Personal Stories

Stories about how you have used Maple, MapleSim and Math in your life or work.

Russian children work with Maple - view

http://geodromchik.blogspot.ru

//sites.google.com/site/geodromchic

Russian children work with Maple - view

http://geodromchik.blogspot.ru

//sites.google.com/site/geodromchic

POSSIBILITIES OF USING OF COMPUTER IN MATHEMATICS

AND OTHER APPLICATIONS IN INCLUSIVE EDUCATION

 

Alsu Gibadullina, math teacher

Secondary and high school # 57, Kazan, Russia

 

In recent years Russia actively promoted and implemented the so-called inclusive education (IE). According to the materials of Alliance of human rights organizations “Save the children”: "Inclusive or included education is the term used to describe the process of teaching children with special needs in General (mass) schools. In the base of inclusive education is the ideology that ensures equal treatment for everybody, but creates special conditions for children with special educational needs. Experience shows that any of the rigid educational system some part of the children is eliminated because the system is not ready to meet the individual needs of these children in education. This ratio is 15 % of the total number of children in schools and so retired children become separated and excluded from the overall system. You need to understand that children do not fail but the system excludes children. Inclusive approaches can support such children in learning and achieving success. Inclusive education seeks to develop a methodology that recognizes that all children have different learning needs tries to develop a more flexible approach to teaching. If teaching and learning will become more effective as a result of the changes that introduces Inclusive Education, all children will win (not only children with special needs)."

There are many examples of schools that have developed their strategy implementation of IE, published many theoretical and practical benefits of inclusion today. All of them have common, immaterial character. There is no description of specific techniques implementing the principles of IO in the teaching of certain disciplines, particularly mathematics. In this paper we propose a methodology that can be successfully used as in “mathematical education for everyone", also for the development of scientific creativity of children at all age levels of the school in any discipline.

According to the author, one of the most effective methodological tools for education is a computer mathematics (SCM, SSM). Despite the fact that the SCM were created for solving problems of higher mathematics, their ability can successfully implement them in the school system. This opinion is confirmed by more than 10–year-old author's experience of using the package Maple in teaching mathematics. At first it was just learning the system and primitive using its. Then author’s interactive demonstrations, e-books, programs of analytical testing were created by the tools packages. The experience of using the system Maple in teaching inevitably led to the necessity to teach children to work with it. At first worked a club who has studied  the principles of the package’s work, which eventually turned into a research laboratory for the use of computer technology. Later on its basis there was created the scientific student society (SSS) “GEODROMhic" which operates to this day. The main idea and the ultimate goal of SSS – individual research activities on their interests with the creation of the author electronic scientific journals through the use of computer mathematics Maple. The field of application of the package was very diverse: from mathematics to psychology and cultural phenomena. SSS’s activity is very high: they are constantly and successfully participate in intellectual high-level activities (up to international). Obviously, not every SSS’s member reaches high end result. However, even basic experience in scientific analysis, modeling, intelligent  using of the computer teaches the critical thinking skills, evokes interest to new knowledge, allows you to experience their practical value, gives rise to the development of creative abilities. As a result, the research activity improves intellectual culture, self-esteem and confidence, resistance to external negative influence. It should be noted, however, that members of the scientific societies are not largely the so-called "gifted", than ordinary teenagers with different level of intellectual development and mathematical training. With all this especially valuable is that the student is dealing with mathematical signs and mathematical models, which contributes to the development of mathematical thinking.

From 2007 to 2012. our school (№. 57 of Kazan) was the experimental platform of the Republican study SKM (Maple) and other application software in the system of school mathematical education under the scientific management of Professor Yu. G. Ignatyev of Kazan state University (KF(P)U).

Practical adaptation of computer mathematics and other useful information technologies to the educational process of secondary schools passed and continues to work in the following areas:

  1. The creation of a demonstration support of different types of the lessons;
  2. The embedding of computing to the structure of practical trainings;
  3. In the form of additional courses - studying of computer applications through which you can conduct a research of the mathematical model and create animated presentation videos, web-pages, auto-run menu;
  4. Students’ working on individual creative projects:
  • construction of computer mathematical models;
  • creating author's programs with elements of scientific researches;
  • students create interactive computer-based tutorials;
  • creation of an electronic library of creative projects;
  1. The participation of students  in the annual competitions and scientific conferences for students;
  2. The accumulation and dissemination of new methodological experience.

Traditionally, the training system has the structure: explanation of a new →  the solution of tasks→ check, self-test and control → planning of the new unit  with using analysis. However, the main task types: 1) elementary, 2) basic, 3) combined, 4) integrated, 5) custom. With the increasing the level of training a number of basic tasks are growing and some integrated tasks become a class of basic. Thus, the library for basic operations is generated. The decision of the educational task occurs on the way of mastering the theoretical knowledge of mathematical modeling: 1) analysis of conditions (and construction drawing), 2) the search for methods of solution, 3) computation, 4) the researching.

To introduce computer mathematics in this training system, you can:

  • At demonstrations. For example, with Maplе facilities you can create a step-by-step interactive and animated images, which are essentially the exact graphic interpretation of mathematical models.
  • If we have centralized collective control.
  • If students have individual self-control.
  • In the analysis of the conditions of the problem, for the construction and visualization of its model, the study of this model.
  • In the computations.
  • In practical training of different forms.
  • In individual projects with elements of research.

In the learning process with the use of computer mathematics in the school a library of themed demonstrations, tasks of different levels and purpose, programs, analytical testing, research projects is generated. With all this especially valuable is that the student is dealing with mathematical signs and mathematical models. Addiction to them processed in the course of working with them it’s unobtrusive, naturally, organically.

Mathematical modelling (MM) is increasingly becoming an important component of scientific research. Today's powerful engineering tools allow to carry out numerous computer experiments, deep and full enough of exploring the object, without significant cost painless. Thus provided the advantages of theoretical approach, and experiment. The integration of information technology and      MM method is effective, safe and economical. This explains its wide distribution and makes unavoidable component of scientific and technical progress.

