salim-barzani

1640 Reputation

9 Badges

1 years, 74 days

MaplePrimes Activity


These are questions asked by salim-barzani

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

NULL

T := f(x, t) = g(x, t)^2+h(x, t)^2+a[0]

T1 := g(x, t) = t*n[1]+x*k[1]

T2 := h(x, t) = t*n[2]+x*k[2]

L2 := subs({T1, T2}, T)

f(x, t) = (t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0]

(14)

L3 := eval(pde2, L2)

(2*k[1]*n[1]+2*k[2]*n[2])*((t*n[1]+x*k[1])^2+(t*n[2]+x*k[2])^2+a[0])+3*(2*k[1]^2+2*k[2]^2)^2-(2*(t*n[1]+x*k[1])*k[1]+2*(t*n[2]+x*k[2])*k[2])*(2*(t*n[1]+x*k[1])*n[1]+2*(t*n[2]+x*k[2])*n[2]) = 0

(15)

L4 := collect(L3, [x, t], 'distributed')

((2*k[1]*n[1]+2*k[2]*n[2])*(k[1]^2+k[2]^2)-(2*k[1]^2+2*k[2]^2)*(2*k[1]*n[1]+2*k[2]*n[2]))*x^2-(2*k[1]^2+2*k[2]^2)*(2*n[1]^2+2*n[2]^2)*x*t+((2*k[1]*n[1]+2*k[2]*n[2])*(n[1]^2+n[2]^2)-(2*k[1]*n[1]+2*k[2]*n[2])*(2*n[1]^2+2*n[2]^2))*t^2+(2*k[1]*n[1]+2*k[2]*n[2])*a[0]+3*(2*k[1]^2+2*k[2]^2)^2 = 0

(16)

eqs := {coeffs(L4, [x, t])}

Error, invalid arguments to coeffs

 

NULL

NULL

ans := solve(eqs, vars)

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(17)

NULL

eqI := ans

{a[2] = a[2], a[3] = a[3], a[4] = 0, a[5] = a[5], a[7] = a[7]}

(18)

eqpsi := eval(L2, eqI)

f(x, t) = (t*a[2]+a[3])^2+a[5]^2*t^2+a[7]

(19)

eqphi := eval(Y, eqpsi)

w(x, t) = 0

(20)

simplify(eval(pde, eqphi))

 

NULL

Download F-params.mw

there is must be a problem but i didn't figure out ?  in this command didn't give me my parameter why?
vars1 := indets(eqs1);
ans := solve(eqs1, {a[0], a[1], a[2], a[3], a[4], e[1], k[1], n[1], p[1]});

parameter.mw


 

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

with(plots)

NULL

sol3 := sqrt(2)*sqrt(-tau*gamma)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((2*gamma^3*tau-4*gamma*tau+8*tau^2)/(2*gamma^2)-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma

NULL

lprint(indets(sol3, name))

{alpha, gamma, t, tau, x}

 

NULL

P :=   [ alpha=1, gamma=-2,  tau=3]

[alpha = 1, gamma = -2, tau = 3]

(1)

PP := convert(sol3, polar)

polar(2^(1/2)*abs(tau*gamma)^(1/2)*exp(-Im(gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha))))*abs(tanh(x-tau*t^alpha/alpha)/gamma), argument((-tau*gamma)^(1/2)*tanh(x-tau*t^alpha/alpha)*exp(I*gamma*(x+((1/2)*(2*gamma^3*tau-4*gamma*tau+8*tau^2)/gamma^2-tau*gamma)*t^alpha/((gamma-2*tau)*alpha)))/gamma))

(2)

polarplot(sol3, x = -20 .. 20, t = 0 .. 10, axis[radial] = [color = "Blue"])

NULL

Download polar.mw

How i can find parameter after substitution in our pde 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t))

u(x, t)*`will now be displayed as`*u

(2)

declare(f(x, t))

f(x, t)*`will now be displayed as`*f

(3)

pde := diff(u(x, t), `$`(x, 3))+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0

(4)

map(int, diff(diff(diff(u(x, t), x), x), x)+6*u(x, t)*(diff(u(x, t), x))+diff(u(x, t), t) = 0, x)

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(5)

pde1 := %

3*u(x, t)^2+diff(diff(u(x, t), x), x)+int(diff(u(x, t), t), x) = 0

(6)

Y := u(x, t) = 2*(diff(ln(f(x, t)), `$`(x, 2)))

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

(7)

L := eval(pde1, Y)

3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0

(8)

numer(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0)) = numer(rhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))*denom(lhs(3*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^2+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^3-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^2-12*(diff(f(x, t), x))^4/f(x, t)^4-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^2+2*(diff(diff(f(x, t), t), x))/f(x, t) = 0))

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(9)

PP := simplify(2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0)

2*f(x, t)^2*(3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t))) = 0

(10)

%/(2*f(x, t)^2)

3*(diff(diff(f(x, t), x), x))^2+f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))+f(x, t)*(diff(diff(f(x, t), t), x))-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(11)

collect(%, f)

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(12)

pde2 := %

(diff(diff(diff(diff(f(x, t), x), x), x), x)+diff(diff(f(x, t), t), x))*f(x, t)+3*(diff(diff(f(x, t), x), x))^2-4*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))-(diff(f(x, t), x))*(diff(f(x, t), t)) = 0

(13)

N = 1

N = 1

(14)

S := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])

(15)

A := eval(pde2, S)

