Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

Maple 2016 worked fine on July 27.

On July 28 Microsoft insisted on applying a patch to Windows 10 (they called it a "significant upgrade"). After that, Maple 2016 no longer works - it loads, presents the default worksheet, allows you to load a previous worksheet, but as soon as you go to do anything, it quits.

Any suggestions, other than downgrading to the previous version of Windows 10, which I have already done, (and turned off MS windows update services)?

Hello!
I have a problem with calculations. I have a worksheet and it calculated on some computer but on another i have an error after each equation. I dont have any idea why. When i click on error i see "Sorry, we do not have specific information about your error. " What can i doo with this?

This app is used to study the behavior of water in its different properties besides air. Also included is the study of the fluids in the state of rest ie the pressure generated on a flat surface. Integral developed in Maple for the community of users in space to the civil engineers.

App_for_fluids_in_flat_state_of_rest.mw

Lenin Araujo Castillo

Ambassador of Maple

 

Hello people in mapleprimes,

I want to single out omega^epsilon from and modify the rhs of the following expression
to the expression where the  the part without omega^epsilon and  another part of  omega^epsilon
are multiplied.

Y = -L*epsilon^epsilon*(1-epsilon)^(1-epsilon)*(-omega^(-1+epsilon)*k*theta+(1-theta)*omega^epsilon)/(1-epsilon-theta)

I am glad if you teach me this.

taro

 

Hello people in maple primes,

I have an expression,

e1_1:=-gamma*r*theta/(w*beta*(theta-1))

, which I want to put in order as 

gamma*r*theta/(w*beta*(1-theta))

Isn't there any ways to do the modification above?

 I am very glad if you answer to my question.

taro

Trying to solve:

solve (arctan((2*x^2-1)/(2*x^2+1)) = 0, x);

The answer I get is the original function:

 
            arctan((2*x^2-1)/(2*x^2+1))

 

This example is from the Maple book by Keck, and he shows the Maple V answer as

1/2 sqrt(2) -1/2 sqrt(2)     

Suggestions?

Suppose that I have an expression of the form  eq:=a*x^2+b*y^2+c*x*y, where x,y are real numbers, a>0, b<0, and c>0. Is there a relatively simple way to separate the positive, negative, and indeterminate terms from such an expression. In other words, I want to get  

eq_positive=a*x^2,

 eq_negative=b*y^2,

eq_indeterminate=c*x*y.

Thanks

Dear Community,

I try to solve the following very simple ODE symbolically with the ODE Analyzer assistant, yet Maple says "unble to obtain solution". :-/

If I try to slove it with dsolve, nothing happens. Is it really so difficult?

diff(p(h),h)=A/(B+C*p(h)), p(h0)=p1

A, B, C, h0 and p1 are constants. I use Maple 2016.

Tx in advance,

best egards

Andras

Hi everyone,

I have a strange problem with the LSSolve function. I get an error when specifying an optimality tolerance as an option for LSSolve function : "unexpected parameters: optimalitytolerance = 1/1000" (see attached). When I remove the option, the LSSolve function works and returns something. Why ?

This is a problem for me because in my program I automatically generate lots of equations and I need to solve them using the same parameters.  "list1" is an example of a list that makes LSSolve to return an error and therefore it makes my program stop.
Is it possible, when LSSolve returns an Error, to re-run the function without the optimalitytolerance option ?
 

with(Optimization):

[0.127345646906885e-1-0.186555124779203e-2*D32-0.282637107183903e-3*D33, -0.427981372479296e-2+0.184372031092059e-1*D32+0.366060535331614e-2*D33, -0.279056870350439e-1+0.497068050546578e-1*D32+0.300683751452398e-1*D33, -0.159123153512316e-1-0.200310190531632e-2*D32+0.110642730744851e-1*D33, -0.358677392345135e-2-0.477282036776905e-2*D32+0.279495051520868e-2*D33, -.158025406913808+.301050727553470*D32+0.991309483578555e-1*D33, -0.767170565747362e-1+0.287589092672543e-1*D32+0.380554240544922e-1*D33, 0.134025593814442e-1-0.163134747085529e-1*D32-0.978424817965354e-2*D33, 0.177936771272063e-1-0.193555892719151e-1*D32-0.117324484775754e-1*D33, .136323651819599-.101383912457110*D32-0.800923073293239e-1*D33, 0.658540765374620e-1-.134530865070270*D32-0.449966493124888e-1*D33, 0.366589441985546e-1-0.923517762126252e-1*D32-0.313964041159186e-1*D33, 0.200320004853408e-2-0.454710553314498e-2*D32-0.121523285055995e-2*D33, 0.362766049610844e-2-0.103494064252009e-1*D32-0.347855768021822e-2*D33, 0.431461474510905e-2-0.122762710681104e-1*D32+0.305664301894285e-3*D33]