Modeling is a natural process for people, it is present in any activity. The introduction with nature by man occurs through constant  modeling of situation, comparing with the basic models and past experience by them. Method for modeling, abstraction as a method of understanding the world is therefore  an effective method of learning. Training activities associated with the creative transformation of the subject. The main feature of educational training activities is the systematic solution of the educational problems. The connection of the principles of developmental education, mathematical modeling, neurophysiological mechanisms of the brain and experience with Maple leads to the following conclusions: the method of mathematical modeling is not only scientific research but also the way of development of thinking in general; computer and mathematical environment (Maple), which is a powerful tool for scientific simulation can be considered as the elementary analogue of the brain. These qualities of computer mathematics led to the idea of using it not only as an effective methodological tool but as a means of nurturing the thinking and development of mental functions of the brain. To study this effect the school psychologist conducted a test, which confirm the observations: the dynamics of intellectual options students  who working with Maple compares favorably with peers. In the process of doing computer math, in particular Maple, are involved in complex different mental functions. It is in the inclusion of all mental functions is the essence of integration of learning, its educational character. And this, in turn, contributes to the solution of moral problems.

Long-term work with computer mathematics led to the idea to use it as a tool for psychological testing. One of the projects focuses on the psychology and contains authors Maple–tests to identify the degree of development of different mental functions. Interactive mathematical environment  gives a wide variability and creative testing capabilities. Moreover, Maple–test can be used not only as diagnostic but also as educational, and corrective. This technology was tested in one of psycho neurological dispensaries a few years ago.

Currently, one of the author's students, the so-called "homeworkers", the second year is a young man with a diagnosis, categories F20, who does not speak and does not write independently. It was         impossible to get feedback from him and have basic training until then author have begun to apply computer-based tools, including system Maple. Working with the computer tests and mathematical objects helps to see not only the mental and even the simplest thinking movement, but also emotional movement!

In general, the effectiveness of the implementation in the structure of educational process of secondary school of new organizational forms of the use of computers, based on the application of the symbolic mathematics package Maple, computer modeling and information technology, has many aspects, here are some of them:

  • goals of education and math in particular;
  • additional education;
  • methodical and professional opportunities;
  • theoretical education;
  • modeling;
  • scientific creativity;
  • logical language;
  • spatial thinking, the development of the imagination;
  • programming skills;
  • the specificity of technical translation;
  • differentiation and individualization of educational process;
  • prospective teaching, the continuity of higher and secondary mathematics education;
  • development of creative abilities, research skills;
  • analytical thinking;
  • mathematical thinking;
  • mental diagnosis;
  • mental correction.

       According to the author, the unique experience of the Kazan 57–th school suggests that computer mathematics (Maple) is the most effective also universal tool of new methods of inclusion. In recent decades, there are more children with a specific behavior, with a specific perception, not able to focus, with a poor memory, poor thinking processes. There are children, emotionally and intellectually healthy, or even ahead of their peers in one team together with them. High school should provide all the common core learning standards. It needed a variety of programs and techniques, as well as specialists who use them. Due to its remarkable features, computer mathematics, in particular Maple, can be used or be the basis of the variation of methods of physico-mathematical disciplines of inclusive education.

 

Now in English   KozlovaAV.PDF

 

In Russian

Авторский опыт использования математической системы Maple и других компьютерных инструментов в школьном научном обществе

 Арина Козлова

E-mail: k_arina99@mail.ru; МБОУ «Школа  № 57» Кировского района г.Казани, 10 класс

 Научный руководитель –

Гибадуллина Алсу, учитель математики МБОУ «Школа  № 57» Кировского района г.Казани;

е-mail: gialid@mail.ru

 Аннотация. Рассмотрен авторский опыт использования математической системы Maple и других компьютерных инструментов для создания научно-популярных проектов физико-математического направления в рамках школьного научного общества.

 

На протяжении более 10 лет наша школа наряду с различными информационными технологиями работает с системой компьютерной математики Maple. Один из аспектов этой деятельности  –  научное общество учащихся «ГЕОДРОМчик», научным руководителем которого является учитель математики Гибадуллина А.И. Направления деятельности ученического научного общества – знакомство с пакетом Maple; освоение компьютерных инструментов, позволяющих работать с графикой, видео, создавать интерактивные меню; работа над индивидуальными научно-популярными проектами и создание авторских тематических электронных журналов, содержащих элементы научного исследования и математического моделирования. Компьютерная математика находит все более широкое применение – от научных исследований до продукции масскультур. Математическое моделирование проникло и в сферу создания рисунка, и в киноиндустрию. Изучение и использование учащимися нашего школьного общества символьных систем, в частности Maple, – это попытка приобщиться к современной мировой культуре компьютерного математического моделирования.

В данной статье описывается личный опыт автора, как одного из членов школьного НОУ.  

Знакомство с математической системой Maple началось с работы над проектом «Построение анимированной математической 3D-модели открывающейся книги» в 6-ом классе. Этот проект представляет собой создание пространственного анимированного изображения открывающейся книги средствами аналитической геометрии. В среде Maple была построена поэтапная программа получения этого изображения (таблицы 1 и 2). 

Таблица 1. Фрагмент программы получения анимированного изображения. 

> restart:

Подключение к дополнительным библиотекам

> with(plots):

> with(plottools):

Построение одной из страниц:

s1:= polygon([[0,0.01,0],[1,0.01,0],[1,1,0],[0,1,0]], thickness=1,color=orange):

Визуализация совокупных элементов книги:

display(k11,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,k0,k27, title="KNIGA",scaling=constrained);

Поворот и анимация открывания обложки:

r_k11:=rotate(k11,10*Pi/9,[[0,0,0.29],[1,0,0.29]]):

plots[display](r_k11,kn_1,k0,scaling=constrained);

> anm:=seq(rotate(k11,t*Pi/9,[[0,0,0.29],[1,0,0.29]]),t=0..10):

> anim:=plots[display](anm,insequence=true):

> plots[display](kn_1,anim,scaling=constrained);

 

a)    

c)   

 

e)   

b)   

d)   

f)   

 Рис. 1. Кадры анимации книги

Следующий проект, выполненный в среде Maple совместно с Нигометзяновой Эльзой в 7-ом классе, – короткометражный мультфильм «Колобок в лесу».

a)      b)   

 Рис. 2. Кадры анимации мультфильма

В 8-ом классе велась работа по техническому переводу сайта компании Waterloo Maple Inc. [3]. Как известно, такой перевод имеет свои особенности, которые не предусмотрены в школьной программе по изучению английского языка, поэтому опыт такой работы способствует совершенствованию владения английским языком.

