Personal Stories

Stories about how you have used Maple, MapleSim and Math in your life or work.

Dear all,

The November issue of Maple Transactions is now up (we will be adding a few more items to that issue over the course of the month).  See for the articles.

More importantly, Maple Primes seems to have a great many interesting posts, some of which could well be worked up into a paper (or a video).  Maple Transactions accepts worksheets (documents, workbooks) for publication, as well, although we want a high standard of readability for that.  I invite you to contribute.

The next issue of Maple Transactions will be the Special Issue that is the Proceedings of the Maple Conference 2021 (see my previous post :)


Hi to all,

Dr. Lopez's "Advanced Engineering Mathematics with Maple" is just excellent... I strongly advise...

That book is my most favorite and Dr. Lopez is my favorite teacher :)


As a student I came across an amazing lab experimentA T-type structure with two masses attached to it showed a sudden change in oscillation mode.  


With MapleSim I was able to reproduce the experiment.

At the time I was told that this perplexing phenome happens because there are always imperfections. 


Today we would probably say that the symmetry has to be broken. The attached example has two parameter sets that a) break symmetry of boundary conditions and b) by structural asymmetry (i.e imperfection). Asymmetry in the initial conditions should also be possible (but I could make work with flexible beams). 

Compared to coupled oscillators that exchange energy via a coupling spring, this example exchanges energy via masses. In fact in its simplest implementation only one mass and two elastic structures are required for this type of mode coupling. MapleSim multibody library offers plenty of possibilities to demonstrate thisFlexible beams are not required. However, flexible beams show mode coupling beautifully and allow a simple reproduction in real life. For that the worksheet contains a parameter set to build a real model with steel wires. Tuning by adjusting the length of the vertical post is required since nonlinearities already shift frequencies in the model. 


I would be interested in other cool examples of mode coupling. I am also interested in solutions for flexible beams that impose asymmetry in the initial conditions. To keep it realistic at the start, the T should be bend as one would bend it with a fingertip in x direction. It would be even more realistic if the arms are flexed by gravity with zero velocity at the start of the simulation. How can this be done? 



Dear all,

Recently I discovered the noncommuting variables in the Physics package due to Edgardo Cheb-Terrab; doubtless there are many posts here on Maple Primes describing them.  Here is one more, which shows how to use this package to prove the Schur complement formula.

I guess I have a newbie's question: how well-integrated are Maple Primes and the Maple Cloud?  Anyway that seemed the easiest way to share this.



Dear all,

Recently we learned that the idea of "anti-secularity" in perturbation methods was known to Mathieu already by 1868, predating Lindstedt by several years.  The Maple worksheet linked below recapitulates Mathieu's computations:

Nic Fillion and I wrote a more general introduction to perturbation methods using Maple and you can find that paper at

and the supporting Maple code in a workbook at

For instance, one of the problems solved is the lengthening pendulum and when we do so taking proper account of anti-secularity (we use renormalization for that one, I seem to remember) we get an error curve that is bounded over time.



Hope that some of you find this useful.

Hi everyone! It's been a remarkably long time since I posted on MaplePrimes -- I should probably briefly reintroduce myself to the community here. My name is Erik Postma. I manage the mathematical software group at Maplesoft: the team that writes most of the Maple-language code in the Maple product, also known as the math library. You can find a longer introduction at this link.

One of my tasks at Maplesoft is the following. When a request for tech support comes in, our tech support team can usually answer the request by themselves. But no single person can know everything, and when specialized knowledge of Maple's mathematical library is needed, they ask my team for help. I screen such requests, answer what I can by myself, and send the even more specialized requests to the experts responsible for the appropriate part of the library.

Yesterday I received a request from a user asking how to unwrap angles occurring in an expression. This is the general idea of taking the fact that sin(phi) = 'sin'(phi + 2*Pi), and similarly for the other trig functions; and using it to modify an expression of the form sin(phi) to make it look "nicer" by adding or subtracting a multiple of 2*Pi to the angle. For a constant, real value of phi you would simply make the result be as close to 0 as possible; this is discussed in e.g. this MaplePrimes question, but the expressions that this user was interested in had arguments for the trig functions that involved variables, too.

In such cases, the easiest solution is usually to write a small piece of custom code that the user can use. You might think that we should just add all these bits and pieces to the Maple product, so that everyone can use them -- but there are several reasons why that's not usually a good idea:

  • Such code is often too specialized for general use.
  • Sometimes it is reliable enough to use if we can communicate a particular caveat to the user -- "this will not work if condition XYZ occurs" -- but if it's part of the Maple library, an unsuspecting user might try it under condition XYZ and maybe get a wrong answer.
  • This type of code code generally doesn't undergo the careful interface design, the testing process, and the documentation effort that we apply to the code that we ship as part of the product; to bring it up to the standards required for shipping it as part of Maple might increase the time spent from, say, 15 minutes, to several days.

That said, I thought this case was interesting enough to post on MaplePrimes, so that the community can take a look - maybe there is something here that can help you with your own code.

