Solving a Numbrix Puzzle with Logic

Background

 

 

Parade magazine, a filler in the local Sunday newspaper, contains a Numbrix puzzle, the object of which is to find a serpentine path of consecutive integers, 1 through 81, through a nine by nine grid.  The puzzle typically specifies the content of every other border cell.

 

The Maple Logic  package has a procedure, Satisfy , that can be used to solve this puzzle.  Satisfy is a SAT-solver; given a boolean expression it attempts to find a set of equations of the form {x__1 = b__1, x__2 = b__2, () .. ()}, where x__i are the boolean variables in the given expression and b__i are boolean values (true or false) that satisfy the expression (cause it to evaluate true).

 

A general technique to solve this and other puzzles with Satisfy is to select boolean-values variables that encode the state of the puzzle (a trial solution, whether valid or not), generate a boolean-expression of these variables that is satisfied (true) if and only if the variables are given values that correspond to a solution, pass this expression to Satisfy, then translate the returned set of boolean values (if any) to the puzzle solution.

Setup

 

Assign a matrix that defines the grid and the initial position.  Use zeros to indicate the cells that need values. To make it easy to inspect the expressions, a small 2 x 3 matrix is used for this demo---a full size example is given at the end.

M := Matrix(2,3, {(1,1) = 1, (1,3) = 5});

Matrix(2, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 5, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0})

(2.1)

 

Extract the dimensions of the Matrix

(m,n) := upperbound(M);

2, 3

(2.2)

Boolean Variables

 

Let the boolean variable x[i,j,k] mean that cell (i,j) has value k. For example, x[2,3,6] is true when cell (2,3) contains 6, otherwise it is false. There are (m*n)^2 boolean variables.

Initial Position

 

The initial position can be expressed as the following and-clause.

initial := &and(seq(seq(ifelse(M[i,j] = 0, NULL, x[i,j,M[i,j]]), i = 1..m), j = 1..n));

`&and`(x[1, 1, 1], x[1, 3, 5])

(4.1)

Adjacent Cells

 

The requirement that an interior cell with value k is adjacent to the cell with value k+1 can be expressed as the implication
   

   x[i,j,k] &implies &or(x[i-1,j,k+1], x[i+1,j,k+1], x[i,j-1,k+1], x[i,j+1,k+1])

 

Extending this to handle all cells results in the following boolean expression.

adjacent := &and(seq(seq(seq(
         x[i,j,k] &implies &or(NULL
                               , ifelse(1<i, x[i-1, j, k+1], NULL)
                               , ifelse(i<m, x[i+1, j, k+1], NULL)
                               , ifelse(1<j, x[i, j-1, k+1], NULL)
                               , ifelse(j<n, x[i, j+1, k+1], NULL)
                               )
                            , i = 1..m)
                        , j = 1..n)
                    , k = 1 .. m*n-1));

