mehdi jafari

564 Reputation

13 Badges

7 years, 82 days

MaplePrimes Activity


These are replies submitted by mehdi jafari

@Preben Alsholm thank u very much,nice helper,sincerely yours.

@Preben Alsholm thank u very much,nice helper,sincerely yours.

when solving MMM(10),it gives me the functions , a[i,j](S), but when i use them to plot displacement functions, it does not use this functions of time for utilizing in plot command,
 for example :

MMM(1);
[s = 1., a[1, 1](s) = 0.0912563827779074,

a[1, 1][s] = 0.0386343328960423,

a[1, 2](s) = 0.614692734946771, a[1, 2][s] = 20.7926906947575,

a[1, 3](s) = 0.0803992464523817,

a[1, 3][s] = -0.0404341034384649,

a[2, 1](s) = 0.195449790125406,

a[2, 1][s] = -0.400782470489707,

a[2, 2](s) = -19.6901763065428,

a[2, 2][s] = -241.357227149780,

a[2, 3](s) = 0.297722389680323,

a[2, 3][s] = 0.413596410306287,

a[3, 1](s) = -0.385531726098877,

a[3, 1][s] = 1.40285211718920, a[3, 2](s) = 65.4963832285268,

a[3, 2][s] = 937.601817316978,

a[3, 3](s) = -0.558722653711484,

a[3, 3][s] = -1.41302487014907, a[4, 1](s) = 1.02360621437744,

a[4, 1][s] = -1.82897839727457,

a[4, 2](s) = -82.3976217902001,

a[4, 2][s] = -1405.71396452001,

a[4, 3](s) = 0.970514967955984, a[4, 3][s] = 1.93083353015850,

a[5, 1](s) = -0.506237092332536,

a[5, 1][s] = 0.660531865538802, a[5, 2](s) = 38.7320893435410,

a[5, 2][s] = 700.239838595370,

a[5, 3](s) = -0.291052090785562,

a[5, 3][s] = -0.902632877537300]

u:=a[1,1](s)*x+a[2,1](s)*x^2+a[3,1](s)*x^3+a[4,1](s)*x^4+a[5,1](s)*x^5;
plot ( u,x=0..1);

but it does not use a[i,j](s) to plot ,what should i do ? i do not want every time to write them indivdually in other command and after that plot u, i just want the ode solver,solves the euqations and use the answers to plot,what should i do ?! thank u.

when solving MMM(10),it gives me the functions , a[i,j](S), but when i use them to plot displacement functions, it does not use this functions of time for utilizing in plot command,
 for example :

MMM(1);
[s = 1., a[1, 1](s) = 0.0912563827779074,

a[1, 1][s] = 0.0386343328960423,

a[1, 2](s) = 0.614692734946771, a[1, 2][s] = 20.7926906947575,

a[1, 3](s) = 0.0803992464523817,

a[1, 3][s] = -0.0404341034384649,

a[2, 1](s) = 0.195449790125406,

a[2, 1][s] = -0.400782470489707,

a[2, 2](s) = -19.6901763065428,

a[2, 2][s] = -241.357227149780,

a[2, 3](s) = 0.297722389680323,

a[2, 3][s] = 0.413596410306287,

a[3, 1](s) = -0.385531726098877,

a[3, 1][s] = 1.40285211718920, a[3, 2](s) = 65.4963832285268,

a[3, 2][s] = 937.601817316978,

a[3, 3](s) = -0.558722653711484,

a[3, 3][s] = -1.41302487014907, a[4, 1](s) = 1.02360621437744,

a[4, 1][s] = -1.82897839727457,

a[4, 2](s) = -82.3976217902001,

a[4, 2][s] = -1405.71396452001,

a[4, 3](s) = 0.970514967955984, a[4, 3][s] = 1.93083353015850,

a[5, 1](s) = -0.506237092332536,

a[5, 1][s] = 0.660531865538802, a[5, 2](s) = 38.7320893435410,

a[5, 2][s] = 700.239838595370,

a[5, 3](s) = -0.291052090785562,

a[5, 3][s] = -0.902632877537300]

u:=a[1,1](s)*x+a[2,1](s)*x^2+a[3,1](s)*x^3+a[4,1](s)*x^4+a[5,1](s)*x^5;
plot ( u,x=0..1);

but it does not use a[i,j](s) to plot ,what should i do ? i do not want every time to write them indivdually in other command and after that plot u, i just want the ode solver,solves the euqations and use the answers to plot,what should i do ?! thank u.