(1)

LSSolve(list1, [0 <= D32, 0 <= D33], optimalitytolerance = 10^(-3))

Error, (in Optimization:-LSSolve) unexpected parameters: optimalitytolerance = 1/1000

 

``

``

 

 

worksheet_help.mw



Thanks in advance,
Lilian

In the Maple help to use a matrix defined monomial order it is said to define a matrix and a list of variables and then typing 'matrix'(M,V). But I fail to use it. A very simple example:

M:=<<1,0>|<0,1>>;
V:=[x,y];
Groebner[LeadingMonomial](y^3+x*y, 'matrix'(M, V));

But Maple shows this error:

 

Error, invalid input: Groebner:-LeadingMonomial expects its 2nd argument, tord, to be of type {MonomialOrder, ShortMonomialOrder}, but received matrix(Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 1) = 0, (2, 2) = 1}), [x, y])

What is wrong?

 

How to solve this problem? I want to display plot of differential equation system

this download link my problem https://drive.google.com/file/d/0B-qKE-5zgVbLeWVMd0xkMFY1Y00/view?usp=sharing

Thank you :)

Hi everyone,

I am desperatly trying to find a reason to those weird results I get using LSSolve. It could really help me to understand, maybe I am using the function the wrong way.
I have a system of equations which is overdetermined that I wrote using an electrical simulation and kirchoff's laws.
I am trying to resolve it using the LSSolve function. Here is the list of residuals :

list := [-0.444299277411586e-2+(270.100000000000-Phi12_18)*D18, -.264819908561346+(627.030000000000-Phi23_18)*D18, .191242220011840+(-259.080000000000-Phi34_18)*D18, 0.269723795794403e-1+(-40.5060000000000-Phi45_18)*D18, 0.674200455699644e-2+(-10.1270000000000-Phi56_18)*D18, .109534122562258+(-197.290000000000-Phi67_18)*D18, 0.481462872723211e-3+(-2.41420000000000-Phi78_18)*D18, -0.346014532189641e-4+(-2.53290000000000-Phi89_18)*D18, -0.402474969346295e-4+(-2.94150000000000-Phi910_18)*D18, -0.632005430249463e-3+(-8.57100000000000-Phi1011_18)*D18, -0.105749265697549e-1+(-37.6580000000000-Phi1112_18)*D18, -0.116305497595306e-1+(-55.3250000000000-Phi1213_18)*D18, -0.581547498854927e-3+(-2.76630000000000-Phi1314_18)*D18, -0.371408130367776e-2+(-22.0900000000000-Phi1415_18)*D18, -0.886173700610320e-2+(-56.4810000000000-Phi1516_18)*D18, -0.478846208996643e-1+(262.447651185421-Phi12_18)*D29+(262.447651185421-Phi12_24)*D36, .348429199898355+(62.3165310883292-Phi23_18)*D29+(62.3165310883292-Phi23_24)*D36, .237294781239637+(41.8563477700905-Phi34_18)*D29+(41.8563477700905-Phi34_24)*D36, 0.356987380524040e-1+(6.12136413036823-Phi45_18)*D29+(6.12136413036823-Phi45_24)*D36, 0.892515544035472e-2+(1.53042068810978-Phi56_18)*D29+(1.53042068810978-Phi56_24)*D36, .163733792213247+(26.7554245920538-Phi67_18)*D29+(26.7554245920538-Phi67_24)*D36, 0.917897899527287e-3+(-0.110562085900856e-3-Phi78_18)*D29+(-0.110562085900856e-3-Phi78_24)*D36, 0.242480164562623e-4+(-.283316330467957-Phi89_18)*D29+(-.283316330467957-Phi89_24)*D36, 0.281967728090880e-4+(-.329007391842407-Phi910_18)*D29+(-.329007391842407-Phi910_24)*D36, -0.812318100863302e-3+(-1.22850243118112-Phi1011_18)*D29+(-1.22850243118112-Phi1011_24)*D36, -0.174002698946928e-1+(-9.57006175329410-Phi1112_18)*D29+(-9.57006175329410-Phi1112_24)*D36, -.125540933056649+(-44.2197489328973-Phi1213_18)*D29+(-44.2197489328973-Phi1213_24)*D36, -0.627722694977691e-2+(-2.21106159188713-Phi1314_18)*D29+(-2.21106159188713-Phi1314_24)*D36, -0.739424545575381e-1+(-24.8403831529913-Phi1415_18)*D29+(-24.8403831529913-Phi1415_24)*D36, -.203976357415920+(-68.0132712014090-Phi1516_18)*D29+(-68.0132712014090-Phi1516_24)*D36, 0.196522429267177e-1+(197.940000000000-Phi12_24)*D27, 0.368371276889244e-2+(57.8900000000000-Phi23_24)*D27, 0.144256702539785e-2+(48.4450000000000-Phi34_24)*D27, -0.115630146715321e-3+(10.-Phi45_24)*D27, -0.283028527731083e-4+(2.50010000000000-Phi56_24)*D27, -0.300476205822746e-2+(66.2640000000000-Phi67_24)*D27, -0.653509876948917e-3+(2.69040000000000-Phi78_24)*D27, -0.126753046978926e-2+(4.44790000000000-Phi89_24)*D27, -0.147212636486122e-2+(5.16530000000000-Phi910_24)*D27, -0.484316181019253e-2+(16.6000000000000-Phi1011_24)*D27, -0.298854531528585e-1+(96.8770000000000-Phi1112_24)*D27, -.120604432493978+(315.410000000000-Phi1213_24)*D27, -0.603334119632106e-2+(15.7700000000000-Phi1314_24)*D27, -0.664471982996522e-1+(167.170000000000-Phi1415_24)*D27, 0.786913003105101e-1+(-326.760000000000-Phi1516_24)*D27]