`&and`(`&implies`(x[1, 1, 1], `&or`(x[2, 1, 2], x[1, 2, 2])), `&implies`(x[2, 1, 1], `&or`(x[1, 1, 2], x[2, 2, 2])), `&implies`(x[1, 2, 1], `&or`(x[2, 2, 2], x[1, 1, 2], x[1, 3, 2])), `&implies`(x[2, 2, 1], `&or`(x[1, 2, 2], x[2, 1, 2], x[2, 3, 2])), `&implies`(x[1, 3, 1], `&or`(x[2, 3, 2], x[1, 2, 2])), `&implies`(x[2, 3, 1], `&or`(x[1, 3, 2], x[2, 2, 2])), `&implies`(x[1, 1, 2], `&or`(x[2, 1, 3], x[1, 2, 3])), `&implies`(x[2, 1, 2], `&or`(x[1, 1, 3], x[2, 2, 3])), `&implies`(x[1, 2, 2], `&or`(x[2, 2, 3], x[1, 1, 3], x[1, 3, 3])), `&implies`(x[2, 2, 2], `&or`(x[1, 2, 3], x[2, 1, 3], x[2, 3, 3])), `&implies`(x[1, 3, 2], `&or`(x[2, 3, 3], x[1, 2, 3])), `&implies`(x[2, 3, 2], `&or`(x[1, 3, 3], x[2, 2, 3])), `&implies`(x[1, 1, 3], `&or`(x[2, 1, 4], x[1, 2, 4])), `&implies`(x[2, 1, 3], `&or`(x[1, 1, 4], x[2, 2, 4])), `&implies`(x[1, 2, 3], `&or`(x[2, 2, 4], x[1, 1, 4], x[1, 3, 4])), `&implies`(x[2, 2, 3], `&or`(x[1, 2, 4], x[2, 1, 4], x[2, 3, 4])), `&implies`(x[1, 3, 3], `&or`(x[2, 3, 4], x[1, 2, 4])), `&implies`(x[2, 3, 3], `&or`(x[1, 3, 4], x[2, 2, 4])), `&implies`(x[1, 1, 4], `&or`(x[2, 1, 5], x[1, 2, 5])), `&implies`(x[2, 1, 4], `&or`(x[1, 1, 5], x[2, 2, 5])), `&implies`(x[1, 2, 4], `&or`(x[2, 2, 5], x[1, 1, 5], x[1, 3, 5])), `&implies`(x[2, 2, 4], `&or`(x[1, 2, 5], x[2, 1, 5], x[2, 3, 5])), `&implies`(x[1, 3, 4], `&or`(x[2, 3, 5], x[1, 2, 5])), `&implies`(x[2, 3, 4], `&or`(x[1, 3, 5], x[2, 2, 5])), `&implies`(x[1, 1, 5], `&or`(x[2, 1, 6], x[1, 2, 6])), `&implies`(x[2, 1, 5], `&or`(x[1, 1, 6], x[2, 2, 6])), `&implies`(x[1, 2, 5], `&or`(x[2, 2, 6], x[1, 1, 6], x[1, 3, 6])), `&implies`(x[2, 2, 5], `&or`(x[1, 2, 6], x[2, 1, 6], x[2, 3, 6])), `&implies`(x[1, 3, 5], `&or`(x[2, 3, 6], x[1, 2, 6])), `&implies`(x[2, 3, 5], `&or`(x[1, 3, 6], x[2, 2, 6])))

(5.1)

 

All Values Used

 

The following expression is true when each integer k, from 1 to m*n, is assigned to one or more cells.

allvals := &and(seq(seq(&or(seq(x[i,j,k], k=1..m*n)), i=1..m), j=1..n));

`&and`(`&or`(x[1, 1, 1], x[1, 1, 2], x[1, 1, 3], x[1, 1, 4], x[1, 1, 5], x[1, 1, 6]), `&or`(x[2, 1, 1], x[2, 1, 2], x[2, 1, 3], x[2, 1, 4], x[2, 1, 5], x[2, 1, 6]), `&or`(x[1, 2, 1], x[1, 2, 2], x[1, 2, 3], x[1, 2, 4], x[1, 2, 5], x[1, 2, 6]), `&or`(x[2, 2, 1], x[2, 2, 2], x[2, 2, 3], x[2, 2, 4], x[2, 2, 5], x[2, 2, 6]), `&or`(x[1, 3, 1], x[1, 3, 2], x[1, 3, 3], x[1, 3, 4], x[1, 3, 5], x[1, 3, 6]), `&or`(x[2, 3, 1], x[2, 3, 2], x[2, 3, 3], x[2, 3, 4], x[2, 3, 5], x[2, 3, 6]))

(6.1)

Single Value

 

The following expression is satisfied when each cell has no more than one value.

 single := &not &or(seq(seq(seq(seq(x[i,j,k] &and x[i,j,kk], kk = k+1..m*n), k = 1..m*n-1), i = 1..m), j = 1..n));

