195 Reputation

9 years, 364 days

Amir

BVP[midrich] information...

Maple

Dear Sirs,

I actually rigoruos to know what is the algorithm of BVP[midrich]? how it can obtain the solution of ODE with singularities?

Did anyone introduce a reference about the algorithm like this?

Amir

Lssolve- midpoint...

Maple 16

Hi,

I get the error in the following code

restart:

gama1:=0.01:

zet:=0;
#phi0:=0.00789:
Phiavg:=0.02;
lambda:=0.01;
Ha:=1;

0
0.02
0.01
1
rhocu:=2/(1-zet^2)*int((1-eta)*rho(eta)*c(eta)*u(eta),eta=0..1-zet):

eq1:=diff(u(eta),eta,eta)+1/(mu(eta)/mu1[w])*(1-Ha^2*u(eta))+((1/(eta)+1/mu(eta)*(mu_phi*diff(phi(eta),eta)))*diff(u(eta),eta));
eq2:=diff(T(eta),eta,eta)+1/(k(eta)/k1[w])*(-2/(1-zet^2)*rho(eta)*c(eta)*u(eta)/(p2*10000)+( (a[k1]+2*b[k1]*phi(eta))/(1+a[k1]*phi1[w]+b[k1]*phi1[w]^2)*diff(phi(eta),eta)+k(eta)/k1[w]/(eta)*diff(T(eta),eta) ));
eq3:=diff(phi(eta),eta)+phi(eta)/(N[bt]*(1+gama1*T(eta))^2)*diff(T(eta),eta);
/  d   /  d         \\   mu1[w] (1 - u(eta))
|----- |----- u(eta)|| + -------------------
\ deta \ deta       //         mu(eta)

/             /  d           \\
|      mu_phi |----- phi(eta)||
| 1           \ deta         /| /  d         \
+ |--- + -----------------------| |----- u(eta)|
\eta           mu(eta)        / \ deta       /
/      /
|      |
/  d   /  d         \\     1    |      |  rho(eta) c(eta) u(eta)
|----- |----- T(eta)|| + ------ |k1[w] |- ----------------------
\ deta \ deta       //   k(eta) |      |         5000 p2
\      \

/  d           \
(a[k1] + 2 b[k1] phi(eta)) |----- phi(eta)|
\ deta         /
+ -------------------------------------------
2
1 + a[k1] phi1[w] + b[k1] phi1[w]

/  d         \\\
k(eta) |----- T(eta)|||
\ deta       /||
+ ---------------------||
k1[w] eta      ||
//
/  d         \
phi(eta) |----- T(eta)|
/  d           \            \ deta       /
|----- phi(eta)| + ------------------------
\ deta         /                          2
N[bt] (1 + 0.01 T(eta))
mu:=unapply(mu1[bf]*(1+a[mu1]*phi(eta)+b[mu1]*phi(eta)^2),eta):
k:=unapply(k1[bf]*(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2),eta):
rhop:=3880:
rhobf:=998.2:
cp:=773:
cbf:=4182:
rho:=unapply(  phi(eta)*rhop+(1-phi(eta))*rhobf ,eta):
c:=unapply(  (phi(eta)*rhop*cp+(1-phi(eta))*rhobf*cbf )/rho(eta) ,eta):
mu_phi:=mu1[bf]*(a[mu1]+2*b[mu1]*phi(eta)):

a[mu1]:=39.11:
b[mu1]:=533.9:
mu1[bf]:=9.93/10000:
a[k1]:=7.47:
b[k1]:=0:
k1[bf]:=0.597:
zet:=0.5:
#phi(0):=1:
#u(0):=0:
phi1[w]:=phi0:
N[bt]:=0.2:
mu1[w]:=mu(0):
k1[w]:=k(0):

eq1:=subs(phi(0)=phi0,eq1):
eq2:=subs(phi(0)=phi0,eq2):
eq3:=subs(phi(0)=phi0,eq3):

#A somewhat speedier version uses the fact that you really need only compute 2 integrals not 3, since one of the integrals can be written as a linear combination of the other 2:
Q:=proc(pp2,fi0) local res,F0,F1,F2,a,INT0,INT10,B;
global Q1,Q2;
print(pp2,fi0);
if not type([pp2,fi0],list(numeric)) then return 'procname(_passed)' end if:
res := dsolve(subs(p2=pp2,phi0=fi0,{eq1=0,eq2=0,eq3=0,u(1)=lambda/(phi(1)*rhop/rhobf+(1-phi(1)))*D(u)(1),D(u)(0)=0,phi(1)=phi0,T(1)=0,D(T)(1)=1}), numeric,output=listprocedure):
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)])):
INT0:=evalf(Int((1-eta)*F0(eta),eta=0..1-zet));
INT10:=evalf(Int((1-eta)*F0(eta)*F1(eta),eta=0..1-zet));
B:=(-cbf*rhobf+cp*rhop)*INT10+ rhobf*cbf*INT0;
a[1]:=2/(1-zet^2)*B-10000*pp2;
a[2]:=INT10/INT0-Phiavg;
Q1(_passed):=a[1];
Q2(_passed):=a[2];
if type(procname,indexed) then a[op(procname)] else a[1],a[2] end if
end proc;
#The result agrees very well with the fsolve result.
#Now I did use a better initial point. But if I start with the same as in fsolve I get the same result in just about 2 minutes, i.e. more than 20 times as fast as fsolve:

Q1:=proc(pp2,fi0) Q[1](_passed) end proc;
Q2:=proc(pp2,fi0) Q[2](_passed) end proc;
Optimization:-LSSolve([Q1,Q2],initialpoint=[6.5,exp(-1/N[bt])]);

proc(pp2, fi0)  ...  end;
proc(pp2, fi0)  ...  end;
proc(pp2, fi0)  ...  end;
HFloat(6.5), HFloat(0.006737946999)

the error is :

Error, (in Optimization:-LSSolve) system is singular at left endpoint, use midpoint method instead

how can I fix it.

Thanks

Amir

exact solution system of ode...

Hi

I want to solve two odes with their boundary condition. I wrote the code below:

restart:

eq2:=diff(T(eta),eta,eta)+Nb*diff(T(eta),eta)*diff(phi(eta),eta)+Nt*diff(T(eta),eta)*diff(T(eta),eta);

eq3:=diff(phi(eta),eta,eta)+Nt/Nb*diff(T(eta),eta,eta);

sys_ode:=  eq2=0,eq3=0;
bcs := phi(0)=0,phi(h)=1,T(0)=0,T(h)=1;
sol:=dsolve([sys_ode, ics]);

however, this code doesnt get my desired results (the results are complex!). but when I (with hand) integrate Eq3 twice and substitute boundary conditions and replace in Eq2 the answer is easy and straightforward.

How can I change the following algorithm to get my results?

Amir

Automatic calculation in dsolve ...

Maple 16

Following previous question at

http://www.mapleprimes.com/questions/149581-Improve-Algorithm-Dsolve

and also

http://www.mapleprimes.com/questions/149243-BVP-With-Constraining-Integrals

I wrote the following code

***********************

restart:

gama1:=0:

phi0:=0.00789:

rhocu:=2/(1-zet^2)*int((1-eta)*rho(eta)*c(eta)*u(eta),eta=0..1-zet):

eq1:=diff(u(eta),eta,eta)+1/(mu(eta)/mu1[w])+((1/(eta-1)+1/mu(eta)*(mu_phi*diff(phi(eta),eta)))*diff(u(eta),eta)):
eq2:=diff(T(eta),eta,eta)+1/(k(eta)/k1[w])*(2/(1-zet^2)*rho(eta)*c(eta)*u(eta)/(p2*10000)+( (a[k1]+2*b[k1]*phi(eta))/(1+a[k1]*phi1[w]+b[k1]*phi1[w]^2)*diff(phi(eta),eta)-k(eta)/k1[w]/(1-eta)*diff(T(eta),eta) )):
eq3:=diff(phi(eta),eta)-phi(eta)/(N[bt]*(1-gama1*T(eta))^2)*diff(T(eta),eta):
mu:=unapply(mu1[bf]*(1+a[mu1]*phi(eta)+b[mu1]*phi(eta)^2),eta):
k:=unapply(k1[bf]*(1+a[k1]*phi(eta)+b[k1]*phi(eta)^2),eta):
rhop:=3880:
rhobf:=998.2:
cp:=773:
cbf:=4182:
rho:=unapply(  phi(eta)*rhop+(1-phi(eta))*rhobf ,eta):
c:=unapply(  (phi(eta)*rhop*cp+(1-phi(eta))*rhobf*cbf )/rho(eta) ,eta):
mu_phi:=mu1[bf]*(a[mu1]+2*b[mu1]*phi(eta)):

a[mu1]:=39.11:
b[mu1]:=533.9:
mu1[bf]:=9.93/10000:
a[k1]:=7.47:
b[k1]:=0:
k1[bf]:=0.597:
zet:=0.5:
#phi(0):=1:
#u(0):=0:
phi1[w]:=phi0:
N[bt]:=0.2:
mu1[w]:=mu(0):
k1[w]:=k(0):

eq1:=subs(phi(0)=phi0,u(0)=0,eq1):
eq2:=subs(phi(0)=phi0,u(0)=0,eq2):
eq3:=subs(phi(0)=phi0,u(0)=0,eq3):

