We recently had a question about using some of the plotting commands in Maple to draw things. We were feeling creative and thought why not take it a step further and draw something in 3D.
Using the geom3d, plottools, and plots packages we decided to make a gingerbread house.
To make the base of the house we decided to use 2 cubes, as these would give us additional lines and segments for the icing on the house.
point(p__1,[2,3,2]):
point(p__2,[3,3,2]):
cube(c1,p__1,2):
cube(c2,p__2,2):
base:=draw([c1,c2],color=tan);
Using the same cubes but changing the style to be wireframe and point we made some icing lines and decorations for the gingerbread house.
base_decor1:=draw([c1,c2],style=wireframe,thickness=3,color=red,transparency=0.2):
base_decor2:=draw([c1,c2],style=wireframe,thickness=10,color=green,linestyle=dot):
base_decor3:=draw([c1,c2],style=point,thickness=2,color="Silver",symbol=sphere):
base_decor:=display(base_decor1,base_decor2,base_decor3);
To create the roof we found the vertices of the cubes and used those to find the top corners of the base.
v1:=vertices(c1):
v2:=vertices(c2):
pc1:=seq(point(pc1||i,v1[i]),i=1..nops(v1)):
pc2:=seq(point(pc2||i,v2[i]),i=1..nops(v2)):
topCorners:=[pc1[5],pc1[6],pc2[1],pc2[2]]:
d1:=draw(topCorners):
Using these top corners we found the midpoints (where the peak of the roof would be) and added the roof height to the coordinates.
midpoint(lc1,topCorners[1],topCorners[2]):
detail(lc1);
point(cc1,[-(2*sqrt(3))/3 + 2, (2*sqrt(3))/3 + 3+1, 2]):
d3:=draw(cc1):
midpoint(lc2,topCorners[3],topCorners[4]):
detail(lc2);
point(cc2,[(2*sqrt(3))/3 + 3, (2*sqrt(3))/3 + 3+1, 2]):
d4:=draw(cc2):
With the midpoints and vertices at the front and rear of the house we made two triangles for the attic of the gingerbread house.
triangle(tf,[topCorners[1],topCorners[2],cc1]):
front:=draw(tf,color=brown):
triangle(tb,[topCorners[3],topCorners[4],cc2]):
back:=draw(tb,color=tan):
Using these same points again we made more triangles to be the roof.
triangle(trl,[cc1,cc2,pc1[5]]):
triangle(trh,[pc2[2],pc1[6],cc1]):
triangle(tll,[cc1,cc2,pc2[2]]):
triangle(tlh,[pc2[1],pc1[5],cc2]):
roof:=draw([trl,trh,tll,tlh],color="Chocolate");
Our gingerbread house now had four walls, a roof, and icing, but no door. Creating the door was as easy as making a parallelepiped, but what is a door without more icing?
door:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="DarkRed"):
door_decor1:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Gold",style=line):
door_decor2:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Silver", style=line,linestyle=dot,thickness=5):
door_decor:=display(door_decor1,door_decor2):
Now having a door we could have left it like this, but what better way to decorate a gingerbread house than with candy canes? Naturally, if we were going to have one candy cane we were going to have lots of candy canes. To facilitate this we made a candy cane procedure.
candy_pole:=proc(c:=[0,0,0], {segR:=0.1}, {segH:=0.1}, {segn:=7}, {tilt_theta:=0}, {theta:=0}, {arch:=true}, {flip:=false})
local cane1,cane2,cane_s,cane_c,cane0,cane,i,cl,cd,ch, cane_a,tmp,cane_ac,cane_a1,cane00,cane01,cane02,cane_a1s,tmp2,cane_a2s:
uses plots,geom3d:
cl:=c[1]:
cd:=c[2]:
ch:=c[3]:
cane1:=plottools:-cylinder([cd, ch, cl], segR, segH,style=surface):
cane2:=display(plottools:-rotate(cane1,Pi/2,[[cd,ch,cl],[cd+1,ch,cl]])):
cane_s:=[cane2,seq(display(plottools:-translate(cane2,0,segH*i,0)),i=1..segn-1)]:
cane_c:=seq(ifelse(type(i,odd),red,white),i=1..segn):
cane0:=display(cane_s,color=[cane_c]):
if arch then
cane_a:=plottools:-translate(cane2,0,segH*segn-segH/2,0):
tmp:=i->plottools:-rotate(cane_a,i*Pi/24, [ [cd,ch+segH*segn-segH/2,cl+segR*2] , [cd+1,ch+segH*segn-segH/2,cl+segR*2] ] ):
cane_ac:=seq(ifelse(type(i,odd),red,white),i=1..24):
cane_a1s:=seq(plottools:-translate(tmp(i),0,segH*i/12,segR*i/4),i=1..12):
tmp2:=i->plottools:-rotate(cane_a1s[12],i*Pi/24,[[cd,ch+segH*segn-0.05,cl+segR*2],[cd+1,ch+segH*segn-0.05,cl+segR*2]]):
cane_a2s:=seq(plottools:-translate(tmp2(i),0,-segH*i/500,segR*i/4),i=1..12):
cane_a1:=display(cane_a1s,cane_a2s,color=[cane_ac]):
cane00:=display(cane0,cane_a1);
if flip then
cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane02:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):
cane:=plottools:-reflect(cane01,[[cd,ch,cl],[cd,ch+1,cl]]):
else
cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):
end if:
return cane:
else
cane:=plottools:-rotate(cane0,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
return cane:
end if:
end proc:
With this procedure we decided to add candy canes to the front, back, and sides of the gingerbread house. In addition we added two candy poles.
Candy Canes in front of the house:
cane1:=candy_pole([1.2,0,2],segn=9,arch=false):
cane2:=candy_pole([2.8,0,2],segn=9,arch=false):
cane3:=candy_pole([2.7,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7):
cane4:=candy_pole([1.3,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7,flip=true):
front_canes:=display(cane1,cane2,cane3,cane4):
Candy Canes at the back of the house:
caneb3:=candy_pole([1.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3,flip=true):
caneb4:=candy_pole([2.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3):}
back_canes:=display(caneb3,caneb4):
Candy Canes at the left of the house:
canel1:=candy_pole([0.8,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel2:=candy_pole([0.8,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel3:=candy_pole([0.8,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
left_canes:=display(canel1,canel2,canel3):
Candy Canes at the right of the house:
caner1:=candy_pole([3.2,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner2:=candy_pole([3.2,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner3:=candy_pole([3.2,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
right_canes:=display(caner1,caner2,caner3):
canes:=display(front_canes,back_canes,right_canes,left_canes):
With these canes in place all that was left was to create the ground and display our Gingerbread House.
ground:=display(plottools:-parallelepiped([5,0,0],[0,0.5,0],[0,0,4],[0,1.35,0]),color="DarkGreen"):
display([door,door_decor,d1,base,base_decor,d3,d4,front,back,roof,ground,canes],orientation=[-100,0,95]);
You can download the full worksheet creating the gingerbread house below:
Geometry_Gingerbread.mw