Maple Learn Questions and Posts

These are Posts and Questions associated with the product, Maple Learn

Have you ever wanted to create practice problems and quizzes that use buttons and other features to support a student making their way to an answer, such as the following?

Let’s take a look at how you can use Maple 2022 to create documents like these that can be deployed in Maple Learn. I know I’ve always wanted to learn, so let’s learn together. All examples have a document that you can use to follow along, found here, in Maple Cloud.  

The most important command you’ll want to take a look at is ShareCanvas. This command generates a Maple Learn document. Make sure to remember that command, instead of ShowCanvas, so that the end result gives you a link to a document instead of showing the results in Maple. You’ll also want to make sure you load the DocumentTools:-Canvas subpackage using with(DocumentTools:- Canvas).

If you take a look at our first example, below, the code may seem intimidating. However, let’s break it down, I promise it makes sense!

with(DocumentTools:-Canvas);
cv := NewCanvas([Text("Volume of Revolution", fontsize = 24), "This solid of revolution is created by rotating", f(x) = cos(x) + 1, Text("about the y=0 axis on the interval %1", 0 <= x and x <= 4*Pi), Plot3D("Student:-Calculus1:-VolumeOfRevolution(cos(x) + 1, x = 0 .. 4*Pi, output = plot, caption=``)")]);
ShareCanvas(cv);

The key command is Plot3D. This plots the desired graph and places it into a Maple Learn document. The code around it places text and a math group containing the equation being graphed. 


Let’s take a look at IntPractice now. The next example allows a student to practice evaluating an integral.

with(Grading):
IntPractice(Int(x*sin(x), x, 'output'='link'));

 This command allows you to enter an integral and the variable of integration, and then evaluates each step a student enters on their way to finding a result. The feedback given on every line is incredibly useful. Not only will it tell you if your steps are right, but will let you know if your last line is correct, i.e if the answer is correct.

Finally, let’s talk about SolvePractice.

with(Grading):
SolvePractice(2*x + 3 = 6*x - 9, 'output' = 'link');

This command takes an equation, and evaluates it for the specified variable. Like the IntPractice command, this command will check your steps and provide feedback. The image below shows how this command looks in Maple 2022.

These commands are the stepping stones for creating practice questions in Maple Learn. We can do so much more in Maple 2022 scripting than I realized, so let’s continue to learn together!

Some other examples of scripted documents in the Maple Learn Document Gallery are our steps documents, this document on the Four Color Visualization Theorem, and a color by numbers. As you can see, there’s a lot that can be done with Maple Scripting.

 Let us know in the comments if you’d like to see more on Maple 2022 scripting and Maple Learn.

If you do as much math as I do, you’ll likely agree that it’s important to take breaks from intensive work.  However, sometimes one wants to keep one’s mind stimulated with math.  This makes mathematical puzzles and games a perfect respite.  Alternatively, even if you don’t do as much math professionally, math puzzles are a fun and easily-accessible way to keep your mind sharp.  Games like sudoku and Rubik’s cubes are incredibly popular for good reason.

My personal favourite math puzzle is the nonogram, sometimes called hanjie, picross, or picture cross.  The game presents players with a blank grid of squares and clues indicating which ones should be colored in.  When the puzzle is solved, the colored squares depict a simple image.  You can read more thorough instructions here.

 


Nonograms are now available in Maple Learn!  These documents are coded using Maple scripts which can be viewed online in Maple Learn.  The document collection has pre-made puzzles and randomly-generated puzzles, and now you can create your own!  Use this document to create an image, and follow the instructions therein to generate the interactive puzzle.  Once you’ve created your own Maple Learn nonogram, use the sharelink to send it to friends!  Also keep your eye on the entire Maple Learn games collection for more in the future!

Bon vendredi à tous! Je suis de retour avec un autre article de mise à jour détaillant les nouveautés que nous avons apportés à Maple Learn cette semaine. Bonne lecture!

