## Boolean variable not working...

I don't understand why maple is ignoring my predicate in this worksheet

Maple Worksheet - Error

## Win10 high contrast mode...

I'm using Win10, maple 2016.

I'm using high contrast mode (dark mode, white on black). Maple looks broken, the text is black on black, and in the side panel, some of the buttons are shiney white.

How do I set maple to support high contrast?

## How to solve system of equation without Rootof...

solve({sigma*E-(mu+alpha+gamma)*I = 0, gamma*E+Lambda*N*P-(mu+alpha)*R = 0, Beta__1*S*E+Beta__2*S*I/(I*M+1)-(mu+sigma)*E = 0, Lambda(1-p)*N-mu*S-Beta__1*S*E-Beta__2*S*I/(I*M+1) = 0}, {E, I, R, S}, explicit)

## How can type limit as mathtype?...

How can type limit proc() and use print to export expression as mathtype?

 (1)

## Shade Area/Region Between Polar Curve...

with(plots);
P1 := plot([-sin(t), t, t = 0 .. 2*Pi], coords = polar, color = red);
P2 := plot([cos(t), t, t = 0 .. 2*Pi], coords = polar, color = blue);
display(P1, P2, scaling = constrained);

I have two polar equation in the same graph but how do i shade the region between those two polar curve?

## What could have happened to solve command?...

Good day house.

Please I don't know why the solve command does not display any results in the following code. Kindly assist. Thank you in anticipation.

```restart;
omega := v/h;
t := sum(a[j]*x^j, j = 0 .. 6)+a[7]*cos(omega*x)+a[8]*sin(omega*x);
r1 := diff(t, x\$2);
r2 := diff(t, x\$4);
c1 := eval(t, x = q+2*h) = y[n+2];
c2 := eval(r1, x = q) = f[n];
c3 := eval(r1, x = q+h) = f[n+1];
c4 := eval(r1, x = q+2*h) = f[n+2];
c5 := eval(r1, x = q+3*h) = f[n+3];
c6 := eval(r2, x = q) = g[n];
c7 := eval(r2, x = q+h) = g[n+1];
c8 := eval(r2, x = q+2*h) = g[n+2];
c9 := eval(r2, x = q+3*h) = g[n+3];
b1 := seq(a[i], i = 0 .. 8);
`k&Assign;solve`({c1, c2, c3, c4, c5, c6, c7, c8, c9}, {a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]});
```

## Can someone help with the simplification of this c...

Please I found out that the MatrixInverse on the assignment statement P3 does not run for about three days now. Please kindly help to simplify the code. Thank you and kind regards.

```restart; omega := v/h;
r := a[0]+a[1]*x+a[2]*sinh(omega*x)+a[3]*cosh(omega*x)+a[4]*cos(omega*x)+a[5]*sin(omega*x);
b := diff(r, x);

c := eval(b, x = q) = f[n];
d := eval(r, x = q+3*h) = y[n+3]; e := eval(b, x = q+3*h) = f[n+3];
g := eval(b, x = q+2*h) = f[n+2];
i := eval(b, x = q+h) = f[n+1];
j := eval(b, x = q+4*h) = f[n+4];
k := solve({c, d, e, g, i, j}, {a[0], a[1], a[2], a[3], a[4], a[5]});
Warning,  computation interrupted
assign(k);
cf := r;
s4 := y[n+4] = simplify(eval(cf, x = q+4*h));
s3 := y[n+2] = simplify(eval(cf, x = q+2*h));
s2 := y[n+1] = simplify(eval(cf, x = q+h));
s1 := y[n] = simplify(eval(cf, x = q));

with(LinearAlgebra);
with(plots);
h := 1;
YN_1 := seq(y[n+k], k = 1 .. 4);
A1, a0 := GenerateMatrix([s1, s2, s3, s4], [YN_1]);
eval(A1);
YN := seq(y[n-k], k = 3 .. 0, -1);
A0, b1 := GenerateMatrix([s1, s2, s3, s4], [YN]);
eval(A0);
FN_1 := seq(f[n+k], k = 1 .. 4);
B1, b2 := GenerateMatrix([s1, s2, s3, s4], [FN_1]);
eval(B1);
FN := seq(f[n-k], k = 3 .. 0, -1);
B0, b3 := GenerateMatrix([s1, s2, s3, s4], [FN]);
eval(B0);
ScalarMultiply(R, A1)-A0;
det := Determinant(ScalarMultiply(R, A1)-A0);
P1 := A1-ScalarMultiply(B1, z);
P2 := combine(simplify(P1, size), trig);
P3 := MatrixInverse(P2);
P4 := A0-ScalarMultiply(B0, z);
P5 := MatrixMatrixMultiply(P3, P4);
P6 := Eigenvalues(P5);
f := P6[4];
T := unapply(f, z);
implicitplot(f, z = -5 .. 5, v = -5 .. 5, filled = true, grid = [5, 5], gridrefine = 8, labels = [z, v], coloring = [blue, white]);

```

## How to get the real and imaginary parts of complex...

Hi all,

How to get the real and imaginary parts of this complex expression.

real_imag_parts.mw

## How do I sort a formula in the following form...

Hello,

I want to sort the formulae to Psi and Beta, but I don't know how it works. I have tried it with sort, simplify, isolate, but that isn't what I'm searching.

