I'm excited to announce the creation of a new LinkedIn group, **Maple Software Community**! This group is dedicated to discussions about the use of Maple software and is designed to be a valuable resource for undergraduate and graduate students, researchers, and all Maple enthusiasts.

By joining this community, you'll have the opportunity to:

**Learn about upcoming events**and**workshops**that can enhance your skills.- Stay informed on the latest
**projects**that leverage Maple software. - Engage in discussions that explore the many uses of Maple across various fields.
- Connect with
**Maple ambassadors**and users worldwide who are eager to share their knowledge and experience.

Whether you're a seasoned user or just starting out with Maple, your contributions to this group are welcome and encouraged. Let's build a thriving community together!

Looking forward to seeing you there!

As AI becomes increasingly relevant in the tech world, Maplesoft has taken steps to integrate AI into our products. We recently launched two new features: Ask AI in Maple Learn and Word Problem Solver in Maple Calculator.

**Ask AI - Maple Learn**

As a Math Content Creator at Maplesoft, sometimes I find myself in a creative rut. What documents would be engaging for students? How can I address certain math topics in a fun and interactive way?

I've had the pleasure of creating several collections during my time, including Extreme Value Theorem, Intermediate Value Theorem, and Polynomial Long Division. Nonetheless, each collection took a lot of storyboarding and creativity before I even began drafting them, and I've missed out on creating so many more collections because of this long idea generation process. Having a tool in my back pocket to reignite those creative juices would make it so much easier and faster to create new and exciting Maple Learn documents.

Luckily, our new Ask AI feature in Maple Learn can help with that!

Whenever you enter text into a Maple Learn document, a new Context Panel operation called "Ask AI" will pop up. Simply click that button to receive an AI response related to your prompt.

One of my favourite uses of Ask AI is to pick a random subject or phrase and see what the AI responds with. The Ask AI feature is designed to respond with a mathematics-centric answer so it will twist even the least mathematical of concepts into a math problem! The prompt "tacos" resulted in some formulas about sharing tacos with friends, and a prompt of "celebrity gossip" introduced statistical functions to compute the number of celebrity mentions per day.

I also found that completing part of a tongue twister will result in some funny AI responses!

Here are a couple of my favorites below:

"She sells sea shells..."

Ask AI completes this tongue twister, then offers some formulas to compute the profit of selling S shells!

"How much wood..."

After relating that this tongue twister is not a mathematical problem, Ask AI then builds a simple formula for computing how much wood a woodchuck would (hypothetically) chuck.

There are many more applications of this feature, and I hope you all enjoy exploring them as you create documents on Maple Learn. If you're having trouble inputting text into your documents, or looking for a quick introduction to Maple Learn, check out the Walkthrough Tutorial. Beginner Tutorial (slide 8) addresses adding text to your document. Check out this blog post if you aren't sure how to access the Walkthrough Tutorial.

**Word Problem Solver - Maple Calculator**

Maple Calculator now offers support for word problems by leveraging AI. Simply take a picture of your word problem and Maple Calculator will provide a solution generated by AI.

Here is a quick example:

I wrote on paper, “Alice and Bob have 17 apples total. Alice has double the number of apples as Bob plus two. How many apples does Bob have?”. Then I took a picture of this in Maple Calculator, and it gave me a breakdown of the problem using linear equations. See screenshots of my Maple Calculator below.

AI can be an amazing tool, but it can also make mistakes. We ensure that all our tools that incorporate AI clearly indicate its use, so that our users can know when AI is used and choose whether to use it. We're committed to remaining transparent about AI as our journey continues and we are always open to feedback.

For our community of educators, a valuable exercise for students might be to show examples where AI makes mistakes and encourage students to find and explain the errors.

As an example, here is an algebra problem answered by Ask AI in Maple Learn – but it made a mistake! See if your students can spot where it went wrong and explain what should happen instead.

Building these skills will translate into good critical thinking skills that will benefit students inside and outside the classroom. For example, these exercises aim to help students identify their own mistakes in math and critically evaluate online sources. We would love to hear feedback about these exercises if you try them.

We hope these features will come in handy next time you use Maple Learn and Maple Calculator!

I’m thrilled to introduce the updated Q&A Cards Creator! Michael Barnett had created the original Flash Cards Creator, inspired by the quiz creators in the Maple Learn gallery. I added some of the features (mentioned later in this post) that will help you use this tool to make more comprehensive quizzes. Students can use the creator to quiz themselves before a test, and instructors can integrate more practice quizzes into their lesson plans. One feature I particularly love is the ability to link full solutions to the back of each card, allowing users to understand the answers in depth (as shown in this document). Additionally, you can link a general solutions package (as seen here) if individual solutions aren’t necessary for each question. Below is an example of what the Q&A cards can look like from the users point of view.