В 9-ом классе началась работа над электронным журналом по космологии «Вселенная: теория и факты». Черные дыры Вселенной – один из самых загадочных и любопытных для человека объектов. Их изучение привело к интересу к астрофизике вообще. Знакомство с понятием черной дыры неизбежно вынудило изучать строение Вселенной и ее геометрии [9, 10, 11, 12]. Пришлось осмысливать сложнейшие фундаментальные понятия, теории, а также элементы высшей математики [1, 5, 6, 7, 8]. Чтобы хотя бы попытаться понять огромный объем, казалось бы, беспорядочной информации, нужно было ее анализировать и систематизировать. И тогда возникла идея проекта – авторского электронного журнала. Тем более складывается парадоксальная ситуация: астрофизика бурно развивается, проникая практически во все сферы нашей жизни, а предмета астрономии в школе нет. Поэтому такой проект мог бы восполнить этот досадный пробел и помочь школьникам – и не только – в познании Вселенной. Журнал имеет следующие разделы: Вселенная, черные дыры, белые дыры, глоссарий, теории, неевклидовы геометрии, видео-опыты, интересные факты, ссылки, использованные ресурсы. Один из разделов журнала составляют Maple-разработки, в частности, визуализированная модель искривления пространства.

Далее приводится Maple-программа (табл. 2) построения визуализации деформации плоскости под шаром определенного размера. Используются библиотеки <plots> и <plottools> пакета.

 Таблица 2.  Maple–программа визуализации деформации плоскости. 

Комментарий

Команда и результат

Функция глубины "ямы"

( a - ширина "ямы", b - глубина )

f:=(x,a,b)->(-b*exp(-x^2/a^2));

 

Вводим параметры:

h - влияет на размеры тела-шарика и связывает их с шириной "ямы" ;

 k - влияет на диапазон площади вокруг "ямы"

h:=1:  k:=1:

 

Задание параметрическое прямой на поверхности (плоскости)

L0:=(m,n)->plot3d([0,r,f(r,m,n)], phi = -2*Pi ..2*Pi, r = -10k*h..10+k*h, scaling=CONSTRAINED,

numpoints=10000, color=blue,thickness=4):

Задание параметрическое поверхности (плоскости) путем кручения прямой

P0:=(m,n)->plot3d([r*cos(phi),r*sin(phi),f(r,m,n)], phi= 0..2*Pi,r=-8k*h..8+k*h, scaling=CONSTRAINED, numpoints=3000, style=POINT, color=blue):

Задание анимации искривления прямой

L:=plots[display](seq(L0(h,i),i=0..10+k*h), insequence=true):                    l:=plots[display](L,insequence=true):

Задание анимации искривления плоскости

p:=plots[display](seq(P0(h,i),i=0..10+k*h), insequence=true):

 p:=plots[display](P,insequence=true):

Задание анимация шарика ( тела, обладающего массой )

 

with(plottools):sp:=seq(sphere([0,0,-i-1.5*f(h,h,h)], f(h,h,h), style=HIDDEN,color=red),i=0..10+k*h):     

s:=plots[display](sp,insequence=true,

scaling=CONSTRAINED):

Совмещение всех компонентов модели визуализации

plots[display](p,s,l,scaling=CONSTRAINED);

 При h:=1:  k:=1:

 1)      2)      3)   

4)      5)      6)   

 

При h:=5:  k:=1:

7)      8)      9)   

Рис. 3. Кадры анимации при заданных параметрах.

Долго подбиралась функция глубины "ямы". Наконец, была найдена – это стало понятно после просмотра лекции А.Линде, где говорится об экспоненциальных процессах [13].

Меняя только параметры h и k (задающие размеры шара и ширины «ямы») и прокручивая программу снова, меняется и визуализация. Надо заметить, что построена всего лишь математическая модель визуализации, а не самого процесса.

Этот раздел предполагается пополнять новыми разработками, выполненными в среде Maple.

Журнал имеет удобную систему ссылок и организован так, что его можно оперативно обновлять. Астрофизика бурно развивается, поэтому журнал не потеряет своей актуальности.

 Заключение.

В течение 4-х лет занятий в научном обществе авторские проекты были представлены на различных сайтах, конкурсах, конференциях, форумах федерального и международного уровней:

  • сайт еxponenta.ru в разделе студенческих работ [4];
  • Конкурс исследовательских и творческих работ «Нобелевские надежды КНИТУ»
  • Республиканский конкурс «Арт-дебют»
  • V Международная ассамблея школьников (участие и публикация) [2]
  • Всероссийский Горчаковский форум в г.Санкт-Петербург
  • Поволжская научной конференция учащихся им. Н.И.Лобачевского
  • Всероссийский фестиваль «Нескучная наука» в г.Санкт-Петербург
  • Пост н.р. Гибадуллиной А.И. на сайте компании Maplesoft  http://www.mapleprimes.com/users/Alsu

  Использованная литература

 [1] Матросов А.В. Maple 6: Решение задач высшей математики и механики: Практическое руководство. – СПб.: БХВ – Петербург, 2001 г. – 528 с.

[2] V Международная Интеллектуальная Ассамблея школьников: сборник научно-исследовательских работ / Отв. ред. М. В. Волкова – Чебоксары: НИИ педагогики и психологии, 2012 – 136с. (с. 44–45)

[3] Сайт компании Maplesoft. – Режим доступа:  http://www.maplesoft.com

[4] Сайт <exponenta.ru> / Архив студенческих работ – Режим доступа:

http://www.exponenta.ru/educat/referat/XXIVkonkurs/5/index.asp

[5] Высшая математика: Учеб. Пособие для студентов пед. ин-тов по спец. 2120 «Общетехн. дисциплины и труд» / Г. Луканкин, Н. Мартынов, Г. Шадрин, Г. Яковлев; Под. ред. Г.Н. Яковлева. – М.: Просвещение, 1988. – 431 с.: ил.

[6] Справочник по высшей математике / М. Я. Выгодский. – М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2002. – 992 с.: ил.

