Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

I can  this equation.

CV.mw
 

restart; c__v := 1.2; `τ__q` := 8.5*10^(-12); `τ__T` := 90.0*10^(-12); rho := 1000; k := 10

1.2

 

0.8500000000e-11

 

0.9000000000e-10

(1)

k*(diff(T(x, t), x, x))+k*`τ__T`*(diff(T(x, t), t, x, x)) = rho*c__v*(diff(T(x, t), t))+(diff(T(x, t), t, t))*c__v*rho*`τ__q`+(1/2)*c__v*rho*`τ__q`^2*(diff(T(x, t), t, t, t))

10*(diff(diff(T(x, t), x), x))+0.9000000000e-9*(diff(diff(diff(T(x, t), t), x), x)) = 1200.0*(diff(T(x, t), t))+0.1020000000e-7*(diff(diff(T(x, t), t), t))+0.4335000000e-19*(diff(diff(diff(T(x, t), t), t), t))

(2)

Boundary condition:

T(0, t) = 300; T(10, t) = 300

#####################################

INITIAL CONDITIONS:

 

T(x, 0) = 300; (D[1](T))(x, 0) = 0, (D[2](T))(x, 0) = 0

(D[1](T))(x, 0) = 0, (D[2](T))(x, 0) = 0

(3)

``


 

Download CV.mw

 

 

How I can take Laplace Transform from equation.

Thanks

LAPLACE

How I can do ?

Thank you.

 

Substitution of . 5,6,7) into Eqs. 1–(4), gives the new equation as functions of the generalized coordinates,
u_m,n(t);  v_m,n ( t), and w_m,n ( t). These expressions are then inserted in the Lagrange equations (see Eq. 8)) a set of N second-order coupled ordinary differential equations with both quadratic   and cubic nonlinearities.

In Eq (8) q are generalized coordinate such as uvw  and q = {`u__m,n`(t), `v__m,n`(t), `w__m,n`(t)}^T.

\where the elements of the vector,q_i are the time-dependent generalized coordinates.

L_Maple
 

U = (1/2)*(int(int(int(E*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*(`∂`(w(x, y, t))/`∂`(x))^2+`∂`(w(x, y, t))/`∂`(x)*(`∂`(w__0(x, y, t))/`∂`(x))-z*(diff(w(x, y, t), x, x))+v(x, y, t)*(`∂`(v(x, y, t))/`∂`(y)+(1/2)*(`∂`(w(x, y, t))/`∂`(y))^2+`∂`(w(x, y, t))/`∂`(y)*(`∂`(w__0(x, y, t))/`∂`(y))-z*(diff(w(x, y, t), y, y))))*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*(`∂`(w(x, y, t))/`∂`(x))^2+`∂`(w(x, y, t))/`∂`(x)*(`∂`(w__0(x, y, t))/`∂`(x))-z*(diff(w(x, y, t), x, x)))/(-nu^2+1)+E*(`∂`(nu(x, y, t))/`∂`(y)+(1/2)*(`∂`(w(x, y, t))/`∂`(y))^2+`∂`(w(x, y, t))/`∂`(y)*(`∂`(w__0(x, y, t))/`∂`(y))-z*(diff(w(x, y, t), y, y))+v(x, y, t)*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*(`∂`(w(x, y, t))/`∂`(x))^2+`∂`(w(x, y, t))/`∂`(x)*(`∂`(w__0(x, y, t))/`∂`(x))-z*(diff(w(x, y, t), x, x))))*(`∂`(v(x, y, t))/`∂`(y)+(1/2)*(`∂`(w(x, y, t))/`∂`(y))^2+`∂`(w(x, y, t))/`∂`(y)*(`∂`(w__0(x, y, t))/`∂`(y))-z*(diff(w(x, y, t), y, y)))/(-nu^2+1)+E*(`∂`(u(x, y, t))/`∂`(y)+`∂`(v(x, y, t))/`∂`(x)+`∂`(w(x, y, t))/`∂`(x)*(`∂`(w(x, y, t))/`∂`(y))+`∂`(w__0(x, y, t))*`∂`(w(x, y, t))/(`∂`(x)*`∂`(y))+`∂`(w__0(x, y, t))*`∂`(w(x, y, t))/(`∂`(x)*`∂`(y))-2*z*(diff(w(x, y, t), x, y)))^2/(2*(1+nu))+E*l^2*(diff(w(x, y, t), x, y))^2/(1+nu)+E*l^2*(diff(w(x, y, t), x, y))^2/(1+nu)+E*l^2*(diff(w(x, y, t), y, y)-(diff(w(x, y, t), x, x)))^2/(2*(1+nu))+E*l^2*(diff(v(x, y, t), y, y)-(diff(u(x, y, t), x, x)))^2/(8*(1+nu))+E*l^2*(diff(v(x, y, t), x, y)-(diff(u(x, y, t), y, y)))^2/(8*(1+nu)), z = -(1/2)*h .. (1/2)*h), y = 0 .. b), x = 0 .. a))