i am really thankfull for your help,really, i have another question,can i use this scaled time for evaluating with a realistic model?i mean,can i use ansys first second answer to evaluate with my 1 second answer which is scaled time?

and my second question is when i add some terms of approximation to my equations,it becomes more complicated and takes more than a day to solve the equations,can i do anything to solve it faster?

i am really happy that u are here and answering my question,god bless u,really thank u,

i am really thankfull for your help,really, i have another question,can i use this scaled time for evaluating with a realistic model?i mean,can i use ansys first second answer to evaluate with my 1 second answer which is scaled time?

and my second question is when i add some terms of approximation to my equations,it becomes more complicated and takes more than a day to solve the equations,can i do anything to solve it faster?

i am really happy that u are here and answering my question,god bless u,really thank u,

 

here are my equations,nine unkonwn functions are : a[1,1](t),a[2,1](t),a[3,1](t),a[1,2](t),a[2,2](t),a[3,2](t),a[1,3](t),a[2,3](t),a[3,3](t),

thnx for your help and support.i am really thankfull for your attention.

eq1 := .2000000000e11*a[3,1](t)+.3333333333e11*a[2,1](t)+.6666666667e11*a[1,1](t)-50000000.00*a[3,2](t)-83333333.32*a[2,2](t)-166666666.7*a[1,2](t)-.1714285714e12*a[3,3](t)^2+.1904761905e11*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+.5714285714e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+.1066666667e12*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-6666666667.*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-.1000000000e11*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-.1000000000e11*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.1200000000e12*a[3,3](t)*a[1,3](t)-.1666666667e11*(-2*a[1,3](t)+2*a[2,3](t))^2-.1666666667e11*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-.3333333333e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+.3742857143*diff(a[3,1](t),`$`(t,2))+.6550000000*diff(a[2,1](t),`$`(t,2))+1.310000000*diff(a[1,1](t),`$`(t,2))-.9357142858e-3*diff(a[3,2](t),`$`(t,2))-.1637500000e-2*diff(a[2,2](t),`$`(t,2))-.3275000000e-2*diff(a[1,2](t),`$`(t,2))


eq2 := 47619047.62*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+142857142.8*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+266666666.8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-16666666.67*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-25000000.00*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-25000000.00*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+300000000.0*a[3,3](t)*a[1,3](t)-41666666.68*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-83333333.32*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+166666666.7*a[1,1](t)+83333333.32*a[2,1](t)+50000000.00*a[3,1](t)+2227361110.*a[1,2](t)+1113680555.*a[2,2](t)+637573412.7*a[3,2](t)+1072222222.*a[2,3](t)+1072222222.*a[3,3](t)-428571428.5*a[3,3](t)^2-41666666.68*(-2*a[1,3](t)+2*a[2,3](t))^2+.9357142857e-5*diff(a[3,2](t),`$`(t,2))+.1637500000e-4*diff(a[2,2](t),`$`(t,2))+.3275000000e-4*diff(a[1,2](t),`$`(t,2))-.9357142858e-3*diff(a[3,1](t),`$`(t,2))-.1637500000e-2*diff(a[2,1](t),`$`(t,2))-.3275000000e-2*diff(a[1,1](t),`$`(t,2))