I know that all D values must be positive. When resolving the system without any constraints (D >= 0), i get the values I expected (knowing the input I used in the simulation), with a really low error :

result := LSSolve(list);

[1.82130325886306*10^(-8), [D10 = 0.200009334740825e-2, D11 = 0.666620509302803e-3, D14 = 0.222215208246154e-2, D15 = 0.128202791383597e-2, D17 = 0.499886140344411e-2, D19 = 0.302925526676043e-3, D2 = 0.100002349341980e-2, D20 = 0.142849446596938e-3, D22 = 0.111121127122156e-1, D23 = 0.222228054119820e-2, D25 = 0.714293621502836e-3, D26 = 0.833326349912537e-3, D28 = 0.217396531719902e-3, D3 = 0.400217567900069e-3, D6 = 0.166878862202449e-3, D7 = 0.999969828547956e-2, Phi1011_17 = -1.22850243118112, Phi1011_19 = -20.5335193736012, Phi1011_21 = -104.090964313150, Phi1011_23 = 19.2144499395683, Phi1112_17 = -9.57006175329410, Phi1112_19 = -81.6848630234903, Phi1112_21 = -242.149849175388, Phi1112_23 = 109.001351349915, Phi1213_17 = -44.2197489328973, Phi1213_19 = -92.8267195929548, Phi1213_21 = -204.444165890808, Phi1213_23 = -61.4447612788985, Phi12_17 = 262.447651185421, Phi12_19 = 262.149192406679, Phi12_21 = 256.248405276737, Phi12_23 = 246.521172863223, Phi1314_17 = -2.21106159188713, Phi1314_19 = -4.64255435896474, Phi1314_21 = -10.2212158757032, Phi1314_23 = -3.07798400495386, Phi1415_17 = -24.8403831529913, Phi1415_19 = -30.5944507718603, Phi1415_21 = -45.5847025259923, Phi1415_23 = -77.3297680041818, Phi1516_17 = -68.0132712014090, Phi1516_19 = -74.2023324471993, Phi1516_21 = -95.1952296374558, Phi1516_23 = -132.328467080565, Phi23_17 = 62.3165310883292, Phi23_19 = 200.804225452845, Phi23_21 = 130.018791598707, Phi23_23 = 73.7043262431720, Phi34_17 = 41.8563477700905, Phi34_19 = 343.409987932231, Phi34_21 = 159.593996060841, Phi34_23 = 62.6564757702407, Phi45_17 = 6.12136413036823, Phi45_19 = 12.3839171939746, Phi45_21 = 46.0005281797016, Phi45_23 = 13.1665796516893, Phi56_17 = 1.53042068810978, Phi56_19 = 3.16614687399595, Phi56_21 = 11.4998114891963, Phi56_23 = 3.29093394692614, Phi67_17 = 26.7554245920538, Phi67_19 = -244.288977944524, Phi67_21 = 376.351493538080, Phi67_23 = 88.4830465193635, Phi78_17 = -0.110562085900856e-3, Phi78_19 = -6.28061380389266, Phi78_21 = 43.7035845962372, Phi78_23 = 3.35123473697264, Phi89_17 = -.283316330467957, Phi89_19 = -6.18811507913178, Phi89_21 = -13.9258224376815, Phi89_23 = 5.20325572546379, Phi910_17 = -.329007391842407, Phi910_19 = -7.18580970783931, Phi910_21 = -16.1669897128450, Phi910_23 = 6.04291224185087]]


When adding the constraints that D should be positive (and that are actually positive in the previous result), I get a worse result in term of precisions :