`&not`(`&or`(`&and`(x[1, 1, 1], x[1, 1, 2]), `&and`(x[1, 1, 1], x[1, 1, 3]), `&and`(x[1, 1, 1], x[1, 1, 4]), `&and`(x[1, 1, 1], x[1, 1, 5]), `&and`(x[1, 1, 1], x[1, 1, 6]), `&and`(x[1, 1, 2], x[1, 1, 3]), `&and`(x[1, 1, 2], x[1, 1, 4]), `&and`(x[1, 1, 2], x[1, 1, 5]), `&and`(x[1, 1, 2], x[1, 1, 6]), `&and`(x[1, 1, 3], x[1, 1, 4]), `&and`(x[1, 1, 3], x[1, 1, 5]), `&and`(x[1, 1, 3], x[1, 1, 6]), `&and`(x[1, 1, 4], x[1, 1, 5]), `&and`(x[1, 1, 4], x[1, 1, 6]), `&and`(x[1, 1, 5], x[1, 1, 6]), `&and`(x[2, 1, 1], x[2, 1, 2]), `&and`(x[2, 1, 1], x[2, 1, 3]), `&and`(x[2, 1, 1], x[2, 1, 4]), `&and`(x[2, 1, 1], x[2, 1, 5]), `&and`(x[2, 1, 1], x[2, 1, 6]), `&and`(x[2, 1, 2], x[2, 1, 3]), `&and`(x[2, 1, 2], x[2, 1, 4]), `&and`(x[2, 1, 2], x[2, 1, 5]), `&and`(x[2, 1, 2], x[2, 1, 6]), `&and`(x[2, 1, 3], x[2, 1, 4]), `&and`(x[2, 1, 3], x[2, 1, 5]), `&and`(x[2, 1, 3], x[2, 1, 6]), `&and`(x[2, 1, 4], x[2, 1, 5]), `&and`(x[2, 1, 4], x[2, 1, 6]), `&and`(x[2, 1, 5], x[2, 1, 6]), `&and`(x[1, 2, 1], x[1, 2, 2]), `&and`(x[1, 2, 1], x[1, 2, 3]), `&and`(x[1, 2, 1], x[1, 2, 4]), `&and`(x[1, 2, 1], x[1, 2, 5]), `&and`(x[1, 2, 1], x[1, 2, 6]), `&and`(x[1, 2, 2], x[1, 2, 3]), `&and`(x[1, 2, 2], x[1, 2, 4]), `&and`(x[1, 2, 2], x[1, 2, 5]), `&and`(x[1, 2, 2], x[1, 2, 6]), `&and`(x[1, 2, 3], x[1, 2, 4]), `&and`(x[1, 2, 3], x[1, 2, 5]), `&and`(x[1, 2, 3], x[1, 2, 6]), `&and`(x[1, 2, 4], x[1, 2, 5]), `&and`(x[1, 2, 4], x[1, 2, 6]), `&and`(x[1, 2, 5], x[1, 2, 6]), `&and`(x[2, 2, 1], x[2, 2, 2]), `&and`(x[2, 2, 1], x[2, 2, 3]), `&and`(x[2, 2, 1], x[2, 2, 4]), `&and`(x[2, 2, 1], x[2, 2, 5]), `&and`(x[2, 2, 1], x[2, 2, 6]), `&and`(x[2, 2, 2], x[2, 2, 3]), `&and`(x[2, 2, 2], x[2, 2, 4]), `&and`(x[2, 2, 2], x[2, 2, 5]), `&and`(x[2, 2, 2], x[2, 2, 6]), `&and`(x[2, 2, 3], x[2, 2, 4]), `&and`(x[2, 2, 3], x[2, 2, 5]), `&and`(x[2, 2, 3], x[2, 2, 6]), `&and`(x[2, 2, 4], x[2, 2, 5]), `&and`(x[2, 2, 4], x[2, 2, 6]), `&and`(x[2, 2, 5], x[2, 2, 6]), `&and`(x[1, 3, 1], x[1, 3, 2]), `&and`(x[1, 3, 1], x[1, 3, 3]), `&and`(x[1, 3, 1], x[1, 3, 4]), `&and`(x[1, 3, 1], x[1, 3, 5]), `&and`(x[1, 3, 1], x[1, 3, 6]), `&and`(x[1, 3, 2], x[1, 3, 3]), `&and`(x[1, 3, 2], x[1, 3, 4]), `&and`(x[1, 3, 2], x[1, 3, 5]), `&and`(x[1, 3, 2], x[1, 3, 6]), `&and`(x[1, 3, 3], x[1, 3, 4]), `&and`(x[1, 3, 3], x[1, 3, 5]), `&and`(x[1, 3, 3], x[1, 3, 6]), `&and`(x[1, 3, 4], x[1, 3, 5]), `&and`(x[1, 3, 4], x[1, 3, 6]), `&and`(x[1, 3, 5], x[1, 3, 6]), `&and`(x[2, 3, 1], x[2, 3, 2]), `&and`(x[2, 3, 1], x[2, 3, 3]), `&and`(x[2, 3, 1], x[2, 3, 4]), `&and`(x[2, 3, 1], x[2, 3, 5]), `&and`(x[2, 3, 1], x[2, 3, 6]), `&and`(x[2, 3, 2], x[2, 3, 3]), `&and`(x[2, 3, 2], x[2, 3, 4]), `&and`(x[2, 3, 2], x[2, 3, 5]), `&and`(x[2, 3, 2], x[2, 3, 6]), `&and`(x[2, 3, 3], x[2, 3, 4]), `&and`(x[2, 3, 3], x[2, 3, 5]), `&and`(x[2, 3, 3], x[2, 3, 6]), `&and`(x[2, 3, 4], x[2, 3, 5]), `&and`(x[2, 3, 4], x[2, 3, 6]), `&and`(x[2, 3, 5], x[2, 3, 6])))

