Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

How to explain the difference in the outputs of

restart; ans1 := solve(eval({-4*a^2+x^2+y^2 <= 8*y-10*x+4*a-40, -a^2+x^2+y^2 <= 6*x-4*y-13}, a = -9), {x, y});
ns1 := {x = 3-sqrt(-y^2-4*y+77), -11 <= y, y < 13/25},
 {-11 < y, x < -5+sqrt(-y^2+8*y+273), y < 13/25, 3-sqrt(-y^2-4*y+77) < x}, 
{x = -5+sqrt(-y^2+8*y+273), -11 < y, y < 13/25}, {y = 13/25, -141/25 <= x, x <= 291/25},
 {x = 3-sqrt(-y^2-4*y+77), y <= 7, 13/25 < y}, 
{13/25 < y, x < 3+sqrt(-y^2-4*y+77), y < 7, 3-sqrt(-y^2-4*y+77) < x}, 
{x = 3+sqrt(-y^2-4*y+77), 13/25 < y, y < 7}

and

restart; ans2 := solve(eval({-4*a^2+x^2+y^2 <= 8*y-10*x+4*a-40, -a^2+x^2+y^2 <= 6*x-4*y-13}, a = -9), [x, y]);
ans2 := [[x < 3, -6 <= x, y = -2-sqrt(-x^2+6*x+72)], 
[x < 3, -6 < x, y < -2+sqrt(-x^2+6*x+72), -2-sqrt(-x^2+6*x+72) < y], 
[x < 3, -6 < x, y = -2+sqrt(-x^2+6*x+72)], [x = 3, y <= 7, -11 <= y],
 [x <= 291/25, 3 < x, y = 4-sqrt(-x^2-10*x+264)],
 [x < 291/25, 3 < x, y < -2+sqrt(-x^2+6*x+72), 4-sqrt(-x^2-10*x+264) < y],
 [x < 291/25, 3 < x, y = -2+sqrt(-x^2+6*x+72)]]

?

In the former x is expressed through y and in the latter y is expressed through x. I find explanation  in neither ?solve nor ?solve,details.

I do not know what I am doing wrong. I am trying to plot each of the solutions to an ODE. One of the solutions Maple gives is  LegendreQ((1/2)*sqrt(5)-1/2, x) and the other is LegendreP((1/2)*sqrt(5)-1/2, x)

Maple can plot the  LegendreP, but gives an error plotting LegendreQ((1/2)*sqrt(5)-1/2, x)

ode:=(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+y(x)=0:
sol:=dsolve(ode,y(x));

sol := y(x) = _C1*LegendreP((1/2)*sqrt(5)-1/2, x)+_C2*LegendreQ((1/2)*sqrt(5)-1/2, x)

Now when I do 

plot(LegendreQ((1/2)*sqrt(5)-1/2, x),x=-1..1);

Maple says

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct
 

Why is that? I tried x=-0.5..1 and x=0.5..1 and keep getting same error message. It works ok for 

plot(LegendreP((1/2)*sqrt(5)-1/2, x),x=-1..1);

Mathematica can plot both with no problem.

int(exp(-sec(t))*cos(t)/(-1/4+sin(t)^2), t = 0 .. (1/2)*Pi, CauchyPrincipalValue = true, numeric = true);

Returns unevaluated for me.

I tried all the methods in HELP documentation and I failed.
Integral is singular at point 1/4.

Thank you.

Hello my friends

I have a problem with initial condition for below system of differential equation

sys := {6*(diff(a(t), t))^2+12*a(t)*(diff(a(t), t$2))-3*a(t)^2*phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2), 2*c*a(t)^3*phi(t)^(-2*c-1)*sqrt(1-alpha*(diff(phi(t), t))^2)-3*alpha*a(t)^2*phi(t)^(-2*c)*(diff(a(t), t))*(diff(phi(t), t))/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t$2))/sqrt(1-alpha*(diff(phi(t), t))^2)+2*c*alpha*a(t)^3*phi(t)^(-2*c-1)*(diff(phi(t), t))^2/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha^2*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t))^2*(diff(phi(t), t$2))/(1-alpha*(diff(phi(t), t))^2)^(3/2), R(t) = 6*((diff(a(t), t))^2/a(t)^2+(diff(a(t), t$2))/a(t)), W(t) = -phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2)/(1/a(t)^3+a(t)^3+phi(t)^(-2*c)/sqrt(1-alpha*(diff(phi(t), t))^2))}

I set {c,alpha}={1,1} but initial conditon is problem ... since I got the following message from maple to illustrate diagrams of W(t), a(t) and even phi(t)

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up
 

please help me.