U = (1/2)*(int(int((1/12)*(-E*(-v(x, y, t)*(diff(diff(w(x, y, t), y), y))-(diff(diff(w(x, y, t), x), x)))*(diff(diff(w(x, y, t), x), x))/(-nu^2+1)-E*(-v(x, y, t)*(diff(diff(w(x, y, t), x), x))-(diff(diff(w(x, y, t), y), y)))*(diff(diff(w(x, y, t), y), y))/(-nu^2+1)+4*E*(diff(diff(w(x, y, t), x), y))^2/(2+2*nu))*h^3+E*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*`∂`(w(x, y, t))^2/`∂`(x)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(x)^2+v(x, y, t)*(`∂`(v(x, y, t))/`∂`(y)+(1/2)*`∂`(w(x, y, t))^2/`∂`(y)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(y)^2))*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*`∂`(w(x, y, t))^2/`∂`(x)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(x)^2)*h/(-nu^2+1)+E*(`∂`(nu(x, y, t))/`∂`(y)+(1/2)*`∂`(w(x, y, t))^2/`∂`(y)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(y)^2+v(x, y, t)*(`∂`(u(x, y, t))/`∂`(x)+(1/2)*`∂`(w(x, y, t))^2/`∂`(x)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(x)^2))*(`∂`(v(x, y, t))/`∂`(y)+(1/2)*`∂`(w(x, y, t))^2/`∂`(y)^2+`∂`(w(x, y, t))*`∂`(w__0(x, y, t))/`∂`(y)^2)*h/(-nu^2+1)+E*(`∂`(u(x, y, t))/`∂`(y)+`∂`(v(x, y, t))/`∂`(x)+`∂`(w(x, y, t))^2/(`∂`(x)*`∂`(y))+2*`∂`(w__0(x, y, t))*`∂`(w(x, y, t))/(`∂`(x)*`∂`(y)))^2*h/(2+2*nu)+2*E*l^2*(diff(diff(w(x, y, t), x), y))^2*h/(1+nu)+E*l^2*(diff(diff(w(x, y, t), y), y)-(diff(diff(w(x, y, t), x), x)))^2*h/(2+2*nu)+E*l^2*(diff(diff(v(x, y, t), y), y)-(diff(diff(u(x, y, t), x), x)))^2*h/(8+8*nu)+E*l^2*(diff(diff(v(x, y, t), x), y)-(diff(diff(u(x, y, t), y), y)))^2*h/(8+8*nu), y = 0 .. b), x = 0 .. a))

(1)

T = rho*h*(int(int((`∂`(u(x, y, t))/`∂`(t))^2+(`∂`(v(x, y, t))/`∂`(t))^2+(`∂`(w(x, y, t))/`∂`(t))^2, y = 0 .. b), x = 0 .. a))

T = rho*h*(int(int(`∂`(u(x, y, t))^2/`∂`(t)^2+`∂`(v(x, y, t))^2/`∂`(t)^2+`∂`(w(x, y, t))^2/`∂`(t)^2, y = 0 .. b), x = 0 .. a))

(2)

F = (1/2)*c*(int(int((`∂`(u(x, y, t))/`∂`(t))^2+(`∂`(v(x, y, t))/`∂`(t))^2+(`∂`(w(x, y, t))/`∂`(t))^2, y = 0 .. b), x = 0 .. a))

F = (1/2)*c*(int(int(`∂`(u(x, y, t))^2/`∂`(t)^2+`∂`(v(x, y, t))^2/`∂`(t)^2+`∂`(w(x, y, t))^2/`∂`(t)^2, y = 0 .. b), x = 0 .. a))

(3)

W = int(int(w(x, y, t)*f__1(x, y, t)*cos(omega*t), y = 0 .. b), x = 0 .. a)

W = int(int(w(x, y, z)*f__1(x, y, z)*cos(omega*t), y = 0 .. b), x = 0 .. a)