[7] Математический словарь высшей школы: Общ. часть/В. Т. Воднев, А. Ф. Наумович, Н.Ф. Наумович; Под ред. Ю.С. Богданова. – 2-е изд. – М.:Изд-во МПИ, 1988 – 527 с., ил.

[8] Толковый математический словарь. Основные термины: около 2500 терминов. – М.: Рус. яз., 1989. – 244 с., 186 ил.

[9] Открываем неевклидову геометрию. Кн. для внеклас. чтения учащихся 9-10 кл. сред. шк. – М.: Просвещение, 1988. – 126 с.: ил. – (Мир Знаний).

[10] Геометрия: Учебник для вузов. – СПб.: Издательство «Лань», 2003. – 416 с., ил. – (Учебники для вузов. Специальная литература)

[11] Основания геометрии: Учебн. пособие для вузов. – М.: Наука. Гл. ред. физ.-мат. лит., 1987. – 288 с.

[12] Обзорные лекции по геометрии к государственному экзамену по математике, Х семестр, курс лекций с примерами решений задач (в помощь выпускнику), проф. Ю.Г. Игнатьева. Программный продукт BIBLIO профессора Ю.Г. Игнатьева, Казань 2002 г.

[13] Видеозапись лекции Андрея Дмитриевича Линде, Стэнфордский университет (США), профессор «Многоликая Вселенная», прямая ссылка: http://elementy.ru/lib/430484

 

Now in English   KozlovaAV.PDF

 

In Russian

Авторский опыт использования математической системы Maple и других компьютерных инструментов в школьном научном обществе

 Арина Козлова

E-mail: k_arina99@mail.ru; МБОУ «Школа  № 57» Кировского района г.Казани, 10 класс

 Научный руководитель –

Гибадуллина Алсу, учитель математики МБОУ «Школа  № 57» Кировского района г.Казани;

е-mail: gialid@mail.ru

 Аннотация. Рассмотрен авторский опыт использования математической системы Maple и других компьютерных инструментов для создания научно-популярных проектов физико-математического направления в рамках школьного научного общества.

 

На протяжении более 10 лет наша школа наряду с различными информационными технологиями работает с системой компьютерной математики Maple. Один из аспектов этой деятельности  –  научное общество учащихся «ГЕОДРОМчик», научным руководителем которого является учитель математики Гибадуллина А.И. Направления деятельности ученического научного общества – знакомство с пакетом Maple; освоение компьютерных инструментов, позволяющих работать с графикой, видео, создавать интерактивные меню; работа над индивидуальными научно-популярными проектами и создание авторских тематических электронных журналов, содержащих элементы научного исследования и математического моделирования. Компьютерная математика находит все более широкое применение – от научных исследований до продукции масскультур. Математическое моделирование проникло и в сферу создания рисунка, и в киноиндустрию. Изучение и использование учащимися нашего школьного общества символьных систем, в частности Maple, – это попытка приобщиться к современной мировой культуре компьютерного математического моделирования.

В данной статье описывается личный опыт автора, как одного из членов школьного НОУ.  

Знакомство с математической системой Maple началось с работы над проектом «Построение анимированной математической 3D-модели открывающейся книги» в 6-ом классе. Этот проект представляет собой создание пространственного анимированного изображения открывающейся книги средствами аналитической геометрии. В среде Maple была построена поэтапная программа получения этого изображения (таблицы 1 и 2). 

Таблица 1. Фрагмент программы получения анимированного изображения. 

> restart:

Подключение к дополнительным библиотекам

> with(plots):

> with(plottools):

Построение одной из страниц:

s1:= polygon([[0,0.01,0],[1,0.01,0],[1,1,0],[0,1,0]], thickness=1,color=orange):

Визуализация совокупных элементов книги:

display(k11,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,k0,k27, title="KNIGA",scaling=constrained);

Поворот и анимация открывания обложки:

r_k11:=rotate(k11,10*Pi/9,[[0,0,0.29],[1,0,0.29]]):

plots[display](r_k11,kn_1,k0,scaling=constrained);

> anm:=seq(rotate(k11,t*Pi/9,[[0,0,0.29],[1,0,0.29]]),t=0..10):

> anim:=plots[display](anm,insequence=true):

> plots[display](kn_1,anim,scaling=constrained);

 

a)    

c)   

 

e)   

b)   

d)   

f)   

 Рис. 1. Кадры анимации книги

Следующий проект, выполненный в среде Maple совместно с Нигометзяновой Эльзой в 7-ом классе, – короткометражный мультфильм «Колобок в лесу».

a)      b)   

 Рис. 2. Кадры анимации мультфильма

В 8-ом классе велась работа по техническому переводу сайта компании Waterloo Maple Inc. [3]. Как известно, такой перевод имеет свои особенности, которые не предусмотрены в школьной программе по изучению английского языка, поэтому опыт такой работы способствует совершенствованию владения английским языком.

В 9-ом классе началась работа над электронным журналом по космологии «Вселенная: теория и факты». Черные дыры Вселенной – один из самых загадочных и любопытных для человека объектов. Их изучение привело к интересу к астрофизике вообще. Знакомство с понятием черной дыры неизбежно вынудило изучать строение Вселенной и ее геометрии [9, 10, 11, 12]. Пришлось осмысливать сложнейшие фундаментальные понятия, теории, а также элементы высшей математики [1, 5, 6, 7, 8]. Чтобы хотя бы попытаться понять огромный объем, казалось бы, беспорядочной информации, нужно было ее анализировать и систематизировать. И тогда возникла идея проекта – авторского электронного журнала. Тем более складывается парадоксальная ситуация: астрофизика бурно развивается, проникая практически во все сферы нашей жизни, а предмета астрономии в школе нет. Поэтому такой проект мог бы восполнить этот досадный пробел и помочь школьникам – и не только – в познании Вселенной. Журнал имеет следующие разделы: Вселенная, черные дыры, белые дыры, глоссарий, теории, неевклидовы геометрии, видео-опыты, интересные факты, ссылки, использованные ресурсы. Один из разделов журнала составляют Maple-разработки, в частности, визуализированная модель искривления пространства.

Далее приводится Maple-программа (табл. 2) построения визуализации деформации плоскости под шаром определенного размера. Используются библиотеки <plots> и <plottools> пакета.

 Таблица 2.  Maple–программа визуализации деформации плоскости. 