 

with the best regard

 

Hi,

I would like to control the extents of my 3D parametric plot. Increasing the grid creates too many gridlines and I just get a black plot  (and I still don't get the extent in the y-coordinate that I want).

Any suggestions how I might be able to get this plot from -360 to 0 and -20 to 60 completely filled in? (see attached workbook).

Any suggestions on how to control the gridlines?

An idea of what I am trying to do...I want to plot argument(z/(1+z)) vs. argument(z)*180/pi vs. 20*log10(abs(z)) with contours of argument(z/(1+z)) and 20*log10(abs(z/(1+z))
This is a 3D plot of the output phase of a Nichol's Chart (with the output contours of the Nichol's chart).

Thanks.

phaseplot.mw


Can the procedure called Faul be made more efficient/faster? It is very slow for generating large polynomials.

restart

NULL

Faulhaber Polynomials Generation

S[0] := n; int(S[k], n); B[k+1] := 1-(k+1)*(eval(int(S[k], n), n = 1)); S[k+1] = (k+1)*(int(S[k], n))+n*B[k+1]

S[k+1] = (k+1)*S[k]*n+n*(1-(k+1)*S[k])

(1)

OR

S[0] := n; int(S[k-1], n); B[k] := 1-k*(eval(int(S[k-1], n), n = 1)); S[k] = k*(int(S[k-1], n))+n*B[k]

S[k] = k*S[k-1]*n+n*(-k*S[k-1]+1)

(2)

"S[0](n):=n;  for k  from 1 to 10 do  temp:=int(S[k-1](n),n);  B[k]:=1-(k)* eval(temp,n=1);    S[k](n):=( k) *temp+B[k]*n;  print(B||k ,B[k]);  print(S||k ,S[k](n))   end do:"

S10, (1/11)*n^11+(1/2)*n^10+(5/6)*n^9-n^7+n^5-(1/2)*n^3+(5/66)*n

(3)

NULL

Faul := proc (k::nonnegint, ` $`) local temp, B, i, S; option remember; description "calculate the kth Faulhaber polynomial"; if k = 0 then return n end if; S := n; for i to k do temp := int(S, n); B := 1-i*(eval(temp, n = 1)); S := i*temp+B*n end do; return sort(S) end proc

proc (k::nonnegint, ` $`) local temp, B, i, S; option remember; description "calculate the kth Faulhaber polynomial"; if k = 0 then return n end if; S := n; for i to k do temp := int(S, n); B := 1-i*(eval(temp, n = 1)); S := i*temp+B*n end do; return sort(S) end proc

(4)

Faul(0)

n

(5)

CodeTools:-Usage(Faul(17))

(1/18)*n^18+(1/2)*n^17+(17/12)*n^16-(17/3)*n^14+(221/9)*n^12-(2431/30)*n^10+(1105/6)*n^8-(11747/45)*n^6+(595/3)*n^4-(3617/60)*n^2

(6)

CodeTools:-Usage(Faul(50))

(1/51)*n^51+(1/2)*n^50+(25/6)*n^49-(490/3)*n^47+(75670/9)*n^45-416185*n^43+(56941675/3)*n^41-(92183691110/117)*n^39+(88715129650/3)*n^37-(33921877388371/34)*n^35+(541322044801475/18)*n^33-(2413278263674516/3)*n^31+(56849978179309700/3)*n^29-(45602759590076311910/117)*n^27+6930788058683050926*n^25-(316006038824222942020/3)*n^23+(12150871151987276191100/9)*n^21-(1465057369388478597658465/102)*n^19+(248857551895105646012275/2)*n^17-(100303446943247952675791038/117)*n^15+(13680778417903412433848650/3)*n^13-(594659492189651782474535017/33)*n^11+(451887027095744497869967025/9)*n^9-91571456915900369733225670*n^7+(292261044681016960006200890/3)*n^5-(196329117914923619018719464145/3978)*n^3+(495057205241079648212477525/66)*n

(7)