Tout d'abord, nous avons ajouté des permutations et des combinaisons, ainsi que la notation binomiale, à Maple Learn ! Gardez l’œil à l’affût des documents utilisant ces nouvelles fonctionnalités et consultez nos exemples ici et ici. Les opérations se trouvent dans la palette des fonctions. Nous espérons que cela permettra de rendre votre création de document avec Maple Learn encore plus agréable !

Nous avons également mis à jour la syntaxe des graphiques paramétriques pour utiliser l'opérateur tel que. Veuillez consulter notre page d’instruction pour plus de détails (ici). Remplacez simplement la virgule de l'ancienne syntaxe par le |. À partir de là, placez vos restrictions et le tour est joué ! Un graphique paramétrique utilisant l'opérateur tel que.

Enfin, quelques changements mineurs à Maple Learn. Nous avons ajusté la taille de police par défaut à une police de taille 20. De plus, nous avons fait en sorte qu'il remplace automatiquement <= ou >= par le symbole ≤ ou ≥.

J'espère que ces nouvelles fonctionnalités sont tout aussi intéressantes pour vous qu'elles le sont pour moi ! Faites-nous savoir ce que vous pensez dans les commentaires ci-dessous.

Happy Friday everyone! I’m back with another update post detailing the new changes we’ve made to Maple Learn this week. Just keep reading, and we’ll get right into them.

First, we’ve added permutations and combinations, along with binomial notation, to Maple Learn! Keep an eye out for documents using these new features, and check out our examples here and here.  The operations can be found in the functions palette. We hope that this allows even more fun with documents on Maple Learn!

We’ve also updated the syntax for parametric plots to use the such that operator. Please see our how-to page for more detail (here). Simply replace the comma from the old syntax with the |. From there, place your restrictions, and voila! A parametric plot using the such that operator.

Finally, some minor changes to Maple Learn. We’ve adjusted the default font size to 20 point font. As well, we’ve made it automatically change <= or >= to the ≤ or ≥ symbol.

I hope these new features are just as exciting to you as they are to me! Let us know what you think in the comments below.

Récemment, j’ai assisté à une présentation sur comment utiliser Maple Learn pour créer des documents artistiques et aujourd’hui  je vous écris pour vous donner mes conseils sur ce sujet. Maple Learn a beaucoup de fonctionnalités permettant de créer des documents visuels tout en étant un outil parfait pour faire vos devoirs.

Caractéristique 1 : Les formes

 Le premier document artistique de cette collection, le « Pi Pie » a été créé en utilisant la palette géométrie de Maple Learn. Elle fournit des modèles pour tracer des formes géométriques de façon plus simple. Le plus important dans ce document est l’utilisation de « Polygon() » pour créer le symbole pi. Insérez le nombre de points que vous voulez entre les parenthèses et le graphique connectera les points dans l’ordre entre eux. J’ai dessiné le symbole de pi sur un papier graphique et j’ai copié les points dans Maple Learn. C’est beaucoup d’effort, mais je pense que l’effet créé en vaut la peine.

 

Caractéristique 2 : Les fonctions

Ce personnage se nomme Milo je l’ai créé au lycée. Avec Maple Learn je l’ai reproduit en utilisant avec uniquement des fonctions. Voyons cela plus en détails :

  • La tête et les cheveux sont des fonctions paramétriques. Les personnes  se souvenant de leur cours de maths savent que (x, y) = (cos(t), sin(t)) est la formule d’ un cercle unitaire. Nous pouvons modifier l ‘étendue de t, les coefficients avant sin(t) et cos(t) et additionner ou soustraire les constantes pour créer des cercles partielles ou des ellipses.
  • Les yeux grisés sont fait avec des inégalités. Maple Learn permet de griser des régions d’inégalités automatiquement.
  • Le sourire de Milo est l’équation d’un cercle limité par “| y < -0.5”. L’opérateur barre  « such that » vous permet de limiter le domaine et l’étendue d’une fonction.
  • Le cœur vient d’une formule trouvée en ligne. Les mathématiciens ont découvert beaucoup d’équations incrédules de ce type !