eq3 := .10e7-1072222222.*a[2,2](t)-1072222222.*a[3,2](t)+.2144444444e11*a[1,3](t)+.1072222222e11*a[2,3](t)+6433333333.*a[3,3](t)+.6550000000*diff(a[2,3](t),`$`(t,2))+.3742857143*diff(a[3,3](t),`$`(t,2))+1.310000000*diff(a[1,3](t),`$`(t,2))+.5236363637e12*a[3,3](t)^3+.3333333333e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-6*a[2,3](t)+6*a[3,3](t))+.4285714285e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.2400000000e12*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*a[3,3](t)-.3000000000e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*(-6*a[2,3](t)+6*a[3,3](t))-47619047.62*(-6*a[2,2](t)+6*a[3,2](t))*a[3,3](t)-142857142.8*a[3,2](t)*(-3*a[2,3](t)+3*a[3,3](t))+16666666.67*(-6*a[2,2](t)+6*a[3,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+25000000.00*(-2*a[1,2](t)+2*a[2,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+25000000.00*(-6*a[2,2](t)+6*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))-300000000.0*a[3,2](t)*a[1,3](t)+41666666.68*(-6*a[2,2](t)+6*a[3,2](t))*a[1,3](t)+83333333.32*(-2*a[1,2](t)+2*a[2,2](t))*a[1,3](t)+.1904761905e11*(-6*a[2,1](t)+6*a[3,1](t))*a[3,3](t)+.5714285714e11*a[3,1](t)*(-3*a[2,3](t)+3*a[3,3](t))-6666666667.*(-6*a[2,1](t)+6*a[3,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-.1000000000e11*(-2*a[1,1](t)+2*a[2,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-.1000000000e11*(-6*a[2,1](t)+6*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))+.1200000000e12*a[3,1](t)*a[1,3](t)-.1666666667e11*(-6*a[2,1](t)+6*a[3,1](t))*a[1,3](t)-.3333333333e11*(-2*a[1,1](t)+2*a[2,1](t))*a[1,3](t)-.3199999999e12*a[3,3](t)^2*(-3*a[2,3](t)+3*a[3,3](t))-.5333333334e11*a[3,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))+.4999999999e11*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*a[3,3](t)-.6666666666e11*a[3,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+.6428571429e11*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*a[3,3](t)-5357142857.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))+.8571428571e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*a[3,3](t)-7142857143.*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-6*a[2,3](t)+6*a[3,3](t))-7142857143.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-.1000000000e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))-.1000000000e11*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-2*a[1,3](t)+2*a[2,3](t))+.1800000000e12*a[1,3](t)^2*a[3,3](t)-.1500000000e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-.2500000000e11*a[1,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))-.4999999999e11*(-2*a[1,3](t)+2*a[2,3](t))^2*a[1,3](t)-.4999999999e11*a[1,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+857142857.0*a[3,2](t)*a[3,3](t)-142857142.8*(-3*a[2,2](t)+3*a[3,2](t))*a[3,3](t)-47619047.62*a[3,2](t)*(-6*a[2,3](t)+6*a[3,3](t))-266666666.7*(-2*a[1,2](t)+2*a[2,2](t))*a[3,3](t)+16666666.67*(-3*a[2,2](t)+3*a[3,2](t))*(-6*a[2,3](t)+6*a[3,3](t))-266666666.7*a[3,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-300000000.0*a[1,2](t)*a[3,3](t)+25000000.00*(-2*a[1,2](t)+2*a[2,2](t))*(-6*a[2,3](t)+6*a[3,3](t))+25000000.00*(-3*a[2,2](t)+3*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+41666666.68*a[1,2](t)*(-6*a[2,3](t)+6*a[3,3](t))+83333333.36*(-2*a[1,2](t)+2*a[2,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+83333333.32*a[1,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-.3428571428e12*a[3,1](t)*a[3,3](t)+.5714285714e11*(-3*a[2,1](t)+3*a[3,1](t))*a[3,3](t)+.1904761905e11*a[3,1](t)*(-6*a[2,3](t)+6*a[3,3](t))+.1066666667e12*(-2*a[1,1](t)+2*a[2,1](t))*a[3,3](t)-6666666667.*(-3*a[2,1](t)+3*a[3,1](t))*(-6*a[2,3](t)+6*a[3,3](t))+.1066666667e12*a[3,1](t)*(-2*a[1,3](t)+2*a[2,3](t))+.1200000000e12*a[1,1](t)*a[3,3](t)-.1000000000e11*(-2*a[1,1](t)+2*a[2,1](t))*(-6*a[2,3](t)+6*a[3,3](t))-.1000000000e11*(-3*a[2,1](t)+3*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-.1666666667e11*a[1,1](t)*(-6*a[2,3](t)+6*a[3,3](t))-.3333333334e11*(-2*a[1,1](t)+2*a[2,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-.3333333333e11*a[1,1](t)*(-2*a[1,3](t)+2*a[2,3](t))