CodeTools:-Usage(Faul(205))

(1/206)*n^206+(1/2)*n^205+(205/12)*n^204-(141491/12)*n^202+(136781371/12)*n^200-(136097464145/12)*n^198+(134056002182825/12)*n^196-(129685776511664905/12)*n^194+(122973458426368674425/12)*n^192-(28556586498649250292601/3)*n^190+8658361763452078121271275*n^188-7710351960677854091847301219*n^186+(154570518686966993942943369297925/23)*n^184-(74516299387084522873259145811322185/13)*n^182+4782975247324303902469197448736310149*n^180-(11710762748209070233541372551249621669951/3)*n^178+(102804327973070530171198310178181293442057285/33)*n^176-(14582758661115239434898932101441814700542442615/6)*n^174+(11119245090810961458671074884730397973442885725775/6)*n^172-(107692008285743753838022058218229719609251076373955979/78)*n^170+(6028593665887636363833438340432210324148292835882333175/6)*n^168-(47127533870079616400406698445820409332963488817782490478879/66)*n^166+(2972448402376339178451346182284308320214720509267455285777525/6)*n^164-(46292845479232915824013221562143140801278614444201765657658277315/138)*n^162+(443247137373051036617910277276569388823319052391178684856436053815/2)*n^160-142814832242993519083470388731332830062997975320534585719885980831995*n^158+(987104204767197250847264459086467397771910945258593334519674993955103825/11)*n^156-54962550356389620191674523188059215537494078286452485490483176854688220779*n^154+(623265219620452845487713273972857511709453168820920179222870544820355759810385/19)*n^152-(95356454360319283119909858557077483923454303958423326501784255790008135721994513/5)*n^150+10796870210511693270818379237267897818666121312943863668166044292512334847004886325*n^148-(65450034426243622886616583039087934378057240936245949948280379458767290049723334296599/11)*n^146+3190643746596562177279297547529766321598835075531030935772402004114847837228229492558325*n^144-(6656977661907560585960519447842563066750310822630872960326439598817698013693812846735502335/4)*n^142+(77652001807591183323373433671680188007778026046671295098797500365405307749275309246029631327185/92)*n^140-(1664209202497359654463943998138305643925785868258899861847965839873508518583486709318535019957855/4)*n^138+(8766788336733263396121956424958216027888740709705447153847123639735538606149157375966755962454931925/44)*n^136-(7042297651511289980943191385268870259721656880355521787881240903098393898305516551039071645016844027895/76)*n^134+(167323707432196773530691034572787621643894393398811938841907312751089272977703323710007135652791242545925/4)*n^132-(366448521051942001353028665950404337318831199251413116075683801116312191876525105837006751251733041365855289/20)*n^130+(31132664736606740942565469449552696243880383777822889271043090914157148079757973088137099578757687587431634645/4)*n^128-(176267784886045265723322879842070508974541200796001301315636158606578520570399210426701807759826673146772672636186/55)*n^126+(3835768015800089338801144489577198565112492740389715269263216533047735287575962068154538524031432427576049061459250/3)*n^124-(1481901690267486128450140849404250077785909891601169057561889513028552997192390285294899598288817387462072564205934850/3)*n^122+(554121316891740941978313575842949585033184445147133831898907593199464730822201136492810460627176474628848925547007690050/3)*n^120-(4610002537179595845717368722139272807232869662153161788455303682344822368095238908048780538471528379838265807641493649044050/69)*n^118+(1331787890501396167928090740631573626454601449500607113977848104030153938301531029489450417086492889386803626436454891840650250/57)*n^116-(23685227120850290403685328074911815066321903560178419293951542338416697353319038403089205970706208888170852800626590003251603950/3)*n^114+(7728605002068688566129126109695475220585732721814229116388685660351276190000620392322870531473971350853709157055099922263661180750/3)*n^112-(2433785932066154382239973434971518818075923566358028365750079116098691574147805294730241638869497511436405935755173917009974300304745/3)*n^110+(739165728928616551561970698216512986735523148287510132508698197348907507389574461293458921373180631535647775263126124994659729425476625/3)*n^108-72122100140071562316940137476541453812755042539992445969541864974387134429358797388721275792581358650071572835039575273469730179637390179*n^106+(2094310243337889476809806177632883208257697704193295695689574388533253761189320116595589902510062645839765984977291742454486313456409423997525/103)*n^104-5517147812000952528215605983510864570076618371052167565272105220545318770552086980680557643350755103472786785464216331415047889536006872