(4)

u(x, y, t) = sum(sum(`u__m,n`(t)*sin(m*Pi*x/a)*sin(n*Pi*y/b), n = 1 .. N), m = 1 .. M)

u(x, y, t) = -(1/4)*(cos(Pi*y*N/b)*cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*y*N/b)*cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y/b)+cos(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)-cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)-cos(Pi*y*N/b)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)+cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)+sin(Pi*x/a)*sin(Pi*y/b)*cos((M+1)*Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)+sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)+sin(Pi*y/b)*sin((M+1)*Pi*x/a))*`u__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))+(1/4)*(-cos(Pi*y*N/b)*sin(Pi*y/b)*sin(Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin(Pi*x/a)+sin(Pi*y*N/b)*sin(Pi*x/a)+sin(Pi*y/b)*sin(Pi*x/a))*`u__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))

(5)

v(x, y, t) = sum(sum(`v__m,n`(t)*sin(m*Pi*x/a)*sin(n*Pi*y/b), n = 1 .. N), m = 1 .. M)

v(x, y, t) = -(1/4)*(cos(Pi*y*N/b)*cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*y*N/b)*cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y/b)+cos(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)-cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)-cos(Pi*y*N/b)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)+cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)+sin(Pi*x/a)*sin(Pi*y/b)*cos((M+1)*Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)+sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)+sin(Pi*y/b)*sin((M+1)*Pi*x/a))*`v__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))+(1/4)*(-cos(Pi*y*N/b)*sin(Pi*y/b)*sin(Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin(Pi*x/a)+sin(Pi*y*N/b)*sin(Pi*x/a)+sin(Pi*y/b)*sin(Pi*x/a))*`v__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))

(6)

w(x, y, t) = sum(sum(`w__m,n`(t)*sin(m*Pi*x/a)*sin(n*Pi*y/b), n = 1 .. N), m = 1 .. M)

w(x, y, t) = -(1/4)*(cos(Pi*y*N/b)*cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*y*N/b)*cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y/b)+cos(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)-cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)*cos(Pi*y/b)-cos(Pi*y*N/b)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)-cos(Pi*x/a)*sin(Pi*y/b)*sin((M+1)*Pi*x/a)+cos((M+1)*Pi*x/a)*sin(Pi*x/a)*sin(Pi*y*N/b)+sin(Pi*x/a)*sin(Pi*y/b)*cos((M+1)*Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin((M+1)*Pi*x/a)+sin(Pi*y*N/b)*sin((M+1)*Pi*x/a)+sin(Pi*y/b)*sin((M+1)*Pi*x/a))*`w__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))+(1/4)*(-cos(Pi*y*N/b)*sin(Pi*y/b)*sin(Pi*x/a)-sin(Pi*y*N/b)*cos(Pi*y/b)*sin(Pi*x/a)+sin(Pi*y*N/b)*sin(Pi*x/a)+sin(Pi*y/b)*sin(Pi*x/a))*`w__m,n`(t)/((cos(Pi*x/a)-1)*(cos(Pi*y/b)-1))

(7)

diff(`∂`(T(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`), t)-`∂`(T(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)+`∂`(U(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)+`∂`(U(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)+`∂`(F(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`) = `∂`(W(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`), j = 1, () .. (), N

(D(`∂`))(T(x, y, t))*(diff(T(x, y, t), t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)-`∂`(T(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)+2*`∂`(U(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`)+`∂`(F(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`) = `∂`(W(x, y, t))/`∂`(`#mscripts(mi("q"),mi("j"),none(),none(),mo("."),none(),none())`), j = 1, () .. (), N

(8)

NULL


 

Download L_Maple

 

 

Hello all,

I'm trying to do kinetic modeling of sequential dissociations with DE. I'm hitting a snag when modeling the third dissociation. The population should start at zero at t=0, but some of my model functions are non-zero at t=0. Is there anyway to fix this to force the funtions to go through zero?