eq4 := .2000000000e11*a[3,1](t)+.2666666667e11*a[2,1](t)+.3333333333e11*a[1,1](t)-50000000.00*a[3,2](t)-66666666.68*a[2,2](t)-83333333.32*a[1,2](t)-.1333333333e12*a[3,3](t)^2+.1428571429e11*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+.4285714286e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+.7619047619e11*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-4761904762.*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-6666666667.*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-6666666667.*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.8000000000e11*a[3,3](t)*a[1,3](t)-.1000000000e11*(-2*a[1,3](t)+2*a[2,3](t))^2-.1000000000e11*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-.1666666667e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+.2339285714*diff(a[3,1](t),`$`(t,2))+.3742857143*diff(a[2,1](t),`$`(t,2))+.6550000000*diff(a[1,1](t),`$`(t,2))-.5848214285e-3*diff(a[3,2](t),`$`(t,2))-.9357142858e-3*diff(a[2,2](t),`$`(t,2))-.1637500000e-2*diff(a[1,2](t),`$`(t,2))



eq5 := 35714285.72*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+107142857.2*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+190476190.5*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-11904761.90*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-16666666.67*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-16666666.67*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+200000000.0*a[3,3](t)*a[1,3](t)-25000000.00*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-41666666.68*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+83333333.32*a[1,1](t)+66666666.68*a[2,1](t)+50000000.00*a[3,1](t)+1113680556.*a[1,2](t)+645865079.4*a[2,2](t)+407811507.9*a[3,2](t)-1072222222.*a[1,3](t)+306349206.3*a[3,3](t)-333333333.2*a[3,3](t)^2-25000000.00*(-2*a[1,3](t)+2*a[2,3](t))^2+.5848214286e-5*diff(a[3,2](t),`$`(t,2))+.9357142857e-5*diff(a[2,2](t),`$`(t,2))+.1637500000e-4*diff(a[1,2](t),`$`(t,2))-.5848214285e-3*diff(a[3,1](t),`$`(t,2))-.9357142858e-3*diff(a[2,1](t),`$`(t,2))-.1637500000e-2*diff(a[1,1](t),`$`(t,2))