Комментарий

Команда и результат

Функция глубины "ямы"

( a - ширина "ямы", b - глубина )

f:=(x,a,b)->(-b*exp(-x^2/a^2));

 

Вводим параметры:

h - влияет на размеры тела-шарика и связывает их с шириной "ямы" ;

 k - влияет на диапазон площади вокруг "ямы"

h:=1:  k:=1:

 

Задание параметрическое прямой на поверхности (плоскости)

L0:=(m,n)->plot3d([0,r,f(r,m,n)], phi = -2*Pi ..2*Pi, r = -10k*h..10+k*h, scaling=CONSTRAINED,

numpoints=10000, color=blue,thickness=4):

Задание параметрическое поверхности (плоскости) путем кручения прямой

P0:=(m,n)->plot3d([r*cos(phi),r*sin(phi),f(r,m,n)], phi= 0..2*Pi,r=-8k*h..8+k*h, scaling=CONSTRAINED, numpoints=3000, style=POINT, color=blue):

Задание анимации искривления прямой

L:=plots[display](seq(L0(h,i),i=0..10+k*h), insequence=true):                    l:=plots[display](L,insequence=true):

Задание анимации искривления плоскости

p:=plots[display](seq(P0(h,i),i=0..10+k*h), insequence=true):

 p:=plots[display](P,insequence=true):

Задание анимация шарика ( тела, обладающего массой )

 

with(plottools):sp:=seq(sphere([0,0,-i-1.5*f(h,h,h)], f(h,h,h), style=HIDDEN,color=red),i=0..10+k*h):     

s:=plots[display](sp,insequence=true,

scaling=CONSTRAINED):

Совмещение всех компонентов модели визуализации

plots[display](p,s,l,scaling=CONSTRAINED);

 При h:=1:  k:=1:

 1)      2)      3)   

4)      5)      6)   

 

При h:=5:  k:=1:

7)      8)      9)   

Рис. 3. Кадры анимации при заданных параметрах.

Долго подбиралась функция глубины "ямы". Наконец, была найдена – это стало понятно после просмотра лекции А.Линде, где говорится об экспоненциальных процессах [13].

Меняя только параметры h и k (задающие размеры шара и ширины «ямы») и прокручивая программу снова, меняется и визуализация. Надо заметить, что построена всего лишь математическая модель визуализации, а не самого процесса.

Этот раздел предполагается пополнять новыми разработками, выполненными в среде Maple.

Журнал имеет удобную систему ссылок и организован так, что его можно оперативно обновлять. Астрофизика бурно развивается, поэтому журнал не потеряет своей актуальности.

 Заключение.

В течение 4-х лет занятий в научном обществе авторские проекты были представлены на различных сайтах, конкурсах, конференциях, форумах федерального и международного уровней:

  • сайт еxponenta.ru в разделе студенческих работ [4];
  • Конкурс исследовательских и творческих работ «Нобелевские надежды КНИТУ»
  • Республиканский конкурс «Арт-дебют»
  • V Международная ассамблея школьников (участие и публикация) [2]
  • Всероссийский Горчаковский форум в г.Санкт-Петербург
  • Поволжская научной конференция учащихся им. Н.И.Лобачевского
  • Всероссийский фестиваль «Нескучная наука» в г.Санкт-Петербург
  • Пост н.р. Гибадуллиной А.И. на сайте компании Maplesoft  http://www.mapleprimes.com/users/Alsu

  Использованная литература

 [1] Матросов А.В. Maple 6: Решение задач высшей математики и механики: Практическое руководство. – СПб.: БХВ – Петербург, 2001 г. – 528 с.

[2] V Международная Интеллектуальная Ассамблея школьников: сборник научно-исследовательских работ / Отв. ред. М. В. Волкова – Чебоксары: НИИ педагогики и психологии, 2012 – 136с. (с. 44–45)

[3] Сайт компании Maplesoft. – Режим доступа:  http://www.maplesoft.com

[4] Сайт <exponenta.ru> / Архив студенческих работ – Режим доступа:

http://www.exponenta.ru/educat/referat/XXIVkonkurs/5/index.asp

[5] Высшая математика: Учеб. Пособие для студентов пед. ин-тов по спец. 2120 «Общетехн. дисциплины и труд» / Г. Луканкин, Н. Мартынов, Г. Шадрин, Г. Яковлев; Под. ред. Г.Н. Яковлева. – М.: Просвещение, 1988. – 431 с.: ил.

[6] Справочник по высшей математике / М. Я. Выгодский. – М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2002. – 992 с.: ил.

[7] Математический словарь высшей школы: Общ. часть/В. Т. Воднев, А. Ф. Наумович, Н.Ф. Наумович; Под ред. Ю.С. Богданова. – 2-е изд. – М.:Изд-во МПИ, 1988 – 527 с., ил.

[8] Толковый математический словарь. Основные термины: около 2500 терминов. – М.: Рус. яз., 1989. – 244 с., 186 ил.

[9] Открываем неевклидову геометрию. Кн. для внеклас. чтения учащихся 9-10 кл. сред. шк. – М.: Просвещение, 1988. – 126 с.: ил. – (Мир Знаний).

[10] Геометрия: Учебник для вузов. – СПб.: Издательство «Лань», 2003. – 416 с., ил. – (Учебники для вузов. Специальная литература)

[11] Основания геометрии: Учебн. пособие для вузов. – М.: Наука. Гл. ред. физ.-мат. лит., 1987. – 288 с.

[12] Обзорные лекции по геометрии к государственному экзамену по математике, Х семестр, курс лекций с примерами решений задач (в помощь выпускнику), проф. Ю.Г. Игнатьева. Программный продукт BIBLIO профессора Ю.Г. Игнатьева, Казань 2002 г.

[13] Видеозапись лекции Андрея Дмитриевича Линде, Стэнфордский университет (США), профессор «Многоликая Вселенная», прямая ссылка: http://elementy.ru/lib/430484

Ibragimova Evelina, 6 class,
school № 57, Kazan

The manual with examples
( templates for the solution of )

The solution of problems on simple interest

 

> restart:
> with(finance);

[amortization, annuity, blackscholes, cashflows, effectiverate,

futurevalue, growingannuity, growingperpetuity, levelcoupon,

perpetuity, presentvalue, yieldtomaturity]

Team futurevalue (the first installment, rate, period) - the total calculation for a given down payment, interest rate, payments and number of periods.