(7.1)

Solution

 

Combine the boolean expressions into a a single and-clause and pass it to Satisfy.

sol := Logic:-Satisfy(&and(initial, adjacent, allvals, single));

{x[1, 1, 1] = true, x[1, 1, 2] = false, x[1, 1, 3] = false, x[1, 1, 4] = false, x[1, 1, 5] = false, x[1, 1, 6] = false, x[1, 2, 1] = false, x[1, 2, 2] = false, x[1, 2, 3] = false, x[1, 2, 4] = false, x[1, 2, 5] = false, x[1, 2, 6] = true, x[1, 3, 1] = false, x[1, 3, 2] = false, x[1, 3, 3] = false, x[1, 3, 4] = false, x[1, 3, 5] = true, x[1, 3, 6] = false, x[2, 1, 1] = false, x[2, 1, 2] = true, x[2, 1, 3] = false, x[2, 1, 4] = false, x[2, 1, 5] = false, x[2, 1, 6] = false, x[2, 2, 1] = false, x[2, 2, 2] = false, x[2, 2, 3] = true, x[2, 2, 4] = false, x[2, 2, 5] = false, x[2, 2, 6] = false, x[2, 3, 1] = false, x[2, 3, 2] = false, x[2, 3, 3] = false, x[2, 3, 4] = true, x[2, 3, 5] = false, x[2, 3, 6] = false}

(8.1)

Select the equations whose right size is true

sol := select(rhs, sol);

{x[1, 1, 1] = true, x[1, 2, 6] = true, x[1, 3, 5] = true, x[2, 1, 2] = true, x[2, 2, 3] = true, x[2, 3, 4] = true}

(8.2)

Extract the lhs of the true equations

vars := map(lhs, sol);

{x[1, 1, 1], x[1, 2, 6], x[1, 3, 5], x[2, 1, 2], x[2, 2, 3], x[2, 3, 4]}

(8.3)

Extract the result from the indices of the vars and assign to a new Matrix

S := Matrix(m,n):

for v in vars do S[op(1..2,v)] := op(3,v); end do:

S;

Matrix(2, 3, {(1, 1) = 1, (1, 2) = 6, (1, 3) = 5, (2, 1) = 2, (2, 2) = 3, (2, 3) = 4})

(8.4)

Procedure

 

We can now combine the manual steps into a procedure that takes an initialized Matrix and fills in a solution.

