sursumCorda

1279 Reputation

15 Badges

2 years, 353 days

MaplePrimes Activity


These are questions asked by sursumCorda

The old question "Longest distance in a graph via Maple code" offers some general methods to find longest paths in a given graph, while for directed acyclic graphs, the longest paths can be found much more directly via built-in functions. However, it apprears that even for small dags, Maple cannot solve this in an acceptable time. In the following example, I'd like to count the number of nodes that on longest paths for certain source and target vertexes.
 

restart;

_seed := 1234

Warning, the use of _seed is deprecated.  Please consider using one of the alternatives listed on the _seed help page.

 

G := GraphTheory:-RandomGraphs:-RandomNetwork(200, .2, 'acyclic', 'weights' = 0. .. 2)

G__0 := applyop(`-`, -1, G)``

GRAPHLN(directed, weighted, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], Array(1..200, {(1) = {2, 3, 4}, (2) = {5}, (3) = {4, 5}, (4) = {5}, (5) = {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}, (6) = {11, 12, 13, 14, 15, 17, 18, 19, 21}, (7) = {9, 10, 11, 16, 17, 20, 22}, (8) = {12, 14, 16, 17, 19, 20, 21, 22, 23}, (9) = {11, 14, 21, 23}, (10) = {11, 13, 18, 19, 20, 21, 23}, (11) = {14, 15, 16, 17, 18, 21, 23}, (12) = {13, 15, 18, 19, 20, 22}, (13) = {14, 15, 16, 17, 21}, (14) = {19, 20, 22}, (15) = {19, 20, 22, 23}, (16) = {17, 18, 21}, (17) = {19, 20, 23}, (18) = {19, 20, 21}, (19) = {20, 24, 25}, (20) = {22, 23, 25}, (21) = {23, 24, 25}, (22) = {23, 24, 25}, (23) = {24, 25}, (24) = {26, 27, 29}, (25) = {27, 28, 29}, (26) = {28, 29, 30}, (27) = {28, 29, 31, 32, 33}, (28) = {32, 33}, (29) = {32, 33}, (30) = {34, 35, 38, 39}, (31) = {32, 37, 38, 39}, (32) = {33, 36, 37, 38}, (33) = {35, 36, 39}, (34) = {36, 38, 39}, (35) = {37, 39}, (36) = {37, 39}, (37) = {39, 40}, (38) = {39, 40}, (39) = {40}, (40) = {41, 42}, (41) = {43, 44, 47, 48, 49}, (42) = {44, 45, 46, 47, 48, 49}, (43) = {47, 49, 50, 55, 56, 57}, (44) = {45, 48, 50, 51, 52, 53, 54, 56}, (45) = {46, 47, 49, 50, 52, 56}, (46) = {47, 48, 49, 50, 51, 52, 53, 56, 57}, (47) = {49, 50, 51, 52, 54, 56, 57}, (48) = {49, 51, 52, 53, 54, 55, 56, 57}, (49) = {50, 52, 53, 54, 57}, (50) = {51, 57}, (51) = {53, 54, 57}, (52) = {53, 55, 57}, (53) = {54, 56}, (54) = {56, 58}, (55) = {58}, (56) = {58}, (57) = {58}, (58) = {59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75}, (59) = {60, 61, 66, 68, 70, 71, 74, 75, 76, 77}, (60) = {61, 63, 67, 68, 70, 72, 73, 77}, (61) = {62, 66, 69, 70, 71, 72, 73, 75, 76, 77}, (62) = {65, 68, 75, 76, 77}, (63) = {65, 66, 69, 70, 72, 73, 76, 77}, (64) = {65, 67, 68, 69, 70, 71, 73, 77}, (65) = {66, 70, 72, 73, 74, 76}, (66) = {68, 70, 71, 72, 73, 74, 75, 76, 77}, (67) = {69, 70, 71, 74, 76}, (68) = {73, 74}, (69) = {71, 76, 77}, (70) = {71, 73, 77}, (71) = {72, 76, 77}, (72) = {75}, (73) = {75, 76}, (74) = {76}, (75) = {76}, (76) = {77, 78, 79, 80, 81, 82, 83, 85, 86}, (77) = {79, 80, 82, 84, 85}, (78) = {79, 83, 85, 87}, (79) = {81, 82, 83, 85, 86, 87}, (80) = {83, 86}, (81) = {83, 84, 87}, (82) = {87}, (83) = {85, 86, 87}, (84) = {85, 87}, (85) = {87}, (86) = {87}, (87) = {88, 89}, (88) = {90, 91, 92, 93, 94}, (89) = {90, 91, 93, 94, 95}, (90) = {96, 97, 99, 101, 103, 104, 107, 108, 109, 110, 112, 115, 117, 118, 120}, (91) = {92, 94, 96, 97, 98, 100, 101, 102, 105, 106, 107, 110, 113, 116, 117, 118, 120}, (92) = {95, 97, 98, 99, 101, 103, 106, 107, 108, 111, 112, 113, 115, 117, 119, 120}, (93) = {95, 96, 98, 100, 