Example 1. To the Bank account, the income of which is 15% per annum, has made 24 thousand rubles. How many thousands of rubles will be in this account after a year if no transactions on the account will not be carried out? (The answer: 27.60 thousand rubles.)

> futurevalue(260,0.40,1);

364.00

> evalf(1000/216);

> 364*3;

1092

> u:=fsolve(presentvalue(1e6,x,1250)=950,x)*950;

u := 5.303626495

>

Team presentvalue (future amount, rate, period) - the calculation of the initial input to obtain a specified final amount at an interest rate of charges and the number of periods.

Example 2. How much you need to put money in the Bank today, so that when the rate of 27% per annum have in the account after 10 years 100000 thousand rubles? (The answer: 9161.419934 rubles.)

> presentvalue(680,-0.20,1);

850.0000000

 

The solution of problems in compound interest

The solution of problems 
Using commands <futurevalue> и <presentvalue >
> restart;
> with(finance):
Direct task
> futurevalue(,0.,);
`,` unexpected
The inverse problem
> presentvalue(,0.,);
`,` unexpected

I. Case with the same interest rate every period

Using the universal formula F = P*(1+r)^n; , where:
F - the future value (final amount).
P - the initial payment (current amount).
r - the interest rate period.
n - the number of periods.
This formula for the case with the same interest rate every period

> restart:
The task of the formula
> y:=F=P*((1+r)^n):
> y;

n
F = P (1 + r)

The job parameters are known quantities
The interest rate

> r:=;
`;` unexpected
The number of years (periods)
> n:=3;

n := 3

The initial payment (present value)
> P:=;
`;` unexpected
The final amount
> F:=2.16;

F := 2.16

The solution of the equation - the calculation of unknown values (in decimal form)
> `Unknown`;fsolve(y);

Unknown


0

>


II. The case of different interest rates for each period

Formula An = A*(1+1/100*p1)*(1+1/100*p2)*(1+1/100*p3); ... %?(1+1/100*pn); , where
An - the final amount
A - the initial payment (current amount at the moment)
p1, p2, p3, .... pn - interest rate periods
n - the number of periods

> restart:
The task of the formula (need to be adjusted based on the number of periods)
> y:=An=A*(1+1/100*p1)*(1+1/100*p2)*(1+1/100*p3):
> y;

An = A (1 + 1/100 p1) (1 + 1/100 p2) (1 + 1/100 p3)

The task of the parameters of the known values
The initial payment (present value)
> A:=;
`;` unexpected
Interest rate periods
p1:=0.30;
p2:=0.10;
p3:=0.15;


p1 := .30


p2 := .10


p3 := .15

The final amount
> An:=;
`;` unexpected
The solution of the equation - the calculation of unknown values (in decimal form)
> `Unknown`;fsolve(y);

Unknown


0

>

 angl.FINANCE.mws

Ibragimova Evelina, 6th form,
school № 57, Kazan

 

     Matreshka.mws 

 

 

 

 Ibragimova Evelina, the 6th form

 school # 57, Kazan, Russia

The Units Converter

restart:
`Conversion formula`;
d:=l=n*m:
d;

                    Conversion formula
                    l = n m

m - shows how many minor units in one major one (coefficient)
`Coefficient`;
m:=1000;
                   Coefficient
                   m:=1000

n - the number of major units
n:=7/3;
                   n := 7/3

l - the number of minor units
l:=;

The result (the desired value)
solve(d);
                   7000/3
evalf(solve(d));
                   2333.333333

That is : there are 2333.3 (or 7000/3 ) minor units in 7/3 major units .

 

Other example

m - shows how many minor units in one major one (coefficient) 
`Coefficient`;
m:=4200;
                   Coefficient
                   m:=4200

n - the number of major units 
n:=;
                 
l - the number of minor units
l:=100;

                  l:=100

The result (the desired value)
solve(d);
                   1/42
evalf(solve(d));
                   0.02380952381

That is : there are 0.02 (or 1/42) major units in 100 minor units .

 

Another example

m - shows how many minor units in one major one (coefficient) 
`Coefficient`;
m:=;
                   Coefficient

n - the number of major units 
n:=2;

                    n := 2
                 
l - the number of minor units
l:=200;

                  l:=200

The result (the desired value)
solve(d);
                   100
evalf(solve(d));
                  100

That is : Coefficient is 100 .

Construction of standard quadrilaterals

      Muchametshina Liya,  8th class,  school № 57, Kazan, Russia


                   Square

                  Rectangle     
                  
                  Rhombus        
 
                  Parallelogram

                   Trapeze

Construction of square

> restart:
> with(plottools):
       Сoordinates (x;y) of the lower left corner of the square and the side "а"
> x:=0;y:=3;a:=6;

                                x := 0


                                y := 3


                                a := 6

      Construction of the square
> P1:=plot([[x,y],[x,y+a],[x+a,y+a],[x+a,y],[x,y]],color=green,thickness=4):
> plots[display](P1,scaling=CONSTRAINED);

The setting of the second square wich moved relative to the first on the vector (2;-3) (vector can be changed) and with side "а-1" (the length of a side can be changed)P2:=plot([[x+2,y-3],[x+2,y-3+a-1],[x+2+a-1,y-3+a-1],[x+2+a-1,y-3],[x+2,y-3]],color=black,thickness=4):
> plots[display](P1,P2,scaling=CONSTRAINED);

Construction of rectangle

> restart:
> with(plottools):
        Сoordinates (x;y) of the lower left corner of the square and the "а" and "b" sides
> x:=0;y:=2;a:=3;b:=9;
>

                                x := 0


                                y := 2


                                a := 3


                                b := 9

       The rectangle is specified by the sequence of vertices with given the lengths "a" and "b"
> l:=plot([[x,y],[x,y+a],[x+b,y+a],[x+b,y],[x,y]]):
> plots[display](l,scaling=CONSTRAINED,thickness=4);
Construction of rhombus

> restart:
> with(plottools):
      The coordinates (x;y) of the initial vertex of the rhombus and the half of the diagonals "a" and "b"
> x:=0;y:=2;a:=3;b:=4;