Numbrix := proc( M :: ~Matrix, { inline :: truefalse := false } )

Example

 

Create the initial position for a 9 x 9 Numbrix and solve it.

P := Matrix(9, {(1,1)=11, (1,3)=7, (1,5)=3, (1,7)=81, (1,9)=77, (3,9)=75, (5,9)=65, (7,9)=55, (9,9)=53
               , (9,7)=47, (9,5)=41, (9,3)=39, (9,1)=37, (7,1)=21, (5,1)=17, (3,1)=13});

Matrix(9, 9, {(1, 1) = 11, (1, 2) = 0, (1, 3) = 7, (1, 4) = 0, (1, 5) = 3, (1, 6) = 0, (1, 7) = 81, (1, 8) = 0, (1, 9) = 77, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (2, 9) = 0, (3, 1) = 13, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 75, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0, (4, 8) = 0, (4, 9) = 0, (5, 1) = 17, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 0, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 65, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = 0, (6, 7) = 0, (6, 8) = 0, (6, 9) = 0, (7, 1) = 21, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 55, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = 0, (8, 5) = 0, (8, 6) = 0, (8, 7) = 0, (8, 8) = 0, (8, 9) = 0, (9, 1) = 37, (9, 2) = 0, (9, 3) = 39, (9, 4) = 0, (9, 5) = 41, (9, 6) = 0, (9, 7) = 47, (9, 8) = 0, (9, 9) = 53})

(10.1)

CodeTools:-Usage(Numbrix(P));

memory used=0.77GiB, alloc change=220.03MiB, cpu time=15.55s, real time=12.78s, gc time=3.85s

 

Matrix(9, 9, {(1, 1) = 11, (1, 2) = 10, (1, 3) = 7, (1, 4) = 81, (1, 5) = 3, (1, 6) = 4, (1, 7) = 81, (1, 8) = 78, (1, 9) = 77, (2, 1) = 12, (2, 2) = 9, (2, 3) = 8, (2, 4) = 7, (2, 5) = 6, (2, 6) = 5, (2, 7) = 80, (2, 8) = 79, (2, 9) = 76, (3, 1) = 13, (3, 2) = 14, (3, 3) = 27, (3, 4) = 28, (3, 5) = 71, (3, 6) = 72, (3, 7) = 73, (3, 8) = 74, (3, 9) = 75, (4, 1) = 16, (4, 2) = 15, (4, 3) = 26, (4, 4) = 29, (4, 5) = 70, (4, 6) = 69, (4, 7) = 68, (4, 8) = 67, (4, 9) = 66, (5, 1) = 17, (5, 2) = 18, (5, 3) = 25, (5, 4) = 30, (5, 5) = 61, (5, 6) = 62, (5, 7) = 63, (5, 8) = 64, (5, 9) = 65, (6, 1) = 20, (6, 2) = 19, (6, 3) = 24, (6, 4) = 31, (6, 5) = 60, (6, 6) = 59, (6, 7) = 58, (6, 8) = 57, (6, 9) = 56, (7, 1) = 21, (7, 2) = 22, (7, 3) = 23, (7, 4) = 32, (7, 5) = 43, (7, 6) = 44, (7, 7) = 49, (7, 8) = 50, (7, 9) = 55, (8, 1) = 36, (8, 2) = 35, (8, 3) = 34, (8, 4) = 33, (8, 5) = 42, (8, 6) = 45, (8, 7) = 48, (8, 8) = 51, (8, 9) = 54, (9, 1) = 37, (9, 2) = 38, (9, 3) = 39, (9, 4) = 40, (9, 5) = 41, (9, 6) = 46, (9, 7) = 47, (9, 8) = 52, (9, 9) = 53})

(10.2)

 

numbrix.mw


Please Wait...