Caractéristique 3 : L’animation

Mon document artistique final permet de voir germer une jolie fleur lorsque l’on utilise le curseur de la barre de défilement.  Après avoir défini une variable dans Maple Learn, la barre de défilement apparait et permet l’ajustement de la valeur de la variable. Par exemple :

  • Associez les coordonnées d’un point avec une variable. Évaluez une fonction à un point correspondant à cette variable et voyez comment lorsque la variable change, le point se déplace.
  • Associez l’étendue  d’une fonction paramétrique à une variable. Quand la variable change la fonction s’étend ou se contracte.
  • Utilisez une variable avec une fonction par morceaux. Quand la variable est dans la gamme lui correspondant vous pouvez la visualiser.

Les mathématiques sont une belle langue et chaque type d’expression peut ajouter un plus à votre toile. Mes techniques ne sont que le début de belles pièces d’arts dans Maple Learn. Montrez-nous vos documents artistiques ou vos techniques dans les commentaires !

 

It’s been a few months since the previous blog post on Maple Learn art, and the possibilities keep on growing.  I recently took part in a presentation on art in Maple Learn, and am here to pass on some tips and tricks to you, dear blog reader.  Maple Learn has a huge capacity for both creativity and ingenuity, and is the perfect program for doing your homework or exploring the world of mathematical art.  Check out the art I made here, and soon even more will be added to the Maple Learn Example Gallery!

 

Feature 1: Shapes

The first drawing in the batch, the “Pi Pie” (happy Pi Day!) was created using Maple Learn’s geometry palette.  The palette provides templates for plotting geometric shapes easily.  Most notably in this art is the use of Polygon() to create the pi symbol.  Insert as many points as you want between the brackets, and the plot will connect each one in order.  I drew pi on graph paper and copied down all the coordinates into Maple Learn.  A lot of work, but the effect was worth it.

 

Feature 2: Functions

This is Milo, a character I made in high school.  In Maple Learn, he is built entirely out of functions.  Let’s take a deep dive into what’s going on:

  • The head and hair are parametric functions.  Folks who’ve taken a math class that includes parametrics know that (x, y) = (cos(t), sin(t)) is the formula for a unit circle.  We can modify the range of t, coefficients in front of sin(t) and cos(t), and add or subtract constants to create partial circles and ellipses.

  • The shaded eyes are done with inequalities; Maple Learn shades inequality areas automatically.

  • Milo’s big smile is the equation of a circle with the added detail “| y < -0.5”.  The bar is the “such that” operator, which allows users to limit the domain and range of the function.

  • The body is a piecewise function: positive slope for x-values on the left side, negative slope for x-values on the right, and nothing in between.

  • The heart shape came from a formula found online.  Mathematicians have discovered some incredible equations!

 

Feature 3: Animation

By final piece sprouts into a beautiful flower as one moves a slider.  After defining a variable in Maple Learn, a slider appears to adjust it.  This can be used for interactive explorations of graphs and animations.  For example:

  • Associate the coordinates of a point with the variable or a function evaluated at the variable.  As the variable changes, the point will move.

  • Associate the range of a parametric function with the variable.  As the variable changes, more or less of the function will appear.

  • Use the variable in the conditions of piecewise functions.  When the variable is in the correct range, the shapes or functions you defined in the piecewise will appear.

 

Mathematics is a beautiful language, and every type of expression can add more to your canvas.  These techniques are just the beginning of beautiful Maple Learn art.  Feel free to share your own art or your favorite tips in the comments! 