eq6 := .10e7+1072222222.*a[1,2](t)-306349206.3*a[3,2](t)+.1072222222e11*a[1,3](t)+8577777775.*a[2,3](t)+6433333333.*a[3,3](t)+.3742857143*diff(a[2,3](t),`$`(t,2))+.2339285714*diff(a[3,3](t),`$`(t,2))+.6550000000*diff(a[1,3](t),`$`(t,2))+.4363636363e12*a[3,3](t)^3+.2666666667e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-6*a[2,3](t)+6*a[3,3](t))+.3333333333e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.1714285714e12*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*a[3,3](t)-.2000000000e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*(-6*a[2,3](t)+6*a[3,3](t))-35714285.72*(-6*a[2,2](t)+6*a[3,2](t))*a[3,3](t)-107142857.2*a[3,2](t)*(-3*a[2,3](t)+3*a[3,3](t))+11904761.90*(-6*a[2,2](t)+6*a[3,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+16666666.67*(-2*a[1,2](t)+2*a[2,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+16666666.67*(-6*a[2,2](t)+6*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))-200000000.0*a[3,2](t)*a[1,3](t)+25000000.00*(-6*a[2,2](t)+6*a[3,2](t))*a[1,3](t)+41666666.68*(-2*a[1,2](t)+2*a[2,2](t))*a[1,3](t)+.1428571429e11*(-6*a[2,1](t)+6*a[3,1](t))*a[3,3](t)+.4285714286e11*a[3,1](t)*(-3*a[2,3](t)+3*a[3,3](t))-4761904762.*(-6*a[2,1](t)+6*a[3,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-6666666667.*(-2*a[1,1](t)+2*a[2,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-6666666667.*(-6*a[2,1](t)+6*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))+.8000000000e11*a[3,1](t)*a[1,3](t)-.1000000000e11*(-6*a[2,1](t)+6*a[3,1](t))*a[1,3](t)-.1666666667e11*(-2*a[1,1](t)+2*a[2,1](t))*a[1,3](t)-.2618181818e12*a[3,3](t)^2*(-3*a[2,3](t)+3*a[3,3](t))-.4363636363e11*a[3,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))+.4000000001e11*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*a[3,3](t)-.5333333334e11*a[3,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+.4999999999e11*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*a[3,3](t)-4166666667.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))+.6428571429e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*a[3,3](t)-5357142857.*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-6*a[2,3](t)+6*a[3,3](t))-5357142857.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-7142857143.*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))-7142857143.*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-2*a[1,3](t)+2*a[2,3](t))+.1200000000e12*a[1,3](t)^2*a[3,3](t)-.1000000000e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-.1500000000e11*a[1,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))-.3000000000e11*(-2*a[1,3](t)+2*a[2,3](t))^2*a[1,3](t)-.2500000000e11*a[1,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+666666666.4*a[3,2](t)*a[3,3](t)-107142857.2*(-3*a[2,2](t)+3*a[3,2](t))*a[3,3](t)-35714285.72*a[3,2](t)*(-6*a[2,3](t)+6*a[3,3](t))-190476190.4*(-2*a[1,2](t)+2*a[2,2](t))*a[3,3](t)+11904761.90*(-3*a[2,2](t)+3*a[3,2](t))*(-6*a[2,3](t)+6*a[3,3](t))-190476190.4*a[3,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-200000000.0*a[1,2](t)*a[3,3](t)+16666666.67*(-2*a[1,2](t)+2*a[2,2](t))*(-6*a[2,3](t)+6*a[3,3](t))+16666666.67*(-3*a[2,2](t)+3*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+25000000.00*a[1,2](t)*(-6*a[2,3](t)+6*a[3,3](t))+50000000.00*(-2*a[1,2](t)+2*a[2,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+41666666.68*a[1,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-.2666666666e12*a[3,1](t)*a[3,3](t)+.4285714286e11*(-3*a[2,1](t)+3*a[3,1](t))*a[3,3](t)+.1428571429e11*a[3,1](t)*(-6*a[2,3](t)+6*a[3,3](t))+.7619047619e11*(-2*a[1,1](t)+2*a[2,1](t))*a[3,3](t)-4761904762.*(-3*a[2,1](t)+3*a[3,1](t))*(-6*a[2,3](t)+6*a[3,3](t))+.7619047619e11*a[3,1](t)*(-2*a[1,3](t)+2*a[2,3](t))+.8000000000e11*a[1,1](t)*a[3,3](t)-6666666667.*(-2*a[1,1](t)+2*a[2,1](t))*(-6*a[2,3](t)+6*a[3,3](t))-6666666667.*(-3*a[2,1](t)+3*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-.1000000000e11*a[1,1](t)*(-6*a[2,3](t)+6*a[3,3](t))-.2000000000e11*(-2*a[1,1](t)+2*a[2,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-.1666666667e11*a[1,1](t)*(-2*a[1,3](t)+2*a[2,3](t))


eq7 := .1714285714e11*a[3,1](t)+.2000000000e11*a[2,1](t)+.2000000000e11*a[1,1](t)-42857142.85*a[3,2](t)-50000000.00*a[2,2](t)-50000000.00*a[1,2](t)-.1066666667e12*a[3,3](t)^2+.1111111111e11*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+.3333333333e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+.5714285714e11*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-3571428571.*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-4761904762.*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-4761904762.*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.5714285714e11*a[3,3](t)*a[1,3](t)-6666666667.*(-2*a[1,3](t)+2*a[2,3](t))^2-6666666667.*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-.1000000000e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+.1559523810*diff(a[3,1](t),`$`(t,2))+.2339285714*diff(a[2,1](t),`$`(t,2))+.3742857143*diff(a[1,1](t),`$`(t,2))-.3898809525e-3*diff(a[3,2](t),`$`(t,2))-.5848214285e-3*diff(a[2,2](t),`$`(t,2))-.9357142858e-3*diff(a[1,2](t),`$`(t,2))