104, 106, 109, 111, 112, 113, 116, 118, 119, 120}, (94) = {95, 99, 100, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120}, (95) = {97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 120}, (96) = {98, 100, 102, 103, 104, 106, 107, 110, 111, 114, 119, 120, 121}, (97) = {99, 100, 102, 104, 106, 107, 108, 109, 111, 114, 118, 119}, (98) = {102, 103, 107, 110, 111, 112, 113, 114, 116, 117, 119, 120, 121}, (99) = {101, 102, 104, 106, 107, 112, 117, 120}, (100) = {101, 104, 105, 106, 109, 110, 116, 117, 119, 120, 121}, (101) = {102, 105, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120}, (102) = {103, 106, 107, 108, 110, 112, 113, 114, 117, 118, 119}, (103) = {104, 105, 107, 108, 109, 110, 111, 113, 115, 116, 119, 120, 121}, (104) = {105, 106, 109, 110, 114, 115, 116, 118, 119}, (105) = {106, 108, 109, 110, 113, 114, 116, 117}, (106) = {107, 108, 109, 112, 114, 117, 118, 119, 121}, (107) = {110, 114, 116, 119, 120}, (108) = {111, 112, 113, 114, 118, 119, 120, 121}, (109) = {113, 116, 117, 118, 121}, (110) = {111, 113, 117, 119, 120, 121}, (111) = {112, 113, 115, 118, 120}, (112) = {113, 114, 116, 117, 118, 119, 120}, (113) = {116, 117, 119, 121}, (114) = {115, 116, 117, 121}, (115) = {116, 120}, (116) = {119, 121}, (117) = {118, 119, 121}, (118) = {121}, (119) = {121}, (120) = {121}, (121) = {122, 123, 124, 125, 126}, (122) = {123, 124, 125, 126, 127}, (123) = {126}, (124) = {126, 127}, (125) = {127}, (126) = {127}, (127) = {128, 129}, (128) = {130}, (129) = {130}, (130) = {131, 132}, (131) = {132, 133, 135}, (132) = {134, 135}, (133) = {134, 136, 137, 138, 140, 141, 142}, (134) = {135, 136, 139, 140, 141}, (135) = {136, 137, 139, 140, 141, 142}, (136) = {145, 146, 147}, (137) = {139, 141, 143, 145, 147, 148}, (138) = {139, 140, 143, 144, 145, 148}, (139) = {141, 143, 145}, (140) = {143, 145, 146, 147, 148}, (141) = {142, 144, 145, 146, 147}, (142) = {143, 144, 146, 148}, (143) = {145, 146, 147, 148}, (144) = {146, 149}, (145) = {147}, (146) = {149}, (147) = {149}, (148) = {149}, (149) = {150, 151, 152, 153, 154, 155, 156, 157, 158}, (150) = {152, 153, 155, 157, 158}, (151) = {152, 153, 159}, (152) = {154, 158}, (153) = {154, 155, 156}, (154) = {156, 158, 159}, (155) = {158}, (156) = {157, 158, 159}, (157) = {158}, (158) = {159}, (159) = {160, 161, 162, 163}, (160) = {161, 163, 166, 167}, (161) = {165, 166, 167}, (162) = {163, 165}, (163) = {164, 166, 167}, (164) = {166}, (165) = {166, 168, 169}, (166) = {169}, (167) = {168}, (168) = {169, 170, 171, 172, 173, 174, 177, 178, 179, 180, 182}, (169) = {170, 171, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182}, (170) = {172, 173, 174, 175, 176, 180, 182, 183, 185}, (171) = {172, 174, 176, 177, 181, 182, 185}, (172) = {175, 176, 177, 183, 185}, (173) = {175, 176, 178, 183, 185}, (174) = {175, 180, 181, 183, 184, 185}, (175) = {181, 182, 183, 185}, (176) = {177, 178, 179, 182}, (177) = {178, 179, 184, 185}, (178) = {179, 180, 182, 183, 184}, (179) = {180, 182, 185}, (180) = {181, 182}, (181) = {184}, (182) = {185}, (183) = {187, 188, 190}, (184) = {187, 188, 189}, (185) = {186, 188, 190}, (186) = {187, 188, 190, 191, 193, 194, 196}, (187) = {188, 190, 192, 193, 194, 195}, (188) = {189, 190, 191, 192, 194}, (189) = {190, 191, 196}, (190) = {191, 192, 195, 196}, (191) = {193, 196, 199}, (192) = {194, 196, 198, 199}, (193) = {197, 199}, (194) = {195, 196, 197}, (195) = {196, 198, 199}, (196) = {198, 199}, (197) = {198}, (198) = {199, 200}, (199) = {200}, (200) = {}}), `GRAPHLN/table/1`, )

