue", best)[4], grid = [50, 50, 20]);

Why the integrand has positive real amounts in the domain [z = -R .. R, y = 0 .. R] for R=0.5, but the integral value is negative?

1 2 3 4 5 6 7 Last Page 1 of 12