eq8 := 27777777.78*(-6*a[2,3](t)+6*a[3,3](t))*a[3,3](t)+83333333.32*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+142857142.8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)-8928571.428*(-6*a[2,3](t)+6*a[3,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-11904761.90*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t))-11904761.90*(-6*a[2,3](t)+6*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+142857142.8*a[3,3](t)*a[1,3](t)-16666666.67*(-6*a[2,3](t)+6*a[3,3](t))*a[1,3](t)-25000000.00*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)+50000000.00*a[1,1](t)+50000000.00*a[2,1](t)+42857142.85*a[3,1](t)+637573412.7*a[1,2](t)+407811507.9*a[2,2](t)+276612433.7*a[3,2](t)-1072222222.*a[1,3](t)-306349206.3*a[2,3](t)-266666666.8*a[3,3](t)^2-16666666.67*(-2*a[1,3](t)+2*a[2,3](t))^2+.3898809524e-5*diff(a[3,2](t),`$`(t,2))+.5848214286e-5*diff(a[2,2](t),`$`(t,2))+.9357142857e-5*diff(a[1,2](t),`$`(t,2))-.3898809525e-3*diff(a[3,1](t),`$`(t,2))-.5848214285e-3*diff(a[2,1](t),`$`(t,2))-.9357142858e-3*diff(a[1,1](t),`$`(t,2))