La pandémie de COVID 19 nous a forcé à nous lancés dans l'apprentissage en ligne - mais après deux ans, il est clair que l'apprentissage en ligne est là pour rester. La bonne nouvelle est que de plus en plus de recherches sont disponibles et nous donnant plus d'informations sur les avantages et inconvénients des différentes méthodes d'enseignement ainsi que leur impact sur l'apprentissage de l’élèves. Tout cela conduit à une question : comment l'enseignement peut-il être plus efficace en ces temps difficiles ? Nous discuterons des recherches effectués et leur lien avec Maple Learn. Cependant, je tiens à préciser que je ne prétends pas être un spécialiste du sujet. Je suis simplement un étudiant qui veut améliorer l'apprentissage en ligne pour moi-même et mes pairs.

Dans ce contexte il existe trois principaux styles d'apprentissage, convenus par les psychologues : apprentissage passif, actif et interactif. Cependant, aujourd'hui, nous allons nous concentrer uniquement sur l'apprentissage interactif. L'apprentissage interactif est l'endroit où l'élève agit comme «un sujet d'activité éducative» (Kutbiddinova, Eromasova et Romanova, 2016). Dans la pratique, cela signifie généralement que l'étudiant collabore avec ses pairs. Cette pièce est plus difficile lorsque les cours sont en ligne et/ou asynchrones. Personnellement, j'ai eu du mal à établir des liens avec mes pairs pendant mes études en ligne, car notre principale forme de communication était les messages sur les forums de discussion. Nous discuterons des avantages de l'apprentissage interactif, puis discutons de la façon dont Maple Learn peut être utilisé dans le modèle d'apprentissage interactif.

Le principal avantage de l'apprentissage interactif est qu'il encourage la participation active de toutes les personnes concernées. Lorsqu'ils sont encouragés à interagir avec leurs pairs dans des groupes plus petits, cela permet une plus grande participation des membres du groupe, par rapport au fait de poser des questions à toute la classe et de leur demander de lever la main pour répondre. Dans la même façon, l'apprentissage interactif crée plus d'engagement avec le matériel éducatif, ainsi que plus d'initiative de la part de l’étudiant (Ibid).

Dans un exemple discuté par Anderson en 2014, les étudiants se sont mis par paires et ils ont discuté de leur réponse à une question. Les étudiants, lors de l'exercice, devaient choisir sur une réponse, puis discuter de leur raisonnement qui a mené à ce choix,, dans le but de faire changer d'avis l'autre étudiant. Cela a créé une compréhension du matériel, ainsi qu'un investissement émotionnel dans le sujet.

Alors, comment Maple Learn peut-il aider à faciliter l'apprentissage interactif dans un environnement en ligne ? Commençons par recréer l'exemple d'Anderson, mais en ligne et avec une légère variation pour un cours de mathématiques.

À l'aide de Maple Learn, l'élève peut suivre toutes ses étapes, copier ses notes papier ou résoudre l'équation au fur et à mesure qu'il tape. Il peut également utiliser du texte pour expliquer son raisonnement pour chaque étape ou pour placer des formules à côté des mathématiques qu'il a utilisées.

À partir de là, l'élève peut utiliser la fonction de partage instantané pour échanger des documents avec quelqu'un d'autre dans la classe. Cela permet aux deux étudiants de voir le travail et le raisonnement de l'autre, sans avoir à lire des notes manuscrites numérisées. Cela signifie également que l'examen peut se produire de manière asynchrone, permettant aux étudiants de différents endroits et/ou fuseaux horaires de discuter. Contrairement à l'exemple original, puisque nous parlons de mathématiques, l'élève n'essaie pas nécessairement de convaincre l'autre élève. Les commentaires sur les mathématiques sont davantage utilisés pour donner des commentaires ciblés et soit comprendre soit d'autres façons de résoudre le problème, soit la bonne façon si elle a été mal résolue à l'origine.

S'éloignant de l'exemple, cette méthode peut également être utilisée pour l’annotation par les pairs. Maple Learn propose de nombreuses couleurs de police de texte différentes, permettant aux étudiants de laisser des commentaires sur le document, puis de générer un nouveau lien de partage instantané à renvoyer à l'étudiant d'origine.