(1)

t, s := combinat:-randcomb(GraphTheory:-Vertices(G__0), 5^2), combinat:-randcomb(GraphTheory:-Vertices(G__0), integermul2exp(5, 2))

[12, 13, 22, 23, 41, 65, 70, 80, 88, 97, 105, 119, 124, 127, 129, 132, 135, 138, 146, 150, 165, 170, 189, 193, 199], [6, 13, 28, 29, 31, 41, 42, 49, 55, 85, 98, 104, 136, 141, 162, 166, 167, 168, 192, 199]

(2)

"DataFrame((`M__1`:=CodeTools:-Usage(Matrix(numelems(s),numelems(t),(i,j)->numelems((GraphTheory:-BellmanFordAlgorithm(`G__0`,s[i],t[j]))[1]),datatype=integer[2]))),'columns'=t,'rows'=s)"

memory used=7.99GiB, alloc change=0 bytes, cpu time=5.74m, real time=5.63m, gc time=22.55s

 

module DataFrame () description "two-dimensional rich data container"; local columns, rows, data, binder; option object(BaseDataObject); end module

(3)

"DataFrame((`M__2`:=CodeTools:-Usage(Matrix(numelems(s),numelems(t),proc(i::posint,j::posint,` $`)::nonnegint;  uses ListTools,GraphTheory; local ts::list(posint):=TopologicSort(`G__0`,'output'='permutation'),q::posint:=Search(t[j],ts),p::posint:=Search(s[i],ts); if  p>q then 0 elif q=p then 1 else numelems(BellmanFordAlgorithm(`G__0`,s[i],t[j])[1]) fi end,datatype=integer))),':-columns'=t,':-rows'=s)"

memory used=4.34GiB, alloc change=32.00MiB, cpu time=3.26m, real time=3.19m, gc time=14.34s

 

module DataFrame () description "two-dimensional rich data container"; local columns, rows, data, binder; option object(BaseDataObject); end module

(4)

EqualEntries(M__ || (1 .. 2))

true

(5)

 


 

Download longest_paths_in_a_DAG.mw

Unfortunately, I have to wait for almost four minutes in the above instance. Can this task be done in 0.4s?

GraphTheory:-GraphEqual says that G1 and G2 are equal, but GraphTheory:-AllPairsDistance gives different results instead: 

restart;

with(GraphTheory)

M := `<|>`(`<,>`(0, 0, 0), `<,>`(1, 0, 0), `<,>`(1, 1, 0))

G__1 := Graph(convert(-M, Matrix, datatype = integer[8]))

G__2 := Graph(convert(-M, Matrix, datatype = integer))

GraphEqual(G__1, G__2)

true

(1)

AllPairsDistance(G__1)

AllPairsDistance(G__2)

Matrix(%id = 36893491227039185244)

 

Error, (in GraphTheory:-AllPairsDistanceExt) negative cycle detected

 

 

Download allpairs.mw

So, which one is incorrect? Any reasons?

Some work, while others don't work. 
 

restart;

`assuming`([is(1/(sqrt(n*(n+1))*(sqrt(n)+sqrt(n+1))) = 1/sqrt(n)-1/sqrt(n+1))], [n::posint])

true

(1)

sum(1/sqrt(n)-1/sqrt(n+1), n = 1 .. infinity)

1

(2)

sum(1/(sqrt(n*(n+1))*(sqrt(n)+sqrt(n+1))), n = 1 .. infinity)

sum(1/((n*(n+1))^(1/2)*(n^(1/2)+(n+1)^(1/2))), n = 1 .. infinity)

(3)

`assuming`([sum(binomial(3*n, n)*x^n/(2*n+1), n = 0 .. infinity)], [abs(x) <= 4/27])

(2/3)*3^(1/2)*sin((1/3)*arcsin((3/2)*3^(1/2)*x^(1/2)))/x^(1/2)

(4)

