Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

I am trying to develop a recursive code to the above equations.  Note, U,X&Y are multivariate functions (in this case bivariate functions of (x,y)) i.e. U=U(x,y), X=X(x,y) etc.

restart;
u := (H(x, t, z)+sqrt(R))*exp(I*R*x);
                /              (1/2)\           
                \H(x, t, z) + R     / exp(I R x)

I*(Diff(u, z))+Diff(u, `$`(x, 2))+Diff(u, `$`(t, 2))+(abs(u)*abs(u))*u-((abs(u)*abs(u))*abs(u)*abs(u))*u;
  / d  //              (1/2)\           \\
I |--- \\H(x, t, z) + R     / exp(I R x)/|
  \ dz                                   /

     / 2                                   \
     |d  //              (1/2)\           \|
   + |-- \\H(x, t, z) + R     / exp(I R x)/|
     \                                     /

     / 2                                   \                    
     |d  //              (1/2)\           \|                  2 
   + |-- \\H(x, t, z) + R     / exp(I R x)/| + (exp(-Im(R x)))  
     \                                     /                    

                       2                                    
  |              (1/2)|  /              (1/2)\              
  |H(x, t, z) + R     |  \H(x, t, z) + R     / exp(I R x) - 

                                        4                       
                 4 |              (1/2)|  /              (1/2)\ 
  (exp(-Im(R x)))  |H(x, t, z) + R     |  \H(x, t, z) + R     / 

  exp(I R x)
value(%);
  / d            \              / d  / d            \\           
I |--- H(x, t, z)| exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
  \ dz           /              \ dx \ dx           //           

         / d            \             
   + 2 I |--- H(x, t, z)| R exp(I R x)
         \ dx           /             

     /              (1/2)\  2           
   - \H(x, t, z) + R     / R  exp(I R x)

     / d  / d            \\                             2 
   + |--- |--- H(x, t, z)|| exp(I R x) + (exp(-Im(R x)))  
     \ dt \ dt           //                               

                       2                                    
  |              (1/2)|  /              (1/2)\              
  |H(x, t, z) + R     |  \H(x, t, z) + R     / exp(I R x) - 

                                        4                       
                 4 |              (1/2)|  /              (1/2)\ 
  (exp(-Im(R x)))  |H(x, t, z) + R     |  \H(x, t, z) + R     / 

  exp(I R x)
simplify(%);
  / d            \              / d  / d            \\           
I |--- H(x, t, z)| exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
  \ dz           /              \ dx \ dx           //           

         / d            \                 2                      
   + 2 I |--- H(x, t, z)| R exp(I R x) - R  exp(I R x) H(x, t, z)
         \ dx           /                                        

      (5/2)              / d  / d            \\           
   - R      exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
                         \ dt \ dt           //           

                                                  2           
                             |              (1/2)|            
   + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                  2       
                             |              (1/2)|   (1/2)
   + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  R     

                                                  4           
                             |              (1/2)|            
   - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                  4       
                             |              (1/2)|   (1/2)
   - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  R     
collect(%, exp(I*R*x));
 /  (5/2)       / d            \      2           
 |-R      + 2 I |--- H(x, t, z)| R - R  H(x, t, z)
 \              \ dx           /                  

        / d            \   / d  / d            \\
    + I |--- H(x, t, z)| + |--- |--- H(x, t, z)||
        \ dz           /   \ dx \ dx           //

      / d  / d            \\\           
    + |--- |--- H(x, t, z)||| exp(I R x)
      \ dt \ dt           ///           

                                                   2           
                              |              (1/2)|            
    + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                   2       
                              |              (1/2)|   (1/2)
    + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  R     

                                                   4           
                              |              (1/2)|            
    - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                   4       
                              |              (1/2)|   (1/2)
    - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  R     
 

I was able to fix the problem. But I wanna use if statements to differentiate between complex and real roots in the attached file below:SOLVING_SYS.mw.

I was computing an integral (Running Maple 18 on Windows 10):

The classic lenght of arc Integral of sqrt(1+(dy/dx)^2) dx

In this case, the function was a cartesian circle (x-R)^2+y^2=R^2 isolated as y=sqrt(R^2-(x-R)^2)

When I do the integration, the result of the integral is not correct.
But if I change R for a, the result is correct. Why? This does not make any sense.

R wasn't assigned to any variable. The code was:

Good Integral

[>y:=expand(sqrt(a^2-(x-a)^2));
[>f:=expand(simplify(sqrt(1+diff(y,x)^2)));
[>S:=int(f,x)+K;

Wrong Integral

[>y:=expand(sqrt(R^2-(x-R)^2));
[>f:=expand(simplify(sqrt(1+diff(y,x)^2)));
[>S:=int(f,x)+K;

In fact, any UPPERCASE letter used as the radius gives me the wrong answer whereas any LOWERCASE letter gives me the proper result. Why is this?

Thanks and have a nice day
EDIT: I added a Screenshot

Hello!

I am trying to integrate this function numerically from x=0... 1, by using int and evalf(Int) but maple cannot handle it. Is there another kind of numerical integration?

(2*x-1)^2*(2*n+(5*(2*x-1))*(x-1))*(2*n-5+5*x)*ln(1-(5*(1-x))*x/n)/((1-x)^2*(-2*n-(15*(1-x))*x))

Are there another kind of procedures to do numerical integration?

 

 

Bellissima used kripky modules to find the labels for one and two generators. the number of these labels increses to a very large number as we add another level. Can maple help count these lables? and how?

Dear maple users 

Greetings.

I hope you are all fine.

In this code, I am solving the PDEs via pdsolve with numeric.

There is some mistake in the boundary condition and pdsolve.

Kindly help me that to get the solution for this PDE.

Waiting for your reply.

In this problem h(z) is piecewise 

 

Bc:   

code:JVB.mw

 

Note: z=0.5:

Hi everyone, i want to draw 3d graphics of fractional solution with given by Mittag Leffler function in cantor sets. I want to see like this graphic. I added maple file. Thanks in advance.

3D_graphic.mw3D_graphic.mw

Hi, dear community,
I have a Maple package "rath" for finding the traveling wave solution of differential equations. But I am not able to loading in Maple 18. Please see this attached zip folder and need help in this regard.
Kind regard

inform.txt,

PaperExp.mws

rath.txt

How to plot u(t)= z'(t) with respect to x, y, z?

  Here,  z(t)=y'(t), y(t)=x'(t).

where, x(t)= z^3(t), y(t)= z^3(t)/2, z(t) = (a- b), a, b are time interval.

Trajectories.mw

How to solve the matrix for u(t) and plot phase trajector?

How to solve this differential equation numerically

eq:=diff(f(tau), tau) =Af(tau) +Lf(tau) +C+Bf(tau)

1 2 3 4 5 6 7 Last Page 1 of 78