Il existe bien d’autres façons d'utiliser Maple Learn pour l'apprentissage interactif, mais nous aimerions également connaître vos idées ! Veuillez nous faire savoir dans les commentaires si vous avez utilisé Maple Learn d'autres manières interactives, ou si vous avez des questions ou des suggestions à ce sujet.

The COVID 19 pandemic threw us for a spin with Online Learning – but after two years, it’s clear that Online Learning is here to stay. The good news is that more and more research is making its way to the classroom, giving us more information on the pros and cons of different teaching methods and how it impacts student learning. This all leads to one question: How can teaching be more effective during these tough times? Let’s discuss the research done and how it relates to Maple Learn. As a note, I do not claim to be an expert on this topic. I am simply a student attempting to improve online learning for myself and my peers.

There are three main styles of learning, in this context, agreed upon by psychologists: Passive, Active, and Interactive Learning. However, today we’re only going to focus on Interactive Learning. Interactive Learning is where the student acts as “a subject of educational activity” (Kutbiddinova, Eromasova, and Romanova, 2016). What this typically means in practice is the student collaborates with peers. This piece is much more difficult when classes are online and/or asynchronous. I know I struggled to make connections with my peers while in school online, as our main form of communication was discussion board posts. Let’s talk about the advantages of Interactive Learning first, and then discuss how Maple Learn can be used within the Interactive Learning model.

The main advantage of Interactive Learning is that it encourages the active participation of all involved. When encouraged to interact with peers in smaller groups, this allows more participation of the members of the group, compared to asking questions to the entire class and asking for them to raise their hands for answering. At the same time, Interactive Learning creates more engagement in the material, along with more student initiative (Ibid).

In one example discussed by Anderson in 2014, the students got into pairs and discussed their answer to a question. The students, in the exercise, had to commit to one answer and then discuss their reasoning behind the answer, in an attempt to change the other student’s mind. This created understanding of the material, along with emotional investment in the topic.

So, how can Maple Learn help to facilitate Interactive Learning in an online environment? Let’s start with recreating Anderson’s example, but online and with a slight twist to accommodate a math class.

Using Maple Learn, the student can go through all their steps, copying from their paper notes, or solving the equation as they type. They can also use text to explain their reasoning behind taking each step, or to place formulas beside the math they’ve used.

From there, the student can use the snapshot share feature to swap documents with someone else in the class. This allows both students to see the other’s work, and reasoning, without having to read scanned handwritten notes. This also means the review can happen asynchronously, allowing students from different places and/or time zones to discuss. In contrast to the original example, since we’re discussing Math, the student is not necessarily trying to convince the other student. The comments on the math are used more for giving targeted feedback, and understanding either other ways of solving the problem, or the correct way if originally solved wrong.

Taking a step away from the example, this method can also be used for peer marking. Maple Learn offers many different text font colors, allowing students to leave comments on the document, then generate a new snapshot to send back to the original student.

There are many other ways Maple Learn could be used for Interactive Learning, but we’d like to hear your ideas too! Please let us know in the comments if you’ve used Maple Learn in other Interactive ways, or if you have any questions or suggestions for us.

 

Works cited:

Anderson, Jill. “The Benefit of Interactive Learning.” Harvard Graduate School of Education, 2014, https://www.gse.harvard.edu/news/14/11/benefit-interactive-learning.

Kutbiddinova, Rimma, et al. “The Use of Interactive Methods in the Educational Process of the Higher Education Institution.” INTERNATIONAL JOURNAL OF ENVIRONMENTAL & SCIENCE EDUCATION, 2016, Accessed 2022.

Adeptes de Maple Learn, nous avons de bonnes nouvelles pour vous! Nous avons fait une mise à jour de Maple Learn avec quelques fonctionnalités supplémentaires que nous sommes ravis de partager avec vous.