`assuming`([eval(binomial(3*n, n)*x^n/(2*n+1), n = 0)+sum(binomial(3*n, n)*x^n/(2*n+1), n = 1 .. infinity, parametric)], [abs(x) <= 4/27])

1+x*hypergeom([1, 4/3, 5/3], [2, 5/2], (27/4)*x)

(5)

simplify(convert(1+x*hypergeom([1, 4/3, 5/3], [2, 5/2], (27/4)*x)-hypergeom([1/3, 2/3], [3/2], (27/4)*x), elementary), symbolic)

(1/3)*(3*x^(1/2)+3*x^(3/2)*hypergeom([1, 4/3, 5/3], [2, 5/2], (27/4)*x)-2*3^(1/2)*sin((1/3)*arcsin((3/2)*3^(1/2)*x^(1/2))))/x^(1/2)

(6)

plot((1/3)*(3*x^(1/2)+3*x^(3/2)*hypergeom([1, 4/3, 5/3], [2, 5/2], (27/4)*x)-2*3^(1/2)*sin((1/3)*arcsin((3/2)*3^(1/2)*x^(1/2))))/x^(1/2), x = -4/27 .. 4/27)

 

verify(0, (1/3)*(3*x^(1/2)+3*x^(3/2)*hypergeom([1, 4/3, 5/3], [2, 5/2], (27/4)*x)-2*3^(1/2)*sin((1/3)*arcsin((3/2)*3^(1/2)*x^(1/2))))/x^(1/2), 'equal')

FAIL

(7)

NULL


 

Download unable_to_sum.mw

How to explain this behavior?
I have read the help page, but I can not get the point.

Here is a symmetric matrix with three real parameters (`k__1`, `k__2`, and `k__3`).