Scheme:
PPPP -> intermediates -> PPP -> intermediates -> PP -> intermediates -> P  
(where P is a subunit and intermediates are confirmational changes before dissociation of a subunit)

a'..d' is the first dissociation
e' is the second dissociation
f'..l' is the third dissociation
Fits are evaluated by the residual sum of squares.

sol := dsolve([a' = -k1*a(x), b' = k1*a(x)-k1*b(x), c' = k1*b(x)-k1*c(x), d' = k1*c(x)-k1*d(x),
e' = k1*d(x)-k2*e(x), 
f' = k2*e(x)-k3*f(x), g' = k3*f(x)-k3*g(x), h' = k3*g(x)-k3*h(x), i' = k3*h(x)-k3*i(x), j' = k3*i(x)-k3*j(x), k' = k3*j(x)-k3*k(x), l' = k3*k(x)-k3*l(x), 
a(0) = 1, b(0) = 0, c(0) = 0, d(0) = 0, e(0) = 0, f(0) = 0, g(0) = 0, h(0) = 0, i(0) = 0, j(0) = 0, k(0) = 0, l(0) = 0],
{a(x), b(x), c(x), d(x), e(x), f(x), g(x), h(x), i(x), j(x), k(x), l(x)}, method = laplace);

f1 := sol[6];
f1 := rhs(f1);
g1 := sol[7];
g1 := rhs(g1);
h1 := sol[8];
h1 := rhs(h1);
i1 := sol[9];
i1 := rhs(i1);
j1 := sol[10];
j1 := rhs(j1);
kk := sol[11];
kk := rhs(kk);
l1 := sol[12];
l1 := rhs(l1);

xdata := Vector([0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,200,210,220,230,240,250,260,270,280,290,300,310,320,330,340,350,360,370,380,390,400], datatype = float);
ydata := Vector([0.0034,0.00392,0.00184,0.00782,0.01873,0.03683,0.11016,0.09838,0.18402,0.24727,0.20901,0.2972,0.37635,0.49235,0.57845,0.4457,0.50285,0.5672,0.62783,0.57264,0.54918,0.44792,0.49795,0.55218,0.47512,0.46473,0.37989,0.32236,0.3323,0.20894,0.28473,0.21273,0.19855,0.13548,0.12725,0.13277,0.0784,0.07969,0.06162,0.03855], datatype = float);

k1 := 0.391491454107626e-1; 
k2 := 0.222503562261129e-1; 


z1:=f1;
z2:=f1+g1;
z3:=f1+g1+h1;
z4:=f1+g1+h1+i1;
z5:=f1+g1+h1+i1+j1;
z6:=f1+g1+h1+i1+j1+kk;
z7:=f1+g1+h1+i1+j1+kk+l1;

Statistics[NonlinearFit](z1,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z1,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z2,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z2,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z3,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z3,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z4,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z4,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z5,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z5,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z6,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z6,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

Statistics[NonlinearFit](z7,xdata, ydata, x, initialvalues = [k3=0.1], output = [parametervalues, residualsumofsquares]); 
A:=plot(xdata, ydata, style=point, symbol=solidcircle, color=blue, symbolsize=12,labels = ["time (minutes)", "Relative Abundance"], labeldirections = [horizontal, vertical]):
F:=Statistics[NonlinearFit](z7,xdata, ydata, x,initialvalues = [k3=0.1]):
B:=plot(F, x=xdata[1]..xdata[-1], color=red):
plots[display](A, B);

3rd_diss.mw

Hello every one,

My slideshow now contains a lot of animation sequences and take
a very long time to load and a large amount of physical memory (>20GB).

To reduce this size I have decided to convert these animations to GIF format.
Unfortunatly Maple/MaplePayer do not play GIF animations.

I decide to put URLs (image icons pointing to GIF files) in the document.
Now the GIF are play by a WEB browser (program to operate in fullscreen 
mode to minimize any disturbance in the audience with IE11).

Now the issue:
Using F11 to start the Slideshow, cliking the URL start the browser with the requested
animated GIF, that is fine, but now Maple/MaplePayer both auto-exit fullscreen
mode just after that click. The speaker (me) now need to manage the return to
fullscreen (F11) at the current slide while
thinking about what i have to
say next.

Is there any trick to prevent auto-exit from fulls-screen mode in this situation?

Thank you for your help

LL

 

Des suggestions de solutions? Merci.

A) a) Écrire une procédure qui produit une itération du calcul babylonien de la racine carrée d'un nombre positif k à partir     d'une première approximation x0 .

    Entrée: k , x0 .

    Sortie:  x1 = (x0+ k/x0)/2 .

b) En utilisant la procédure trouvée en a), en écrire une autre, qui prend en entrée un entier positif n en plus des entiers k   et x0 vus en a) et qui retourne en sortie n itérations du calcul babylonien de la racine carée de k.

 B)

Écrire une procédure récursive Maple qui prend en entrée deux nombres n et k et qui utilise l'identité (n k) = (n -1k)+(n-1 k-1) pour retourner en sortie le coefficient binomial (n k) , cette procédure ne doit pas utiliser la commande Maple binomial.