                                x := 0


                                y := 2


                                a := 3


                                b := 4

       Rhombus is specified by the sequence of vertices with the values "a" and "b"
> ll:=plot([[x,y],[x+a,y+b],[x+a+a,y],[x+a,y-b],[x,y]]):
> plots[display](ll,scaling=CONSTRAINED,thickness=4);

Construction of parallelogram

> restart:
> with(plottools):
      (х;у) - the starting point, (i;j) - the displacement vector of starting point, "а" - the base of the parallelogram
> x:=0;y:=0;i:=4;j:=5;a:=10;

                                x := 0


                                y := 0


                                i := 4


                                j := 5


                               a := 10

     The parallelogram is defined by the sequence of vertices
> P1:=plot([[x,y],[x+i,y+j],[x+i+a,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
 If  i= 0  it turns out the rectangleget.
       If  j= а  it turns out the  square.
       If  a := sqrt(i^2+j^2) it turns out the rhombus. a:=sqrt(i^2+j^2):

Construction of trapeze

Trapeze general form
> restart:
> with(plottools):
>
        (х;у) - the starting point, (i;j) - the displacement vector of starting point, а - the larger base of the trapezoid
> x:=0;y:=2;i:=1;j:=5;a:=11;

                                x := 0


                                y := 2


                                i := 1


                                j := 5


                               a := 11

         The trapez is defined by the sequence of vertices     
> P1:=plot([[x,y],[x+i,y+j],[x+i+j,y+j],[x+i+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Rectangular trapezoid
> restsrt:
> with(plottools):
> x:=0;y:=2;i:=0;j:=6;a:=11;

                                x := 0


                                y := 2


                                i := 0


                                j := 6


                               a := 11

> P1:=plot([[x,y],[x,y+j],[x+j,y+j],[x+a,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);
Isosceles trapezoid
> restart:
> with(plottools):
> x:=0;y:=2;i:=4;j:=6;a:=15;

                                x := 0


                                y := 2


                                i := 4


                                j := 6


                               a := 15

> P1:=plot([[x,y],[x+i,y+j],[x+j+i,y+j],[x+a,y],[x,y]]):
> plots[display](P1,scaling=CONSTRAINED,thickness=4);



 

 

 

> restart;
> a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

 

restart:
with(plots):
y=sin(x);
p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
plots[display](p);

 

y=sin(3*x);
p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p1);
y=sin(1/3*x);
p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p11);

 

 

y=2*sin(x);
p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p2);
y=1/2*sin(x);
p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p22);

 

y=2+sin(x);
p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p3);
y=sin(x)-2;
p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p33);

y=sin(x+2);
p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p4);
y=sin(x-2);
p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p44);

y=-sin(x);
p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p7);
y=sin(-x);
p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p77);

 

y=abs(sin(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p00,p5);
plots[display](p5,scaling=constrained);

y=sin(abs(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p00,p6);
plots[display](p6,scaling=constrained);

 

 

Post gialid_GEODROMchik - what is this?

Pilot project of Secondary school # 57 of Kazan, Russia

Use of Maple

in Mathematics Education by mathematics teacher Alsu Gibadullina

and in scientific work of schoolchildren

 

Examples made using the Maple

the 6th class

 

              Arina                         Elza                             David    

       

       Book.mws              Kolobok.mws               sn_angl.mws

 

         Artur    

 

 

Greetings to all. I am writing today to share a personal story / exploration using Maple of an algorithm from the history of combinatorics. The problem here is to count the number of strings over a certain alphabet which consist of some number of letters and avoid a set of patterns (these patterns are strings as opposed to regular expressions.) This counting operation is carried out using rational generating functions that encode the number of admissible strings of length n in the coefficients of their series expansions. The modern approach to this problem uses the Goulden-Jackson method which is discussed, including a landmark Maple implementation from a paper by D. Zeilberger and J. Noonan, at the following link at math.stackexchange.com (Goulden-Jackson has its own website, all the remaining software described in the following discussion is available at the MSE link.) The motivation for this work was a question at the MSE link about the number of strings over a two-letter alphabet that avoid the pattern ABBA.

As far as I know before Goulden-Jackson was invented there was the DFA-Method (Deterministic Finite Automaton also known as FSM, Finite State Machine.) My goal in this contribution was to study and implement this algorithm in order to gain insight about its features and how it influenced its powerful successor. It goes as follows for the case of a single pattern string: compute a DFA whose states represent the longest prefix of the pattern seen at the current position in the string as it is being scanned by the DFA, with the state for the complete pattern doubling as a final absorbing state, since the pattern has been seen. Translate the transitions of the DFA into a system of equations in the generating functions representing strings ending with a given maximal prefix of the pattern, very much like Markov chains. Finally solve the system of equations for the generating functions and thus obtain the sequence of values of strings of length n over the given alphabet that avoid the given pattern.

I have also implemented the DFA method for sets of patterns as opposed to just one pattern. The algorithm is the same except that the DFA does not consist of a chain with backlinks as in the case of a single pattern but a tree of prefixes with backlinks to nodes higher up in the tree. The nodes in the tree represent all prefixes that need to be tracked where obviously a common prefix between two or more patterns is shared i.e. only represented once. The DFA transitions emanating from nodes that are leaves represent absorbing states indicating that one of the patterns has been seen. We run this algorithm once it has been verified that the set of patterns does not contain pairs of patterns where one pattern is contained in another, which causes the longer pattern to be eliminated at the start. (Obviously if the shorter pattern is forbidden the so is the longer.) The number of states of the DFA here is bounded above by the sum of the lengths of the patterns with subpatterns eliminated. The uniqueness property of shared common prefixes holds for subtrees of the main tree i.e. recursively. (The DFA method also copes easily with patterns that have to occur in a certain order.)

I believe the Maple code that I provide here showcases many useful tricks and techniques and can help the reader advance in their Maple studies, which is why I am alerting you to the web link at MSE. I have deliberately aimed to keep it compatible with older versions of Maple as many of these are still in use in various places. The algorithm really showcases the power of Maple in combinatorics computing and exploits many different aspects of the software from the solution of systems of equations in rational generating functions to the implementation of data structures from computer science like trees. Did you know that Maple permits nested procedures as known to those who have met Lisp and Scheme during their studies? The program also illustrates the use of unit testing to detect newly introduced flaws in the code as it evolves in the software life cycle.