This creator is a great example of the Maple Learn documents you can create through scripting in Maple. With a single script, you can create an infinite amount of content and quizzes. If you are interested in Maple scripting, here is a link to the Q&A cards script. If this script looks intimidating, feel free to check out this blog post on the basics of Maple scripting!

If you are interested in creating your own Q&A quiz, you can go to this document to get started. If you get stuck at any point creating your card set, check out the instructions included in the document for clarification. We hope you enjoy creating some quizzes with this document!

We are pleased to announce that the registration for the Maple Conference 2024 is now open.

Like the last few years, this year’s conference will be a **free** virtual event. Please visit the conference page for more information on how to register.

This year we are offering a number of new sessions, including more product training options and an Audience Choice session.

You can find an overview of the program on the Sessions page. Those who register before **September 10th, 2024** will have a chance to vote for the topics they want to learn more about during the Audience Choice session.

We hope to see you there!

Maple Learn has so much to offer, but it can be tricky to know where to start! Even for those experienced with Maple Learn, sometimes, we miss an update with new features or fall out of practice with older ones. Luckily, we have the perfect solution for you–and it shows up right when you open your first document.

**Introducing our brand-new Walkthrough Tutorial!**

The tutorial covers all the main features of Maple Learn: from assigning functions, to using the Plot commands and Context Panel operations, all the way to creating your own visualizations with the Geometry commands. Stuck? Hints are provided throughout, or just click "Next" and the step will be completed automatically.

If you're just starting out with Maple Learn, try the Beginner tutorial and work up to Advanced. This will introduce you to a holistic view of Maple Learn's capabilities along with some Maple Learn terminology. If you have some experience, starting with the Beginner tutorial is still a great option, but you may wish to begin with the Intermediate and Advanced tutorials. The Intermediate and Advanced sections cover how to use newer features of Maple Learn and you might discover something you haven't seen before!

**How do I access the tutorial?**

The tutorial will automatically launch when you open a new document. Head to https://learn.maplesoft.com and click "Open new document".

If the tutorial doesn't open automatically, it may have been disabled. You can manually open it by clicking the "Help" button in the top right, then clicking "Walkthrough Tutorial".

There you have it! I had been using Maple Learn for the past few months and only recently discovered these two incredible features:

**Silencing Groups (Intermediate - 6/7)**

**Live Sessions (Advanced - 6/6)**

I found these features thanks to the Walkthrough Tutorial and my experience on Maple Learn hasn't been the same since! The Walkthrough Tutorial is a great introduction for new users, and a quick refresher for experts, but isn't the end of exploring Maple Learn's capabilities. See our How to Use Maple Learn (maplesoft.com) collection and our Getting Started with Maple Learn (youtube.com) video for more. You can also challenge The Treasure of Maple Learn (maplesoft.com) – a collection of documents designed to gamify exploring Maple Learn's features. Check out our blog post on The Case of the Mysterious Treasure - MaplePrimes to learn more about this collection.

Hope you enjoy our new tutorial and let us know what you think!

This is a reminder that presentation applications for the Maple Conference are due **July 17, 2024**.

The conference is a a free virtual event and will be held on **October 24 and 25, 2024.**

We are inviting submissions of presentation proposals on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. We also encourage submission of proposals related to Maple Learn. You can find more information about the themes of the conference and how to submit a presentation proposal at the Call for Participation page.

I encourage all of you here in the Maple Primes community to consider joining us for this event, whether as a presenter or an attendee!

Kaska Kowalska

Contributed Program Co-Chair

We are happy to announce another Maple Conference to be held **October 24 and 25, 2024**!

It will be a free virtual event again this year, and it will be an excellent opportunity to meet other members of the Maple community and get the latest news about our products. More importantly, it's a chance for you to share the work you've been doing with Maple and Maple Learn.

We have just opened the Call for Participation. We are inviting submissions of presentation proposals on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. We also encourage submission of proposals related to Maple Learn.

You can find more information about the themes of the conference and how to submit a presentation proposal at the Call for Participation page. Applications are due **July 17, 2024**.

Presenters will have the option to submit papers and articles to a special Maple Conference issue of the Maple Transactions journal after the conference.

Registration for attending the conference will open in July. Watch for further announcements in the coming weeks.

I encourage all of you here in the Maple Primes community to consider joining us for this event, whether as a presenter or an attendee!

Kaska Kowalska

Contributed Program Co-Chair

Hello, in a Maple script intended for Maple Learn I need to use a slider but I don't know how to get its value.

What should I do to get it?