TRADUCTION:

Suggestions for solutions? Thank you.

A) a) Write a procedure that produces an iteration of the Babylonian calculus of the square root of a positive number k from a     first approximation x0.

    Input: k, x0.

   Output: x1 = (x0 + k / x0) / 2.

b) Using the procedure found in a), write another one, which takes as input a positive integer n in addition to the integers k and   x0 seen in a) and which returns in exit n iterations of the Babylonian calculation of the square root of k.

B) Write a Maple recursive procedure that takes as input two numbers n and k and uses the identity (n k) = (n-1 k)+ (n-1 k-1) to   return the binomial coefficient (n k), this procedure should not use the binomial Maple command.

Hi , how we can read the fractional differential equations in maple with out solving . I means just read and determine which is the order of fractional differential equations.

thanks

Hello everyone!

In previous versions of Maple (e.g. Maple 2016) it used to be possible to use scaletorange and colorscheme options together as in:

densityplot(sin(x+y), x = -1 .. 1, y = -1 .. 1, colorscheme = [black, red, yellow, white], scaletorange = -.5 .. .5);

But Maple 2018 returns an error:

Error, (in plots/densityplot) the scaletorange option cannot be used with the colorscheme option

Why is that and can one work around this error in any simple way?


Hello there,

I have created a MAPLE document in a slideshow format.

Is there a way to print a copy of my presentation with header and footer included and in a format that fits on letter format paper or pdf.

Thank you for your help.

LL

How I can perform integration by parts, with respect to the x[0..1],y[0..1],t 

PART.mw
 

restart

U := (1/2)*(E*(diff(u(x, y), x)-z*(diff(w(x, y), x, x))+(1/2)*(diff(w(x, y), x))^2)/(-upsilon^2+1)+E*upsilon*(diff(v(x, y), y)-z*(diff(w(x, y), y, y))+(1/2)*(diff(w(x, y), y))^2)/(-upsilon^2+1))*(diff(u(x, y), x)-z*(diff(w(x, y), x, x))+(1/2)*(diff(w(x, y), x))^2)+(1/2)*(E*upsilon*(diff(u(x, y), x)-z*(diff(w(x, y), x, x))+(1/2)*(diff(w(x, y), x))^2)/(-upsilon^2+1)+E*(diff(v(x, y), y)-z*(diff(w(x, y), y, y))+(1/2)*(diff(w(x, y), y))^2)/(-upsilon^2+1))*(diff(v(x, y), y)-z*(diff(w(x, y), y, y))+(1/2)*(diff(w(x, y), y))^2)+E*(1-upsilon)*((1/2)*(diff(v(x, y), x))-z*(diff(w(x, y), x, y))+(1/2)*(diff(u(x, y), y))+(1/2)*(diff(w(x, y), x))*(diff(w(x, y), y)))^2/(-upsilon^2+1)+2*E*l^2*(diff(w(x, y), x, y))^2/(2+2*upsilon)+2*E*l^2*(-(1/2)*(diff(w(x, y), x, x))+(1/2)*(diff(w(x, y), y, y)))^2/(2+2*upsilon)+2*E*l^2*((1/4)*(diff(v(x, y), x, x))-(1/4)*(diff(u(x, y), x, y)))^2/(2+2*upsilon)+2*E*l^2*((1/4)*(diff(v(x, y), x, y))-(1/4)*(diff(u(x, y), y, y)))^2/(2+2*upsilon)

with(IntegrationTools)

``

``


 

Download PART.mw

 

 
 1)  Copy/paste problem .
 
 Looks like Maple is not able to copy/paste the output
 from a summation command . Look at my example .
 I have to use the  " lprint " command .
2)   Mysterious small box character .
 
 Suppose I want to edit a command . I want to replace a character with a left bracket
 (or right bracket or left accolade but strangely not the right accolade).
 I put the cursor on the character and type the left bracket (or right...) .
 The left bracket ( or right ...)  is inserted . Now when I try to delete the character,
 a small box appear . The  character I am trying to delete is shifting to the right .
  Like  I said , just a little annoying .
 
3)  Open file problem .
 