(a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0

(16)

simplify((a[1]*k[1]^4*exp(t*n[1]+x*k[1])+a[1]*n[1]*k[1]*exp(t*n[1]+x*k[1]))*(a[0]+a[1]*exp(t*n[1]+x*k[1]))-a[1]^2*k[1]^4*(exp(t*n[1]+x*k[1]))^2-a[1]^2*k[1]*(exp(t*n[1]+x*k[1]))^2*n[1] = 0)

a[0]*a[1]*exp(t*n[1]+x*k[1])*k[1]*(k[1]^3+n[1]) = 0

(17)

%/exp(t*n[1]+x*k[1])

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(18)

PPP := %

(k[1]^3+n[1])*k[1]*a[1]*a[0] = 0

(19)

Co := solve(PPP, {a[0], a[1], k[1], n[1]})

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}, {a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1]}

(20)

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = -k[1]^3}

(21)

F := subs(case1, S)

f(x, t) = a[0]+a[1]*exp(-t*k[1]^3+x*k[1])

(22)

F1 := eval(Y, F)

u(x, t) = 2*a[1]*k[1]^2*exp(-t*k[1]^3+x*k[1])/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))-2*a[1]^2*k[1]^2*(exp(-t*k[1]^3+x*k[1]))^2/(a[0]+a[1]*exp(-t*k[1]^3+x*k[1]))^2

(23)

pdetest(F1, pde)

0

(24)

N = 2

N = 2

(25)

S2 := f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

f(x, t) = a[0]+a[1]*exp(t*n[1]+x*k[1])+a[2]*exp(t*n[2]+x*k[2])+a[3]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])

(26)

eq5 := normal(eval(pde2, S2))

exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]^4-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^3*k[2]+6*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^2*k[2]^2-4*exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*k[2]^3+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[1]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]*n[2]-exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[1]+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]*n[2]+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]*n[2]+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]*n[1]+exp(t*n[1]+x*k[1])*a[0]*a[1]*k[1]*n[1]+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^4+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[1]^4+exp(t*n[1]+x*k[1])*exp(t*n[2]+x*k[2])*a[1]*a[2]*k[2]^4+exp(t*n[1]+x*k[1])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[1]*a[3]*k[2]^4+exp(t*n[2]+x*k[2])*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[2]*a[3]*k[1]^4+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^3*k[2]+6*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]^2*k[2]^2+4*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*k[2]^3+exp(t*n[2]+x*k[2])*a[0]*a[2]*k[2]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[1]*n[2]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[1]+exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])*a[0]*a[3]*k[2]*n[2] = 0

(27)

indets(eq5)

{t, x, a[0], a[1], a[2], a[3], k[1], k[2], n[1], n[2], exp(t*n[1]+x*k[1]), exp(t*n[2]+x*k[2]), exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])}

(28)

eq6 := eval(eq5, {t*n[1]+x*k[1] = X, t*n[2]+x*k[2] = Y}); indets(eq6)

Error, invalid input: exp expects its 1st argument, x, to be of type algebraic, but received u(x,t) = 2*diff(diff(f(x,t),x),x)/f(x,t)-2*diff(f(x,t),x)^2/f(x,t)^2

 

{eq6}

(29)

``

NULL

NULL

NULL

NULL

S3 := f(x, t) = a[0]+sum(exp(t*n[i]+x*k[i]), i = 1 .. 3)+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

f(x, t) = a[0]+exp(t*n[1]+x*k[1])+exp(t*n[2]+x*k[2])+exp(t*n[3]+x*k[3])+a[1]*exp(t*n[1]+t*n[2]+x*k[1]+x*k[2])+a[2]*exp(t*n[1]+t*n[3]+x*k[1]+x*k[3])+a[3]*exp(t*n[2]+t*n[3]+x*k[2]+x*k[3])+a[4]*exp(t*n[1]+t*n[2]+t*n[3]+x*k[1]+x*k[2]+x*k[3])

(30)

NULL

NULL

eq5 := normal(eval(pde2, S3))

 

``

Download N-soliton.mw

the most paper use another function to get the result and then do substitute i try to get by the way of them but i fail so how about if we can get the results in direct function there is any way for finding thus parameter after substitution of our function in ode?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

ode := beta*U(xi)^2*c^2+(-alpha*c^2+1)*U(xi)+mu^2*c^2*(diff(diff(U(xi), xi), xi)) = 0

beta*U(xi)^2*c^2+(-alpha*c^2+1)*U(xi)+mu^2*c^2*(diff(diff(U(xi), xi), xi)) = 0

(2)

n := 2

2

(3)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0]

(4)

K1 := eval(ode, F)

beta*(B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0])^2*c^2+(-alpha*c^2+1)*(B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0])+mu^2*c^2*(B[1]*sech(xi)*tanh(xi)^2-B[1]*sech(xi)*(1-tanh(xi)^2)-2*A[1]*tanh(xi)*(1-tanh(xi)^2)-2*tanh(xi)*(1-tanh(xi)^2)*(B[2]*sech(xi)+A[2]*tanh(xi))+2*(1-tanh(xi)^2)*(-sech(xi)*tanh(xi)*B[2]+A[2]*(1-tanh(xi)^2))+tanh(xi)*(sech(xi)*tanh(xi)^2*B[2]-sech(xi)*(1-tanh(xi)^2)*B[2]-2*A[2]*tanh(xi)*(1-tanh(xi)^2))) = 0

(5)

solve(identity(K1, {xi}), {A[0], A[1], A[2], B[1], B[2]})

Error, (in unknown) incorrect use of identity(<expr>,<name>)

 

Download Find_params.mw

First 18 19 20 21 22 23 24 Last Page 20 of 35