p:=proc(pp2) global res,F0,F1,F2:
if not type([pp2],list(numeric)) then return 'procname(_passed)' end if:
res := dsolve({eq1=0,subs(p2=pp2,eq2)=0,eq3=0,u(0)=0,u(1-zet)=0,phi(0)=phi0,T(0)=0,D(T)(0)=1}, numeric,output=listprocedure):
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)])):
evalf(2/(1-zet^2)*Int((1-eta)*(F1(eta)*rhop+(1-F1(eta))*rhobf)*( F1(eta)*rhop*cp+(1-F1(eta))*rhobf*cbf )/(F1(eta)*rhop+(1-F1(eta))*rhobf)*F0(eta),eta=0..1-zet))-pp2*10000:
end proc:

s1:=Student:-NumericalAnalysis:-Secant(p(pp2),pp2=[6,7],tolerance=1e-6);

HFloat(6.600456858832996)

p2:=%:

ruu:=evalf(2/(1-zet^2)*(Int((1-eta)*F0(eta),eta=0..1-zet))):
phb:=evalf(2/(1-zet^2)*(Int((1-eta)*F0(eta)*F1(eta),eta=0..1-zet))) / evalf(2/(1-zet^2)*(Int((1-eta)*F0(eta),eta=0..1-zet))) :
TTb:=evalf(2/(1-zet^2)*(Int((1-eta)*F2(eta),eta=0..1-zet))):
rhouu:=evalf(2/(1-zet^2)*(Int((1-eta)*(F1(eta)*rhop+(1-F1(eta))*rhobf)*F0(eta),eta=0..1-zet))):
with(plots):
res(parameters=[R0,R1]):
odeplot(res,[[eta,u(eta)/ruu],[eta,phi(eta)/phb],[eta,T(eta)/TTb]],0..zet);

*************************************

as you can see at the second line of the code, the value of phi0:=0.00789. however, I want to modify the code in a way that phi0 is calculated with the following addition constraint

evalf(2/(1-zet^2)*(Int((1-eta)*F0(eta)*F1(eta),eta=0..1-zet))) / evalf(2/(1-zet^2)*(Int((1-eta)*F0(eta),eta=0..1-zet)))-0.02=0

I would be most grateful if you could help me in this problem.

Amir

Improve Algorithm Dsolve...

Maple 16

Hi,

I have the following code which solves a system od ode (3 ode) with constraint parameter. actually, this algorithm is time consuming and is not effective as I see that some people solve this odes with matlab in an efficient (qucik) way. So, I ask you if it is possible help me to improve the efficiency of the following code

thanks

restart:
eq1 := diff(u(eta), eta, eta)+diff(u(eta), eta)/ (eta+zet)+Gr*Pr*T(eta)-Nr*phi(eta)+sigma1;
eq2 := diff(T(eta), eta, eta)+diff(T(eta), eta)/(eta+zet)+Nb*diff(T(eta), eta)*diff(phi(eta), eta)+Nt*diff(T(eta), eta)^2-u(eta);
eq3 := diff(phi(eta), eta,eta)+diff(phi(eta), eta,eta)/(eta+zet)+ Nt/Nb*(diff(T(eta), eta, eta)+diff(T(eta), eta)/(eta+zet))-Le*u(eta);
zet:=0.1:
Nt:=0.05;
Nb:=0.05;
Le:=10;
Pr:=1;
Gr:=5;
Nr:=0.1;
Ree:=5;
#sigma:=2;

p:=proc(pp2) option remember; global res,F0,F1,F2;
if not type([pp2],list(numeric)) then return 'procname(_passed)' end if:
res := dsolve({subs(sigma1=pp2,eq1)=0,eq2=0,eq3=0,u(0)=0,u(1-zet)=0,phi(0)=0,phi(1-zet)=0,T(0)=0,T(1-zet)=0}, numeric,output=listprocedure);
F0,F1,F2:=op(subs(res,[u(eta),phi(eta),T(eta)]));
evalf((2/(1-zet^2))*Int(F0(eta)*(eta+zet),eta=0..1-zet))-Ree*Pr;
end proc;

fsolve(p(pp2)=0,pp2=(-80)..(80));   # I dont know what exactly this parameter has
#res := dsolve({eq1=0,eq2=0,eq3=0,u(0)=0,u(1-zet)=0,phi(0)=0,phi(1-zet)=0,T(0)=0,T(1-zet)=0}, numeric);

sigma1:=%;

res := dsolve({eq1=0,eq2=0,eq3=0,u(0)=0,u(1-zet)=0,phi(0)=0,phi(1-zet)=0,T(0)=0,T(1-zet)=0}, numeric);
with(plots):
odeplot(res,[[eta,u(eta)],[eta,phi(eta)],[eta,T(eta)]],0..1-zet);

 2 3 4 5 6 7 8 Page 4 of 11
﻿