10 Reputation

3 Badges

7 years, 186 days

MaplePrimes Activity

These are questions asked by shorty101


Previously I got some great help from Markiyan Hirnyk who introduced me to the DirectSearch package. I am having a little trouble implementing it for this function:

y := proc (E) options operator, arrow; -_C4*MathieuS(-a, -q, E)*(Int(MathieuC(-a, -q, E)*(-a+2*q*cos(2*E)), E))+_C4*(Int(MathieuS(-a, -q, E)*(-a+2*q*cos(2*E)), E))*MathieuC(-a, -q, E)-_C2*MathieuC(-a, -q, E)-_C3*MathieuS(-a, -q, E)-_C4*MathieuS(-a, -q, E)*MathieuCPrime(-a, -q, E)+_C4*MathieuSPrime(-a, -q, E...



I'm having trouble finding the maximu of the following function over a defined range. (Note: I dont have the global optimization toolbox... don't have that sort of money!)

From my system of 3 DE's I get the solution with dsolve.

One such solution:

f(G)=_C3 MathieuC(b,p,G)+_C4 MathieuS(b,p,G)


For given b and p. How can I find the maximum for a range of G. For example G=0 .. 100.


Hi Maple Community!!

Using dsolve, Mathieu 15 gives me the following solutions:

{x(t) = _C3*MathieuC(4*b/g^2, -4*e/g^2, (1/2)*g*t)+_C4*MathieuS(4*b/g^2, -4*e/g^2, (1/2)*g*t), y(t) = _C1*MathieuC(-4*b/g^2, 4*e/g^2, (1/2)*g*t)+_C2*MathieuS(-4*b/g^2, 4*e/g^2, (1/2)*g*t), z(t) = _C5*t+_C6}

Given that I have specific values for b, e and g. How can I plot x(t...

Page 1 of 1