mm:=<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0|0,0,1,0,0,0,0,0,0,0,0,0,0\
,k__3-1/2,0,k__3-1/2,0,0,0,0,0,0,0,0,-1/2,0,1-2*k__3,0,-1/\
2,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,\
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0|0,0,0,0,0,1,0,\
k__3,0,-1/2,0,0,0,0,0,0,0,0,0,k__3,0,-2*k__3,0,0,0,0,0,0,0\
,0,-1/2,0,0,0,0,0|0,0,0,0,0,0,-2*k__3,0,k__3-1,0,-1/2,0,0,\
0,0,0,0,0,0,0,k__3,0,1-2*k__3,0,0,0,0,0,0,0,0,k__1,0,0,0,0\
|0,0,0,0,0,k__3,0,1-4*k__3,0,k__3-1,0,0,0,0,0,0,0,0,0,(1-k\
__2)/2,0,k__3-1/2,0,0,0,0,0,0,0,0,1-2*k__3,0,0,0,0,0|0,0,0\
,0,0,0,k__3-1,0,1-4*k__3,0,k__3,0,0,0,0,0,0,0,0,0,k__3-1/2\
,0,(1-k__2)/2,0,0,0,0,0,0,0,0,1-2*k__3,0,0,0,0|0,0,0,0,0,-\
1/2,0,k__3-1,0,-2*k__3,0,0,0,0,0,0,0,0,0,1-2*k__3,0,k__3,0\
,0,0,0,0,0,0,0,k__1,0,0,0,0,0|0,0,0,0,0,0,-1/2,0,k__3,0,1,\
0,0,0,0,0,0,0,0,0,-2*k__3,0,k__3,0,0,0,0,0,0,0,0,-1/2,0,0,\
0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,\
0,0,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,-2*k__3,0,k__3,0\
,k__1,0,0,0,0,0,0,0,0,k__3-1,0,1-2*k__3,0,0,0,0,0,0,-1/2,0\
|0,0,k__3-1/2,0,0,0,0,0,0,0,0,0,0,k__2,0,-k__1+5*k__3-1/2,\
0,0,0,0,0,0,0,0,k__3-1/2,0,-k__1+5*k__3-1/2,0,1-2*k__3,0,0\
,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,k__3,0,1-2*k__3,0,k__3,\
0,0,0,0,0,0,0,0,k__3-1/2,0,k__3-1/2,0,0,0,0,0,0,-2*k__3,0|\
0,0,k__3-1/2,0,0,0,0,0,0,0,0,0,0,-k__1+5*k__3-1/2,0,k__2,0\
,0,0,0,0,0,0,0,1-2*k__3,0,-k__1+5*k__3-1/2,0,k__3-1/2,0,0,\
0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,k__1,0,k__3,0,-2*k__3,0,\
0,0,0,0,0,0,0,1-2*k__3,0,k__3-1,0,0,0,0,0,0,-1/2,0|0,0,0,0\
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0,0|0,0,0,0,0,k__3,0,(1-k__2)/2,0,1-2*k__\
3,0,0,0,0,0,0,0,0,0,1-4*k__3,0,k__3-1/2,0,0,0,0,0,0,0,0,k_\
_3-1,0,0,0,0,0|0,0,0,0,0,0,k__3,0,k__3-1/2,0,-2*k__3,0,0,0\
,0,0,0,0,0,0,1-2*k__3,0,k__3-1/2,0,0,0,0,0,0,0,0,k__3,0,0,\
0,0|0,0,0,0,0,-2*k__3,0,k__3-1/2,0,k__3,0,0,0,0,0,0,0,0,0,\
k__3-1/2,0,1-2*k__3,0,0,0,0,0,0,0,0,k__3,0,0,0,0,0|0,0,0,0\
,0,0,1-2*k__3,0,(1-k__2)/2,0,k__3,0,0,0,0,0,0,0,0,0,k__3-1\
/2,0,1-4*k__3,0,0,0,0,0,0,0,0,k__3-1,0,0,0,0|0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
|0,0,-1/2,0,0,0,0,0,0,0,0,0,0,k__3-1/2,0,1-2*k__3,0,0,0,0,\
0,0,0,0,1,0,k__3-1/2,0,-1/2,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,\
0,0,0,0,k__3-1,0,k__3-1/2,0,1-2*k__3,0,0,0,0,0,0,0,0,1-4*k\
__3,0,(1-k__2)/2,0,0,0,0,0,0,k__3,0|0,0,1-2*k__3,0,0,0,0,0\
,0,0,0,0,0,-k__1+5*k__3-1/2,0,-k__1+5*k__3-1/2,0,0,0,0,0,0\
,0,0,k__3-1/2,0,k__2,0,k__3-1/2,0,0,0,0,0,0,0|0,0,0,0,0,0,\
0,0,0,0,0,0,1-2*k__3,0,k__3-1/2,0,k__3-1,0,0,0,0,0,0,0,0,(\
1-k__2)/2,0,1-4*k__3,0,0,0,0,0,0,k__3,0|0,0,-1/2,0,0,0,0,0\
,0,0,0,0,0,1-2*k__3,0,k__3-1/2,0,0,0,0,0,0,0,0,-1/2,0,k__3\
-1/2,0,1,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0|0,0,0,0,0,-1/2,0,1-2*\
k__3,0,k__1,0,0,0,0,0,0,0,0,0,k__3-1,0,k__3,0,0,0,0,0,0,0,\
0,-2*k__3,0,0,0,0,0|0,0,0,0,0,0,k__1,0,1-2*k__3,0,-1/2,0,0\
,0,0,0,0,0,0,0,k__3,0,k__3-1,0,0,0,0,0,0,0,0,-2*k__3,0,0,0\
,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0|0,0,0,0,0,0,0,0,0,0,0,0,-1/\
2,0,-2*k__3,0,-1/2,0,0,0,0,0,0,0,0,k__3,0,k__3,0,0,0,0,0,0\
,1,0|0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>#assuming'real':
cc:={evalindets}(LinearAlgebra:-IsDefinite(mm,query='positive_semidefinite'),`and`,op):

As the title says, I hope to find some values satisfying andseq('cc') (so `mm` becomes positive semidefinite). Unfortunately, these don't work: 

# SMTLIB:-Satisfy(cc);
Optimization:-Maximize(0, cc, initialpoint = eval({k__ || (1 .. 3)} =~ 'rand(-2e1 .. 2e1)'()));
Error, (in Optimization:-NLPSolve) no feasible point found for the nonlinear constraints
timelimit(1e2, RealDomain:-solve(cc, [k__ || (1 .. 3)](*, 'maxsols' = 1*)));
Error, (in RegularChains:-SemiAlgebraicSetTools:-CylindricalAlgebraicDecompose) time expired

 Is there a way to do so as accurately (and precisely) as possible?

 

According to print - Maple Help (maplesoft.com),

calling print[N] instead of print where N is an integer between -2 and +3, temporarily overrides the prettyprint interface variable.

However, I find that 

print[-2]();
Error, prettyprint must be an integer in the range 0..3
print[-1]();
Error, prettyprint must be an integer in the range 0..3

Also, 

interface(prettyprint = -2);
Error, (in interface) prettyprint must be an integer in the range 0..3
interface(prettyprint = -1);
Error, (in interface) prettyprint must be an integer in the range 0..3

Did I miss something?

First 10 11 12 13 14 15 16 Last Page 12 of 23