 The first file I open in Maple with the  ctrl-o command , the "open file window" appears in
  the center of the screen . All the others files I am opening , the "open file window"  show up
  in the bottom left corner , top center or top right corner ... randomly .
  Very annoying on a 27" screen . For this last one ,I am not shure  if it is a Maple 2018 problem
   or a Windows 10 64 bits problem . I have few programs in my computer .
  When I use Microsoft Paint or Wordpad ,I don't see this problem .
 
  I don't know if somebody else can confirm those annoying things . If I am not the only one
  then I am hoping the next updates or versions will fix that .
 
    Thanks !
 

Hi

 

I've just upgraded from v2017.3 to 2018. It worked OK until I installed latest service pack 2018.2.1 (server license provided by my University). Ever since I cannot use Maple. Anything I type I get Typesetting:-mparsed(...) error and the text/command I typed.

 

I’ve contacted our software tech support and they told me to change the typesetting level from advanced to standard and it did fix the problem.

 

But why does it happen in the first place? I’m running Windows 8.1 64bit. Out tech support told me to has something to do with 3D display issue on my machine and told me to bring my laptop on Monday to see if they can resolve the issue.

 

Anyone else have this problem? Why didn’t it happen with older Maple versions? What am I missing by using standard typesetting instead of the default advanced?

Thanks

 

 

 

 

 

 

is possible to solvethis equation via maple?

hank you

EQUATION2.mw
 

restartNULL

alpha := 1.2*10^(-4); Betaa := 4.0*log(2); J := 13.4; delta := 15.3*10^(-9); tp := 10^(-13); tq := 8.5*10^(-12); tu := 90.0*10^(-12); kapa := 315; r0 := 2.0*10^(-7); Lx := 5.0*10^(-7); Ly := 5.0*10^(-7); Lz := 1.0*10^(-7); a := 0.7e-1*(Betaa/Pi)^.5*J/(15.3*10^(-22)); bb := exp(-((10^(-7)*x-(1/2)*Lx)^2+(10^(-7)*y-(1/2)*Ly)^2)/(2*r0^2)); print(aa = a); Q := a*exp(-z*10^(-7)/delta)*exp(-1.88*abs(t-2*tp)/tp)*bb

0.1200000000e-3

 

4.0*ln(2)

 

13.4

 

0.1530000000e-7

 

1/10000000000000

 

0.8500000000e-11

 

0.9000000000e-10

 

315

 

0.2000000000e-6

 

0.5000000000e-6

 

0.5000000000e-6

 

0.1000000000e-6

 

0.6917775548e21*ln(2)^.5

 

exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

 

aa = 0.6917775548e21*ln(2)^.5

 

0.6917775548e21*ln(2)^.5*exp(-6.535947712*z)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

(1)

(diff(U(x, y, z, t), t)+tq*(diff(U(x, y, z, t), t, t)))/alpha = diff(U(x, y, z, t), x, x)+diff(U(x, y, z, t), y, y)+tu*(diff(U(x, y, z, t), x, x, t)+diff(U(x, y, z, t), y, y, t))+tu*(diff(U(x, y, z, t), z, z, t))+(Q+tq*(diff(Q, t)))/kapa

8333.333333*(diff(U(x, y, z, t), t))+0.7083333333e-7*(diff(diff(U(x, y, z, t), t), t)) = diff(diff(U(x, y, z, t), x), x)+diff(diff(U(x, y, z, t), y), y)+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), x), x))+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), y), y))+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), z), z))+0.2196119222e19*ln(2)^.5*exp(-6.535947712*z)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)-0.3509398517e21*ln(2)^.5*exp(-6.535947712*z)*abs(1, t-1/5000000000000)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

(2)

``

 

Boundary condition:

U(0, y, z, t) = 300; U(Lx, y, z, t) = 300; U(x, 0, z, t) = 300; U(x, Ly, z, t) = 300; U(x, y, 0, t) = 300; U(x, y, Lz, t) = 300

#####################################

INITIAL CONDITIONS:

 

U(x, y, z, 0) = 300; (D[1](U))(x, y, z, 0) = 0

(D[1](U))(x, y, z, 0) = 0

(3)

NULL

 

``


 

Download EQUATION2.mw

 

 

Is possible to solve this differential equation by maple?

thaks...

Hi,

I'm using the eBookTools package to convert a .mw file as a chapter into a PDF file. However, a problem arises when I convert a document with a few repeated plotting commands (such as plot(x^2)). The issue is that in the final PDF the images of the various plots overlap, and that the individual plots can't be clearly seen. Is there a resolution to this?

Thanks,
Bart

1 2 3 4 5 6 7 Last Page 1 of 33