Tout d'abord, nous avons ajouté des fonctionnalités de Conception réactive à Maple Learn. Cela signifie que lorsqu'un écran est plus petit ou rétréci, l'interface de Maple Learn change pour refléter cela. Cela vous permet d'avoir encore plus d'espace disponible, quelle que soit la taille de votre écran ! Par exemple, lorsque votre écran est suffisamment petit, et que vous cliquez dessus sur les palettes, une petite boîte de dialogue contextuelle s’ouvrira en dessous d'elles, au lieu d’avoir tout leur contenu dans la barre d'outils.

                                                         

Parallèlement à cela, une icône de redimensionnement d'image a été ajoutée à la barre d'outils pour faciliter le redimensionnement des images insérées dans votre document.

Comme note finale sur la conception réactive, plusieurs de nos menus ont été combinés en un seul, désigné par le menu latéral dans le coin supérieur gauche (illustré ci-dessous, à gauche). C'est là que vous trouverez les menus  fichier, édition, exemples et aide. Si vous cherchez le menu des paramètres, vous le trouverez entre le symbole premium et votre photo de profil en haut à droite. Ceci est désigné par trois points empilés les uns sur les autres (illustrés ci-dessous, à droite).

                                                                                        

Nous avons également ajouté plus de raccourcis clavier et augmenté la prise en charge du clavier AZERTY. La liste mise à jour est disponible ici. Nous espérons que ces nouveaux raccourcis vous aideront à créer des documents plus facilement.

Parallèlement à la prise en charge du clavier AZERTY, nous avons renforcé la prise en charge de nos utilisateurs francophones. De nombreux autres documents sont désormais disponibles en français et nous avons résolu un problème où les caractères latins étendus ne s'affichaient pas correctement.

Les graphiques cliquables sont là ! Maple Learn inclut désormais une fonctionnalité qui permet aux utilisateurs de colorier nos graphiques cliquables. Ces documents sont créés à l'aide de Maple et permettent de générer des documents de coloriage par numéro ou différentes visualisations pour les théorèmes qui impliquent des graphiques, comme ce document. D'autres documents seront disponibles ultérieurement dans la galerie de documents, située ici.

                                                          

Dites-nous ce que vous pensez des nouvelles fonctionnalités ci-dessous ! Nous espérons que vous apprécierez les utiliser pour créer de nouveau documents Maple Learn.

 

Works cited:

Anderson, Jill. “The Benefit of Interactive Learning.” Harvard Graduate School of Education, 2014, https://www.gse.harvard.edu/news/14/11/benefit-interactive-learning.

Kutbiddinova, Rimma, et al. “The Use of Interactive Methods in the Educational Process of the Higher Education Institution.” INTERNATIONAL JOURNAL OF ENVIRONMENTAL & SCIENCE EDUCATION, 2016, Accessed 2022.

It’s midterm season in North America! I know, I know, you see enough reminders at school. However, we’re here to help with those tough midterms, with tips good for those who are taking their first midterms or who have already taken many.

I surveyed the co-op students working at Maplesoft, and collected some of their best study tips and mindsets surrounding midterms. Maplesoft hires many co-ops, as a piece of their education in work experience.

Let’s start with studying! One thing many of the students brought up was the importance of notetaking. Even if the lectures are recorded, or PowerPoints are given, it’s important to take notes that you can study from, that are more succinct. As well, another discussed the importance of doing many different types of studying, in order to keep you interested and focused. For example, using flashcards and answering practice problems, instead of only using flashcards.

So, how can Maplesoft help with your studying? Let’s start with a video. In this video, Justice explains how first year math can be explored using Maple Learn’s features. He walks through using the document gallery, which we’ll talk about later, along with the power of Maple Learn.

You can also create your own study sheets in Maple Learn, to reference later, or to simply practice what you know! One suggestion would be to create a sheet as though you’re teaching someone else, as teaching can be a great way to learn concepts and cement them in your mind.

These are just some of the many ways that Maple Learn can be used to improve your studying! Play around with introducing Maple Learn into your study routine, and I know you’ll find a method that works for you.