eq9 := .10e7+1072222222.*a[1,2](t)+306349206.3*a[2,2](t)+6433333333.*a[1,3](t)+6433333333.*a[2,3](t)+5514285714.*a[3,3](t)+.2339285714*diff(a[2,3](t),`$`(t,2))+.1559523810*diff(a[3,3](t),`$`(t,2))+.3742857143*diff(a[1,3](t),`$`(t,2))+.3692307693e12*a[3,3](t)^3+.2181818182e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-6*a[2,3](t)+6*a[3,3](t))+.2666666667e11*a[3,3](t)*(-3*a[2,3](t)+3*a[3,3](t))*(-2*a[1,3](t)+2*a[2,3](t))+.1285714286e12*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*a[3,3](t)-.1428571429e11*(-2*a[1,3](t)+2*a[2,3](t))*a[1,3](t)*(-6*a[2,3](t)+6*a[3,3](t))-27777777.78*(-6*a[2,2](t)+6*a[3,2](t))*a[3,3](t)-83333333.32*a[3,2](t)*(-3*a[2,3](t)+3*a[3,3](t))+8928571.428*(-6*a[2,2](t)+6*a[3,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+11904761.90*(-2*a[1,2](t)+2*a[2,2](t))*(-3*a[2,3](t)+3*a[3,3](t))+11904761.90*(-6*a[2,2](t)+6*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))-142857142.8*a[3,2](t)*a[1,3](t)+16666666.67*(-6*a[2,2](t)+6*a[3,2](t))*a[1,3](t)+25000000.00*(-2*a[1,2](t)+2*a[2,2](t))*a[1,3](t)+.1111111111e11*(-6*a[2,1](t)+6*a[3,1](t))*a[3,3](t)+.3333333333e11*a[3,1](t)*(-3*a[2,3](t)+3*a[3,3](t))-3571428571.*(-6*a[2,1](t)+6*a[3,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-4761904762.*(-2*a[1,1](t)+2*a[2,1](t))*(-3*a[2,3](t)+3*a[3,3](t))-4761904762.*(-6*a[2,1](t)+6*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))+.5714285714e11*a[3,1](t)*a[1,3](t)-6666666667.*(-6*a[2,1](t)+6*a[3,1](t))*a[1,3](t)-.1000000000e11*(-2*a[1,1](t)+2*a[2,1](t))*a[1,3](t)-.2181818182e12*a[3,3](t)^2*(-3*a[2,3](t)+3*a[3,3](t))-.3636363636e11*a[3,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))+.3272727273e11*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*a[3,3](t)-.4363636363e11*a[3,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+.4000000001e11*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*a[3,3](t)-3333333333.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))+.4999999999e11*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*a[3,3](t)-4166666667.*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-6*a[2,3](t)+6*a[3,3](t))-4166666667.*(-8*(-2*a[1,3](t)+2*a[2,3](t))*a[3,3](t)+(-3*a[2,3](t)+3*a[3,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-5357142857.*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-6*a[2,3](t)+6*a[3,3](t))-5357142857.*(-8*a[3,3](t)*a[1,3](t)+2*(-2*a[1,3](t)+2*a[2,3](t))*(-3*a[2,3](t)+3*a[3,3](t)))*(-2*a[1,3](t)+2*a[2,3](t))+.8571428571e11*a[1,3](t)^2*a[3,3](t)-7142857143.*(2*a[1,3](t)*(-3*a[2,3](t)+3*a[3,3](t))+(-2*a[1,3](t)+2*a[2,3](t))^2)*(-2*a[1,3](t)+2*a[2,3](t))-.1000000000e11*a[1,3](t)^2*(-6*a[2,3](t)+6*a[3,3](t))-.2000000000e11*(-2*a[1,3](t)+2*a[2,3](t))^2*a[1,3](t)-.1500000000e11*a[1,3](t)^2*(-2*a[1,3](t)+2*a[2,3](t))+533333333.6*a[3,2](t)*a[3,3](t)-83333333.32*(-3*a[2,2](t)+3*a[3,2](t))*a[3,3](t)-27777777.78*a[3,2](t)*(-6*a[2,3](t)+6*a[3,3](t))-142857142.9*(-2*a[1,2](t)+2*a[2,2](t))*a[3,3](t)+8928571.428*(-3*a[2,2](t)+3*a[3,2](t))*(-6*a[2,3](t)+6*a[3,3](t))-142857142.9*a[3,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-142857142.8*a[1,2](t)*a[3,3](t)+11904761.90*(-2*a[1,2](t)+2*a[2,2](t))*(-6*a[2,3](t)+6*a[3,3](t))+11904761.90*(-3*a[2,2](t)+3*a[3,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+16666666.67*a[1,2](t)*(-6*a[2,3](t)+6*a[3,3](t))+33333333.34*(-2*a[1,2](t)+2*a[2,2](t))*(-2*a[1,3](t)+2*a[2,3](t))+25000000.00*a[1,2](t)*(-2*a[1,3](t)+2*a[2,3](t))-.2133333334e12*a[3,1](t)*a[3,3](t)+.3333333333e11*(-3*a[2,1](t)+3*a[3,1](t))*a[3,3](t)+.1111111111e11*a[3,1](t)*(-6*a[2,3](t)+6*a[3,3](t))+.5714285715e11*(-2*a[1,1](t)+2*a[2,1](t))*a[3,3](t)-3571428571.*(-3*a[2,1](t)+3*a[3,1](t))*(-6*a[2,3](t)+6*a[3,3](t))+.5714285715e11*a[3,1](t)*(-2*a[1,3](t)+2*a[2,3](t))+.5714285714e11*a[1,1](t)*a[3,3](t)-4761904762.*(-2*a[1,1](t)+2*a[2,1](t))*(-6*a[2,3](t)+6*a[3,3](t))-4761904762.*(-3*a[2,1](t)+3*a[3,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-6666666667.*a[1,1](t)*(-6*a[2,3](t)+6*a[3,3](t))-.1333333333e11*(-2*a[1,1](t)+2*a[2,1](t))*(-2*a[1,3](t)+2*a[2,3](t))-.1000000000e11*a[1,1](t)*(-2*a[1,3](t)+2*a[2,3](t))