So here is the concrete question from the user. They have expressions coming from an inverse Laplace transform, such as:

F := -0.3000*(-1 + exp(-s))*s/(0.0500*s^2 + 0.1*s + 125);
f := invlaplace(F, s, t)*u(t);
# result: (.1680672269e-1*exp(1.-1.*t)*Heaviside(t-1.)*(7.141428429*sin(49.98999900*t-
#         49.98999900)-357.*cos(49.98999900*t-49.98999900))+.1680672269e-1*(-7.141428429*sin
#         (49.98999900*t)+357.*cos(49.98999900*t))*exp(-1.*t))*u(t)

I interpreted their request for unwrapping these angles as replacing the expressions of the form sin(c1 * t + c0) with versions where the constant term was unwrapped. Thinking a bit about how to be safe if unexpected expressions show up, I came up with the following solution:

unwrap_trig_functions := module()
local ModuleApply := proc(expr :: algebraic, $)
  return evalindets(expr, ':-trig', process_trig);
end proc;

local process_trig := proc(expr :: trig, $)
  local terms := convert(op(expr), ':-list', ':-`+`');
  local const, nonconst;
  const, nonconst := selectremove(type, terms, ':-complexcons');
  const := add(const);
  local result := add(nonconst) + (
    if is(const = 0) then
      const := evalf(const);
      if type(const, ':-float') then
        frem(const, 2.*Pi);
        frem(Re(const), 2.*Pi) + I*Im(const);
      end if;
    end if);
  return op(0, expr)(result);
end proc;
end module;

# To use this, with f defined as above:
f2 := unwrap_trig_functions(f);
# result: (.1680672269e-1*exp(1.-1.*t)*Heaviside(t-1.)*(7.141428429*sin(49.98999900*t+
#         .27548346)-357.*cos(49.98999900*t+.27548346))+.1680672269e-1*(-7.141428429*sin(
#         49.98999900*t)+357.*cos(49.98999900*t))*exp(-1.*t))*u(t)

Exercise for the reader, in case you expect to encounter very large constant terms: replace the calls to frem above with the code that Alec Mihailovs wrote in the question linked above!

HI Maple Primes people and other interested parties,

I was a teacher for more that ten years.  Most of my teaching was at community college level.

Although I am not a biological father, my extended family is important to me.

I graduated from university two times with special diplomas.  The next two years (99 to 01) were hectic for me.  After that I went to see about females, and now I am in the happily married club.

I'm glad I kept my Maple 13 student version software because like my father, I like to make computer code.


Mathematical truth will outlast the stars in the sky.  but government and good behavior will always kick the ass of any expression.

Consider this 






CMRB is defined below. See



Starting by using Maple on the Inverse Symbolic Calculator, with over 21 years of research and ideas from users like you, I developed this shortlist of formulas for the MRB constant.

  • CMRB= eta equals enter image description here

That is proven below by an internet scholar going by the moniker "Dark Malthorp:"

Dark Marthorp's proof


  • eta sums denoting the kth derivative of the Dirichlet eta function of k and 0 respectively was first discovered in 2012 by Richard Crandall of Apple Computer.

The left half is proven below by Gottfried Helms and it is proven more rigorously considering the conditionally convergent sum,enter image description here below that. Then the right half is a Taylor expansion of η(s) around s = 0.



it has been noted that "even though one has cause to be a little bit wary around formal rearrangements of conditionally convergent sums (see the Riemann series theorem), it's not very difficult to validate the formal manipulation of Helms. The idea is to cordon off a big chunk of the infinite double summation (all the terms from the second column on) that we know is absolutely convergent, which we are then free to rearrange with impunity. (Most relevantly for our purposes here, see pages 80-85 of this document, culminating with the Fubini theorem which is essentially the manipulation Helms is using.)"

argrument 1 argrument 2

I am a high school Teacher in Denmark, who have been using Maple since version 12, more than 12 years ago. I suggested it for my school back then and our math faculty finally decided to purchase a school license. We are still there. We have watched Maple improve in a lot of areas (function definitions, context panels, graphically etc., etc ). Often small changes makes a big difference! We have been deligted. We we are mostly interested in improvements in GUI and lower level math, and in animations and quizzes. I have also been enrolled as a beta tester for several years yet. 

One of the areas, which is particually important is print and export to pdf, because Danish students have to turn in their papers/solutions at exams in pdf format! I guess the Scandinavian countries are ahead in this department. They may quite possible be behind in other areas however, but this is how it is. 

Now my point: Maplesoft is lacking terrible behind when regarding screen look in comparison with print/export to pdf. 

I am very frustrated, because I have been pinpointing this problem in several versions of Maple, both on Mapleprimes and in the beta groups. Some time you have corrected it, but it has always been bouncing back again and again! I have come to the opinion that you are not taking it seriously? Why?

Students may loose grades because of missing documentations (marking on graphs etc.). 

I will be reporting yet another instance of this same problem. When will it stop?



I make a maple worksheet for generating Pythagorean Triples Ternary Tree :

Around 10,000 records in the matrix currently !

You can set your desire size or export the Matrix as text ...

But yet ! I wish to understand from you better techniques If you have some suggestion ?

the mapleprimes Don't load my worksheet for preview so i put a screenshot !




In the study of the Gödel spacetime model, a tetrad was suggested in the literature [1]. Alas, upon entering the tetrad in question, Maple's Tetrad's package complained that that matrix was not a tetrad! What went wrong? After an exchange with Edgardo S. Cheb-Terrab, Edgardo provided us with awfully useful comments regarding the use of the package and suggested that the problem together with its solution be presented in a post, as others may find it of some use for their work as well.


The Gödel spacetime solution to Einsten's equations is as follows.



`The "Physics Updates" version in the MapleCloud is 858 and is the same as the version installed in this computer, created 2020, October 27, 10:19 hours Pacific Time.`