Happy Easter to all those who celebrate! One common tradition this time of year is decorating Easter eggs. So, we’ve decided to take this opportunity to create some egg-related math content in Maple Learn. This year, a blog post by Tony Finch inspired us to create a walkthrough exploring the four-point egg. The four-point egg is a method to construct an egg-shaped graph using just a compass and a ruler, or in this case, Maple Learn. Here's the final product:

The Maple Learn document, found here, walks through the steps. In general, each part of the egg is an arc corresponding to part of a circle centred around one of the points generated in this construction.

For instance, starting with the unit circle and the three red points in the image below, the blue circle is centred at the bottom point such that it intersects with the top of the unit circle, at (0,1). The perpendicular lines were constructed using the three red points, such that they intersect at the bottom point and pass through opposite side points, either (-1,0) or (1,0). Then, the base of the egg is constructed by tracing an arc along the bottom of the blue circle, between the perpendicular lines, shown in red below.

Check out the rest of the steps in the Maple Learn Document. Also, be sure to check out other egg-related Maple Learn documents including John May’s Egg Formulas, illustrating other ways to represent egg-shaped curves with mathematics, and Paige Stone’s Easter Egg Art, to design your own Easter egg in Maple Learn. So, if you’ve had your fill of chocolate eggs, consider exploring some egg-related geometry - Happy Easter!

To celebrate this day of mathematics, I want to share my favourite equation involving Pi, the Bailey–Borwein–Plouffe (BBP) formula:

This is my favourite for a number of reasons. Firstly, Simon Plouffe and the late Peter Borwein (two of the authors that this formula is named after) are Canadian! While I personally have nothing to do with this formula, the fact that fellow Canadians contributed to such an elegant equation is something that I like to brag about.

Secondly, I find it fascinating how Plouffe first discovered this formula using a computer program. It can often be debated whether mathematics is discovered or invented, but there’s no doubt here since Plouffe found this formula by doing an extensive search with the PSLQ integer relation algorithm (interfaced with Maple). This is an example of how, with ingenuity and creativity, one can effectively use algorithms and programs as powerful tools to obtain mathematical results.

And finally (most importantly), with some clever rearranging, it can be used to compute arbitrary digits of Pi!

Digit 2024 is 8

Digit 31415 is 5

Digit 123456 is 4

Digit 314159 is also 4

Digit 355556 is… F?

That last digit might look strange… and that’s because they’re all in hexadecimal (base-16, where A-F represent 10-15). As it turns out, this type of formula only exists for Pi in bases that are powers of 2. Nevertheless, with the help of a Maple script and an implementation of the BBP formula by Carl Love, you can check out this Learn document to calculate some arbitrary digits of Pi in base-16 and learn a little bit about how it works.

After further developments, this formula led to project PiHex, a combined effort to calculate as many digits of Pi in binary as possible; it turns out that the quadrillionth bit of Pi is zero! This also led to a class of BBP-type formulas that can calculate the digits of other constants like (log2)*(π^2) and (log2)^5.

Part of what makes this formula so interesting is human curiosity: it’s fun to know these random digits. Another part is what makes mathematics so beautiful: you never know what discoveries this might lead to in the future. Now if you’ll excuse me, I have a slice of lemon meringue pie with my name on it ðŸ˜‹

References

BBP Formula (Wikipedia)

A Compendium of BBP-Type Formulas

The BBP Algorithm for Pi

On International Women’s Day we celebrate the achievements of women around the world. One inspiring story of women in STEM is that of Sophie Germain (1776-1831), a French mathematician and physicist who made groundbreaking strides in elasticity theory and number theory. She learned mathematics from reading books in her father’s library, and while she was not permitted to study at the École Polytechnique, due to prejudice against her gender, she was able to obtain lecture notes and decided to submit work under the name Monsieur LeBlanc. Some prominent mathematicians at the time, including Joseph-Louis Lagrange and Carl Friedrich Gauss, with whom Germain wrote, recognized her intellect and were supportive of her work in mathematics.

Sophie Germain is remembered as a brilliant and determined trailblazer in mathematics. She was the first woman to win a prize from the Paris Academy of Sciences for her contributions in elasticity theory and was among the first to make significant contributions toward proving Fermat’s Last Theorem. Among her many accomplishments, one special case of Fermat’s Last Theorem she was able to prove is when the exponent takes the form of what is now known as a Sophie Germain prime: a prime, p, such that 2p+1 is also a prime. The associated prime, 2p+1, is called a safe prime.

To mark International Women’s Day, I’ve created a document exploring the Ulam spiral highlighting Sophie Germain primes and safe primes, as an adaptation of Lazar Paroski’s Ulam spiral document. The image below displays part of the Ulam spiral with Sophie Germain primes highlighted in red, safe primes highlighted in blue, primes that are both a Sophie Germain prime and safe prime highlighted in purple, and primes that are neither in grey.