Enjoy and may your Maple skills profit from the experience!

Best regards,

Marko Riedel

The software is also available here: dfam-mult.txt

This is the first of three blog posts about working with data sets in Maple.

In 2013, I wrote a library for Maple that used the HTTP package to access the Quandl data API and import data sets into Maple. I was motivated by the fact that, when I was downloading data, I often used multiple data sources, manually updated data when updates were available, and cleaned or manipulated the data into a standardized form (which left me spending too much time on the data acquisition step).

Simply put, I needed a source for data that would provide me with a searchable, stable data API, which would also return data in a form that did not require too much post-processing.

My initial library had really just scratched the surface of what was possible.

Maple 2015 introduced the new DataSets package, which fully integrated a data set search into core library routines and made its functionality more discoverable through availability in Maple’s search bar.

Accessing online data suddenly became much easier. From within Maple, I could now search through over 12 million time series data sets provided by Quandl, and then automatically import the data into a format that I could readily work with.

If you’re not already aware of this online service, Quandl is an online data aggregator that delivers a wide variety of high quality financial and economic data. This includes the latest data on stocks and commodities, exchange rates, and macroeconomic indicators such as population, inflation, unemployment, and so on. Quandl collects both open and proprietary data sets from many sources, such as the US Federal Reserve System, OECD, Eurostat, The World Bank, and Open Data for Africa. Best of all, Quandl's powerful API is free to use.

One of the first examples for the DataSets package that I constructed was in part based on the inspirational work of Hans Rosling. I was drawn in by his ability to use statistical visualizations to break down complex multidimensional data sets and provide insight into underlying patterns; a key example investigating the correlation between rising incomes and life expectancy.

As well as online data, the DataSets package had a database for country data. Hence it seemed fitting to add an example that explored macroeconomic indicators for several countries. Accordingly, I set out to create an example that visualized variables such as Gross Domestic Product, Life Expectancy, and Population for a collection of countries.

I’ll now describe how I constructed this application.

The three key variables are Gross Domestic Product at Power Purchasing Parity, Life Expectancy, and Population. Having browsed through Quandl’s website for available data sets, the World Bank and Open Data for Africa projects seemingly had the most available relevant data; therefore I chose these as my data sources.

Pulling data for a single country from one of these sources was pretty straight forward. For example, the DataSets Reference for the Open Data for Africa data set on GDP at PPP for Canada is:

DataSets:-Reference("quandl", "ODA/CAN_PPPPC"));

In this command, the second argument is the Quandl data set code. If you are on Quandl’s website, this is listed near the top of the data set page as well as in the last few characters of the web address itself: https://www.quandl.com/data/ODA/CAN_PPPPC . Deconstructing the code, “ODA” stands for Open Data for Africa and the rest of the string is constructed from the three letter country code for Canada, “CAN”, and the code for the GDP and PPP. Looking at a small sample of other data set codes, I theorized that both of the data sources used a standardized data set name that included the ISO-3166 3-letter country code for available data sets. Based on this theory, I created a simple script to query for available data and discovered that there was data available for many countries using this standardized code. However, not every country had available data, so I needed to filter my list somewhat in order to pick only those countries for which information was available.

The script that I had constructed required three letter country codes. In order to test all available countries, I created a table to house the country names and three-letter country codes using data from the built-in database for countries:

ccdata := DataSets:-Builtin:-Reference("country")[.., "3 Letter Country Code"];
cctable := table([seq(op(GetElementNames(ccdata[i])) = ccdata[i, "3 Letter Country Code"], 
i = 1 .. CountRows(ccdata))]):

My script filtered this table, returning a subset of the original table, something like:

Countries := table( [“Canada” = “CAN”, “Sweden” = “SWE”, … ] );

You can see the filtered country list in the code edit region of the application below.

With this shorter list of countries, I was now ready to download some data. I created three vectors to hold the data sets by mapping in the DataSets Reference onto the “standardized” data set names that I pulled from Quandl. Here’s the first vector for the data on GDP at PPP.

V1 := Vector( [ (x) -> Reference("quandl", cat("ODA/", x, "_PPPPC"))
                   ~([entries(Countries, nolist, indexorder)])]):
#Open Data for Africa GDP at PPP

Having created three data vectors consisting of 180 x 3 = 540 data sets, I was finally ready to visualize the large set of data that I had amassed.

In Maple’s Statistics package, BubblePlots can use the horizontal axis, vertical axis and the relative bubble size to illustrate multidimensional information. Moreover, if incoming data is stored as a TimeSeries object, BubblePlots can generate animations over a common period of time.

Putting all of this together generated the following animation for 180 available countries.

This example will be included with the next version of Maple, but for now, you can download a copy here:DataSetsBubblePlot.mw

*Note: if you try this application at home, it will download 540 data sets. This operation plus the additional BubblePlot construction can take some time, so if you just want to see the finished product, you can simply interact with the animation in the Maple worksheet using the animation toolbar.

A more advanced example that uses multiple threads for data download can be seen at the bottom of the following page: https://www.maplesoft.com/products/maple/new_features/maple19/datasets_maple2015.pdf You can also interact with this example in Maple by searching for: ?updates,Maple2015,DataSets

In my next post, I’ll discuss how I used programmatic content generation to construct an interactive application for data retrieval.

You, I, and others like us, are the beneficiaries of decades of software evolution.

From its genesis as a research project at the University of Waterloo in the early 80s, Maple has continually evolved to meet the challenges of technical computing.

This January 28th, we will be hosting another full-production, live streaming webinar featuring an all-star cast of Maplesoft employees: Andrew Rourke (Director of Teaching Solutions), Jonny Zivku (Maple T.A. Product Manager), and Daniel Skoog (Maple Product Manager). Attend the webinar to learn how educators all around the world are using Maple and Maple T.A. in their own classrooms.

Any STEM educator, administrator, or curriculum coordinator who is interested in learning how Maple and Maple T.A. can help improve student grades, reduce drop-out rates, and save money on administration costs will benefit from attending this webinar.

Click here for more information and registration.

3 4 5 6 7 8 9 Last Page 5 of 21