LSSolve(list, {D10 >= 0, D11 >= 0, D14 >= 0, D15 >= 0, D17 >= 0, D19 >= 0, D2 >= 0, D20 >= 0, D22 >= 0, D23 >= 0, D25 >= 0, D26 >= 0, D28 >= 0, D3 >= 0, D6 >= 0, D7 >= 0});

[0.667302976414869964e-1, [D10 = 0.240199442379079e-2, D11 = 0.666577572133538e-3, D14 = 0.222218786790062e-2, D15 = 0.128192441757651e-2, D17 = 0.278678889056743e-2, D19 = 0.200473317719685e-3, D2 = 0.109938538155804e-2, D20 = 0.840721762649974e-4, D22 = 0.685770482726534e-3, D23 = -1.387530857*10^(-312), D25 = 0.714397733627028e-3, D26 = 0.833201232339238e-3, D28 = 0.204319731851617e-3, D3 = 0.419994015872111e-3, D6 = 0.191996909862889e-3, D7 = 0.103884505319047e-1, Phi1011_17 = -.709707335593168, Phi1011_19 = -15.7863975896827, Phi1011_21 = -151.171843708558, Phi1011_23 = 19.2211409030343, Phi1112_17 = -8.90604676283968, Phi1112_19 = -75.8627539382983, Phi1112_21 = -311.423930967299, Phi1112_23 = 109.002880650927, Phi1213_17 = -54.9212365194647, Phi1213_19 = -89.9790565093006, Phi1213_21 = -250.971671756001, Phi1213_23 = -61.5160003335629, Phi12_17 = 251.480872515883, Phi12_19 = 255.977573006508, Phi12_21 = 254.397100891354, Phi12_23 = 246.524672366158, Phi1314_17 = -2.74614386328796, Phi1314_19 = -4.48401822538664, Phi1314_21 = -12.5381572344771, Phi1314_23 = -3.08154491280567, Phi1415_17 = -31.8947514252141, Phi1415_19 = -30.8090400512349, Phi1415_21 = -51.0499196769535, Phi1415_23 = -77.3268969229600, Phi1516_17 = -87.7947790488482, Phi1516_19 = -75.5403005246575, Phi1516_21 = -101.763771364478, Phi1516_23 = -132.314524393221, Phi23_17 = 94.0093590848714, Phi23_19 = 86.4429757025976, Phi23_21 = 108.554765004168, Phi23_23 = 73.7072279431268, Phi34_17 = 87.6938924370977, Phi34_19 = 82.3922347753764, Phi34_21 = 88.5582078636840, Phi34_23 = 62.6604078051191, Phi45_17 = 13.1910198060107, Phi45_19 = 69.3008595136787, Phi45_21 = 15.5530983566712, Phi45_23 = 13.1677681559684, Phi56_17 = 3.29792072169498, Phi56_19 = 17.4003349272078, Phi56_21 = 3.88187632917493, Phi56_23 = 3.29123115133383, Phi67_17 = 60.0045707036166, Phi67_19 = 54.3070868626015, Phi67_21 = 87.9421288802858, Phi67_23 = 88.4929920125095, Phi78_17 = .279952186311827, Phi78_19 = -3.50632712699693, Phi78_21 = -20.3872167203319, Phi78_23 = 3.35213748642018, Phi89_17 = -0.991299169828910e-1, Phi89_19 = -4.44636683843093, Phi89_21 = 297.888811926331, Phi89_23 = 5.20500671661437, Phi910_17 = -.115101700555720, Phi910_19 = -5.16603761776826, Phi910_21 = 346.033351291632, Phi910_23 = 6.04494564310825]]

I also get the warning "limiting number of major iterations has been reached".
Can someone explain me?

It may not seem important at first sight, but sometimes when using my program I get wrong values and a negative D, which is not possible. Therefore I try to add a positive constraint, but the LLSolve function doesn't return anything except the error "no improved point could be found", which is weird because when I manually substitute the value I consider correct, i get a really low error. I can show you the related list of equations if you are interested...

 

Thanks in advance,

Lilian

Hi, i have a problem with subs instruction. I'd like to change a function D(s) with symbol d/ds d(t), but i won't to calculate derivate, I want only change symbol. Thanks a lot.

What coding will display a spherical cap of an arbitrary sphere (an arbitrarily located centre and arbitrary radius) where the cap covers an arbitrary solid angle and the radius to the cap's centre is any arbitrary radius of the sphere?

Assume the sphere is defined by its radius and its azimuth and polar angles.

how can I print my equation or configure maple so that they don't try to autofit themselves in the window? and what would the best way to export them to MATLAB be? I know there's the codegeneration command.

 

For example, I noticed that the output of some commands like StateSpace prints the equations in a way that if they are too long, they won't try tu fit, but rather it lets you scroll to the right:

 

First 21 22 23 24 25 26 27 Last Page 23 of 61