Are you having trouble grasping some advanced concepts? We have many different documents in the document gallery, available here. These documents typically fall under 3 categories: explanation documents explaining theory, example documents showing how to apply the theory, and then practice problems for you to solve that include solutions.

Proofs were a topic the students considered an advanced topic, and as such we’ll use that as an example. A simple search brings up many documents, ranging from the proof of the derivative of sine (here) to the Taylor’s Theorem proof (here). These documents are available for a wide variety of topics, from calculus to graph theory to kinematics.

Time Management is another piece that many of the students identified. We know this can be hard, especially when there are so many things to juggle, so we’ve created a document to help you plan out your time, available here!

                                                          

Using the document, you can see how many hours in a day that you’re using for sleep, studying, and everything else you can think of. We hope this helps you to keep track of just how many hours in a day you can realistically study!

Now, we know that studying isn’t the only hard part of a midterm. The mindset piece is critical, along with studying. Let’s see what the students had to say about it!

One of the students surveyed responded with “I am going to fail at some point. It is inevitable, and that is okay”. This is a great mindset for everyone to have. Remember that even failure isn’t failure. Learning something from any experience is a success, even if the outcome wasn’t what you wanted. There’s always next time, and time to learn even more and improve.

Another student discussed the importance of a positive mindset, saying “Stay calm, stay confident, and as long as you try your best you will do great!” Remember, in the end, the best you can do is all you can do.

We know midterms are a stressful time. Take care of yourself as we at Maplesoft continue to support you.

Vous venez de découvrir vos résultats du bac blanc et n’avez pas obtenus les résultats espérés à l’épreuve de mathématiques ?

Maple Learn pourrait vous aider à améliorer vos connaissances et vous préparer pour le vrai baccalauréat.

Commencez par revoir les théorèmes et définitions essentielles en explorant les documents de la galerie Maple Learn. Si vous avez des doutes sur certaines définitions; n’hésitez pas à utiliser les outils graphiques de Maple Learn pour approfondir vos connaissances

Consultez ces documents ici et ici.

Ensuite entrainez-vous à faire vos exercices avec Maple Learn

Consultez ce document ici.

Et enfin vérifiez vos résultats avec la Calculatrice Maple pour voir les étapes de résolutions :


N’hésitez pas à partager en commentaire vos astuces pour réviser avec Maple Learn ou la Calculatrice Maple!

Happy Valentine’s Day! Love is celebrated all around the world on this day, but did you know of some other love celebrations, and some of the mythology around the holiday?

First of all, Cupid. We all know of the image of Cupid and his bow, shooting arrows to make couples fall in love. But where exactly did this come from?

Cupid is a Latin deity, the son of Venus and Mars. With his parents being love and war, it’s no surprise that he ended up with a bow! In one legend, he shoots a golden arrow at Apollo, which makes him fall in love with a nymph. Unfortunately for Apollo, he also shoots a lead arrow at the nymph, making her repulsed by him.

Roses are another popular tradition with Valentine’s Day. Red roses persist as a symbol of Aphrodite, the mother of Cupid, and are a symbol of love. Did you know you can draw them in Maple Learn with our geometry palette? See one rendition below of a stained glass rose. The link to the document is HERE.

Now, there are a few other love traditions around the world. Did you know that not everyone celebrates love only on Valentine’s Day? There are other important days around the world, and some pre-date Valentine’s Day.

For example, in China, the Miao people celebrate the Sister’s Meal Festival, likely our earliest form of a Valentine’s Day tradition in the world. This occurs in March. Young women make dyed rice representing the different seasons, and when the men come by to sing, they give them packages of the rice. Inside the rice are objects, each with different meanings. A pair of red chopsticks means the woman returns the man’s affection, while one red chopstick is a polite refusal. A clove of garlic or a chili pepper means a strong refusal, and pine needles mean that she is waiting for him to woo her.