It should looks like the simplier formula in the picture.

ab := (diff(Psii(t), t, t))*J-l[f]*(F[s, f, l]+F[s, f, r])+l[r]*(F[s, r, l]+F[s, r, r])-(1/2)*b[r]*(-F[s, r, l]*delta[l]+F[s, r, r]*delta[r]) = 0;
/ d  / d         \\
|--- |--- Psii(t)|| J - l[f] (F[s, f, l] + F[s, f, r])
\ dt \ dt        //

+ l[r] (F[s, r, l] + F[s, r, r])

1
- - b[r] (-F[s, r, l] delta[l] + F[s, r, r] delta[r]) = 0
2
bc := (diff(betaa(t), t, t))*m*v*betaa(t)+F[s, r, l]*delta[l]+F[s, r, r]*delta[r]-(diff(Psii(t), t)) = 0;
/ d  / d          \\
|--- |--- betaa(t)|| m v betaa(t) + F[s, r, l] delta[l]
\ dt \ dt         //

/ d         \
+ F[s, r, r] delta[r] - |--- Psii(t)| = 0
\ dt        /
cd := (diff(betaa(t), t))*m*v+F[s, r, l]+F[s, r, r]+F[s, f, l]+F[s, f, r]-(diff(Psii(t), t)) = 0;
/ d          \
|--- betaa(t)| m v + F[s, r, l] + F[s, r, r] + F[s, f, l]
\ dt         /

/ d         \
+ F[s, f, r] - |--- Psii(t)| = 0
\ dt        /
F[s, f, l] := c[fl]*alpha[fl];
c[fl] alpha[fl]
F[s, f, r] := c[fr]*alpha[fr];
c[fr] alpha[fr]
F[s, r, l] := c[rl]*alpha[rl];
c[rl] alpha[rl]
F[s, r, r] := c[rr]*alpha[rr];
c[rr] alpha[rr]
alpha[fl] := (-v*betaa-l[f]*(diff(Psii(t), t)))/(-v+(1/2)*b[f]*(diff(Psii(t), t)));
/ d         \
-v betaa - l[f] |--- Psii(t)|
\ dt        /
-----------------------------
1      / d         \
-v + - b[f] |--- Psii(t)|
2      \ dt        /
alpha[fr] := (-v*betaa-l[f]*(diff(Psii(t), t)))/(v-(1/2)*b[f]*(diff(Psii(t), t)));
/ d         \
-v betaa - l[f] |--- Psii(t)|
\ dt        /
-----------------------------
1      / d         \
v - - b[f] |--- Psii(t)|
2      \ dt        /
alpha[rl] := delta[l]+(-v*betaa+l[r]*(diff(Psii(t), t)))/(-v+(1/2)*b[r]*(diff(Psii(t), t)));
/ d         \
-v betaa + l[r] |--- Psii(t)|
\ dt        /
delta[l] + -----------------------------
1      / d         \
-v + - b[r] |--- Psii(t)|
2      \ dt        /
alpha[rr] := delta[r]+(-v*betaa+l[r]*(diff(Psii(t), t)))/(-v-(1/2)*b[r]*(diff(Psii(t), t)));
/ d         \
-v betaa + l[r] |--- Psii(t)|
\ dt        /
delta[r] + -----------------------------
1      / d         \
-v - - b[r] |--- Psii(t)|
2      \ dt        /

ab;
/
|
/ d  / d         \\          |
|--- |--- Psii(t)|| J - l[f] |
\ dt \ dt        //          |
|
\

/                / d         \\
c[fl] |-v betaa - l[f] |--- Psii(t)||
\                \ dt        //
-------------------------------------
1      / d         \
-v + - b[f] |--- Psii(t)|
2      \ dt        /

/                / d         \\\        /      /
c[fr] |-v betaa - l[f] |--- Psii(t)|||        |      |
\                \ dt        //|        |      |
+ -------------------------------------| + l[r] |c[rl] |delta[
1      / d         \       |        |      |
v - - b[f] |--- Psii(t)|       |        |      |
2      \ dt        /       /        \      \