AA:={eq1=0,eq2=0,eq3=0,eq4=0,eq5=0,eq6=0,eq7=0,eq8=0,eq9=0,a[1,1](0)=0.1,D(a[1,1])(0)=0.1,a[2,1](0)=0.1,D(a[2,1])(0)=0.1,a[1,2](0)=0.1,D(a[1,2])(0)=0.1,a[2,2](0)=0.1,D(a[2,2])(0)=0.1,a[1,3](0)=0.1,D(a[1,3])(0)=0.1,a[2,3](0)=0.1,D(a[2,3])(0)=0.1,a[3,3](0)=0.1,D(a[3,3])(0)=0.1,a[3,2](0)=0.1,D(a[3,2])(0)=0.1,a[3,1](0)=0.1,D(a[3,1])(0)=0.1};


 MMM := dsolve(AA,numeric, maxfun = 0,stiff=true); 

@acer yes i was forcing thid method,i removed thid method from dsolve,but it is solving with this method afterall,because after solving it says : 

MMM := proc (x_rkf45) ... end proc .

what should i do now? thnx for your help,really thanks.

yes i know it is a puplication of that,but i still have the same problem,my main question is :

when i decrease initial conditons to 1e-45,i can evaluate till the time 192 seconds,but now i face another problem, and this is that my answers are too small to be used in a reall system,and i think it is beacuase of my initial conditions,for example for the time=24sec the answers are : 

what should i do to make the answers more logical?




i changed the intial condition to 1e-15 , now my answers are more logical,but i have a problem of max fun in this case , and it is not exceeds more than .11 sec 
could u please help me?thnx alot.


my equations are very very long,maybe more than 30 pages to write them here,if it is need then i can reduced in terms of approximation so that i can write down them here.thnx alot,

@Markiyan Hirnyk my equations are vey long to type them here,maybe more than 10 pages, but when i decrease initial conditons to 1e-45,i can evaluate till the time 192 seconds,but now i face another problem, and this is that my answers are too small to be used in a reall system,and i think it is beacuase of my initial conditions,for example for the time=24sec the answers are : 

what should i do to make the answers more logical?




i changed the intial condition to 1e-15 , now my answers are more logical,but i have a problem of max fun in this case , and it is not exceeds more than .11 sec 
could u please help me?thnx alot.
 

@Markiyan Hirnyk my equations are vey long to type them here,maybe more than 10 pages, but when i decrease initial conditons to 1e-45,i can evaluate till the time 192 seconds,but now i face another problem, and this is that my answers are too small to be used in a reall system,and i think it is beacuase of my initial conditions,for example for the time=24sec the answers are : 

what should i do to make the answers more logical?




i changed the intial condition to 1e-15 , now my answers are more logical,but i have a problem of max fun in this case , and it is not exceeds more than .11 sec 
could u please help me?thnx alot.
 

@Markiyan Hirnyk thnx for your help and advice,i changed the maxfun to 0,now i face this problem,


MMM := dsolve(AA,numeric,method = rkf45, maxfun = 0);

Error, (in MMM) cannot evaluate the solution further right of .14055561, probably a singularity

is there any problem with my equations?or it is involved with my initial conditions? why singularity happens here?


@Markiyan Hirnyk thnx for your help and advice,i changed the maxfun to 0,now i face this problem,


MMM := dsolve(AA,numeric,method = rkf45, maxfun = 0);

Error, (in MMM) cannot evaluate the solution further right of .14055561, probably a singularity

is there any problem with my equations?or it is involved with my initial conditions? why singularity happens here?


hi,there was a problem with my equations,in my code,and i solve it,then i used dslove(numeric) and solvee my equations,but now i have a question,my answers do not go more than the time 0.14 ,what can i do?i do need my answers at least for the time 5 seconds ,

i have write my code in this way :

MMM := dsolve(AA,numeric,method = rkf45, maxfun = 500000);


but when i want to evaluate MMM(1) i face this error : 

Error, (in MMM) cannot evaluate the solution further right of .14055561, maxfun limit exceeded (see ?dsolve,maxfun for details)

 can i do anything to increase the amount of maxfun ?

i am really thankful for your help and attention,i will do as u helped me,really thank u.

First 18 19 20 21 Page 20 of 21