We’ve created a document to join in on the fun, even if you’re not participating in this Festival this year. Follow the link HERE to work with fraction tiles to pack your own rice packages, and your own responses to declarations of love. 

We hope everyone has a lovely Valentine’s day!

You heard us right! With the new update of Maple Learn, we’ve added a few more interesting features, perfect to keep your math learning going.

Before we dig too far into these exciting features, we just have one quick thing to let you know about. We have updated the font sizes for Maple Learn text, adding 20 and 22 point font, and removing 36 and 120 point font.

Now, let’s talk new features. First, we’ve added support for partial derivatives, allowing you to calculate derivatives for functions with two or more variables. How does this work? Well, take a look at our example document HERE. The button for entering a partial derivative is located in the functions palette. You can plot them too (shown below)!

We’ve also added support for shaded Geometric Primitives. Remember our earlier post about MAPLE LEARN ART? Well, now you can color in your shapes! This allows for further math-related art, or ease of communication while teaching about area, or really, anything else you can think of! See how to use this HERE. In essence, with the shaded command, you can now place a geometric primitive inside the shaded command, which shades it! As well, you can assign a variable to a geometric primitive, and then place that inside the shaded command. This allows for a different color outline than the shaded section.

Ever wanted to create a sequence in Maple Learn? Well, now you can easily, with our new sequence support. The syntax is simple, focusing on the start, end, and steps. See how to use this HERE. We hope this can be used for all kinds of documents!

We hope you enjoy all the new features we’ve added to Maple Learn. Let us know in the comments what you think of them, and show us what you’re working on! Simply leave a comment with a link to a Maple Learn document, and we’ll gladly take a look at your ideas.

Happy Lunar New Year to everyone here in the MaplePrimes community, as we enter the Year of the Tiger! There are different traditions followed in the many countries around the world where the Lunar New Year is celebrated. In my own Canadian-Chinese family, we usually cook a big meal and share with family members and friends. 

The pandemic has made this year's celebration more muted, but I did cook a large batch of our favourite dumplings and made up several packages to take to friends. That led to the question: how many ways can I arrange 10 dumplings on a plate from the 3 kinds I made? Of course, that called for a Maple Learn document to compute the answer: A Counting Problem: Selecting Dumplings
 


I was also interested in understanding the formula used in this computation, and so I created a second document showing a special case of this problem. By moving the sliders around, you can see how the "Stars and Bars" method for counting the ways one can choose a number of items from distinct bins works: Visualization the Stars and Bars Method.

I hope you enjoy trying out these documents and I wish everyone good health, happiness and prosperity in the coming year!

When I was in middle school, I was really into puzzles.  At one point I attempted the Three Utilities Problem.  This famous problem is deceptively simple: three houses and three “utilities” (heating, water, and electricity) are represented by dots on a flat piece of paper.  The goal is to connect each house to the three utilities without crossing any lines.

Figure 1: A starting setup.

I spent hours drawing lines.  I eventually looked it up online, and the internet told me that the problem was impossible.  I didn’t believe it, and tried for several more hours until I was forced to accept its impossibility.  I still remember this intense stint of puzzling to this day.

    

Figure 2: Cue twelve-year-old me saying “I’ll get it eventually…”

Looking back, I wonder if this sparked my interest in graph theory.  I know now that the Three Utilities Problem is truly unsolvable.  I know that the graph’s formal name is K3,3 and I know a full graph theory proof explaining its nonplanarity.  Nevertheless, I still love this puzzle, and I’ve recently recreated it in Maple Learn.

To do this, I created a table of x and y values and plotted all of them using the Point() command.  This allows the points to be fully click-and-drag-able.  Line segments joining two points automatically move with the points as well.  We then have a fully interactive graph directly in the Maple Learn plot window.  I can move the “houses” and “utilities” around all I want to try and solve the unsolvable.  I can also create other graphs to further explore planarity, paths, matchings, or any other aspects of the wide world of graph theory.

If you want to check out the document for yourself, it can be found here

1 2 3 Page 1 of 3