/ d         \\
-v betaa + l[r] |--- Psii(t)||
\ dt        /|
l] + -----------------------------|
1      / d         \  |
-v + - b[r] |--- Psii(t)|  |
2      \ dt        /  /

/                           / d         \\\          /
|           -v betaa + l[r] |--- Psii(t)|||          |
|                           \ dt        /||   1      |
+ c[rr] |delta[r] + -----------------------------|| - - b[r] |
|                  1      / d         \  ||   2      |
|             -v - - b[r] |--- Psii(t)|  ||          |
\                  2      \ dt        /  //          \
/                           / d         \\
|           -v betaa + l[r] |--- Psii(t)||
|                           \ dt        /|
-c[rl] |delta[l] + -----------------------------| delta[l]
|                  1      / d         \  |
|             -v + - b[r] |--- Psii(t)|  |
\                  2      \ dt        /  /

/                           / d         \\         \
|           -v betaa + l[r] |--- Psii(t)||         |
|                           \ dt        /|         |
+ c[rr] |delta[r] + -----------------------------| delta[r]| =
|                  1      / d         \  |         |
|             -v - - b[r] |--- Psii(t)|  |         |
\                  2      \ dt        /  /         /

0
bc;
/ d  / d          \\
|--- |--- betaa(t)|| m v betaa(t)
\ dt \ dt         //

/                           / d         \\
|           -v betaa + l[r] |--- Psii(t)||
|                           \ dt        /|
+ c[rl] |delta[l] + -----------------------------| delta[l]
|                  1      / d         \  |
|             -v + - b[r] |--- Psii(t)|  |
\                  2      \ dt        /  /

/                           / d         \\
|           -v betaa + l[r] |--- Psii(t)||
|                           \ dt        /|
+ c[rr] |delta[r] + -----------------------------| delta[r]
|                  1      / d         \  |
|             -v - - b[r] |--- Psii(t)|  |
\                  2      \ dt        /  /

/ d         \
- |--- Psii(t)| = 0
\ dt        /
cd;
/ d          \
|--- betaa(t)| m v
\ dt         /

/                           / d         \\
|           -v betaa + l[r] |--- Psii(t)||
|                           \ dt        /|
+ c[rl] |delta[l] + -----------------------------|
|                  1      / d         \  |
|             -v + - b[r] |--- Psii(t)|  |
\                  2      \ dt        /  /

/                           / d         \\
|           -v betaa + l[r] |--- Psii(t)||
|                           \ dt        /|
+ c[rr] |delta[r] + -----------------------------|
|                  1      / d         \  |
|             -v - - b[r] |--- Psii(t)|  |
\                  2      \ dt        /  /

/                / d         \\
c[fl] |-v betaa - l[f] |--- Psii(t)||
\                \ dt        //
+ -------------------------------------
1      / d         \
-v + - b[f] |--- Psii(t)|
2      \ dt        /

/                / d         \\
c[fr] |-v betaa - l[f] |--- Psii(t)||
\                \ dt        //   / d         \
+ ------------------------------------- - |--- Psii(t)| = 0
1      / d         \          \ dt        /
v - - b[f] |--- Psii(t)|
2      \ dt        /

## How can the center of this sphere be determined?...

The sphere with radius 0.5 whose center has y coordinate = 0.5 and z coordinate = 0.5 is tangent internally to the ellipsoid centered on the origin with principal semi axes of 5, 3 and 2.

How can the x coordinate of the sphere's center be determined?

## How would a springy brachistochrone behave?...

Imagine a brachistochrone shaped path made of a frictionless flexible metal strip which reacts to the force of a weighty sliding object.

Depending on its flexibility and the object's mass, what would be the strip's initial shape for fastest descent between its top and bottom? How would its shape change during the object's descent?

Perhaps an aircraft emergency escape slide or the fastest path for a slalom skier exemplify this kind of situation.

## Histogram with the bars adjacent to each other?...

How can I draw a "regular looking" histogram where all the bars adjacent to each other?

I tried looking into the options for histograms with no luck. I included a picture of what kind of output I am looking for.

## ImageTools Permission Denied Error...

I am just confused to be getting this error seeings FileTools does not encounter this error when I use it's ListDirectory command:

 >
 >
 (1)
 >
 >

## Number of Partitions of a number...

I couldnt find this command in the number theory package, as far as what i am thinking of doing it should be straight forward but very long winded, so if I have missed this command throughout the packages up to Maple 2016 I would appreciate someone telling me otherwise I suppose it's what i am doing for the next few hours