762385*n^102+1439714664575622469518781384051108543871364946412698106345181672152542538820451647620155005466013243845991288421063645715096117466092334245522985*n^100-(144053820837856004431725404336099749527792598372791754889872573122746428376130933036741210688657994256395242255696737766072495340216301140133049212775/399)*n^98+(5998450096723461952203774673293510454053700624900708742887775279143262845730559070683469321606873584238015420698920465802618525722863113173959965872125/69)*n^96-(60248510674282520691597421177137242743946347213448310086157361760242331429585261639821609872834921224864446633697342029506496990950351930059690952475450/3)*n^94+(13341276380247927116552925316378783564682417425880923380161418604508798142899024907914189428797758831200150056833620436140070690852778462599935263115738250/3)*n^92-(2829220942308171463980342097405123779291883372800061195689275274912692383109927916392768085023569281168043538130138774822901847967948297699452908671148712410/3)*n^90+(574036679357359201999582137163613613181670070325612203647681016586158020275156561859966360617442758607916418686816393270933719170665287258692933640036777988250/3)*n^88-(111322213093841501927442415297550091092605150257089055813979305344875497764703478623311675863000606458528127362840346786404156773458213173736844879329738200924470/3)*n^86+(20612917819334327633900108774737407203505009795808797974227917813769747457117391890884967514089510720268230290806489571233268224870014080326085601585615487934351750/3)*n^84-(3640299478987642245652114936490895897207653033362762005350214914842367990685697906610928397443891154187346994550181517729307043143184582914096694588895236463657293350/3)*n^82+(3878900097206330420286228062147529604118265526437301302465487747146488901822236395183202478120270966082553039932042508904836794318080206680510682083706086256028510454182/19)*n^80-(130729116535859497060440895667007978449427271852756157243438035569712827702151414641615086852538387287171890263561614616467679972140432270471485159612210289673442118093751/4)*n^78+(19888311679131488906943772695600130672566839102459738207071950926080908187139887476012795223622464167909441168920584917283547307302303148602288888682583930712737199117401935/4)*n^76-(66045141101257078270967746733168507131777195809346001149827112016925821660849905598386106640581241145895212921360354022114981542372344145565039907717602206931687748677791382865/92)*n^74+(392923387422229719308492318110295358387912231485397310911690622554841686927106613218035109376019132279119043542210732792569348842680579577086724531422901847862653713816126401175/4)*n^72-(50879049323414021576962795004773577270347223644539634633988118639908358830280882307060315758434321275598880008978261600360860449818957626682306816498475330797243165049705027628261/4)*n^70+(6224814041304571055314585986140684519859554853298118649103100602787490533192261561190996656280276153687635714094283900257328970057682202056509312937943160215876168173456255616749725/4)*n^68-(7902109543002224041967953059334500920506643499489744280440600155586946840942553532225975847183951959962261896955935996926008169427542687792644675732771675726649876968681220843707541983/44)*n^66+(78063481486418819149267863255801864891981420645310286481166817644687537217596431071955070464010186077885098272384040857948657086319261804677439854274047781232012629622714393308953754925/4)*n^64-(37870611036417896299232023728942919206903261277160386612177761226742669327934833870949752176011892330636073908552926731824063753442316650956924412082002363222525573479126608919167146528885/19)*n^62+190945971083442693927854699255715964650264489068945088314005415246884020304620783472739768490543517081615791759131285869156301228348398643569157207942976169682222452777920944315308841000335*n^60-17121981544690363269161818681750494471552410803747528304101227287124591595332180404456695866507722519556747548116893741506368869818609691107621620925682570532577512895300304807965271008304935*n^58+(110404776342869088953706590784626565477957817074723505879822215387551904296501321950150116318203285383010589698589842023880660459474446329588385868139264740649718392707636513254151755888326098075/77)*n^56-111863426188270676997602592153826436902840693786413680619332426380373634484127043305013888835381898559515752205987270834674107012798254486725241433276321867457606265779540364258764073432462193929*n^54+(186520188475243143596404658435904079179701034352096399228587399614652494490701578008933861171434410199328541799801452228586294405120619813804883981059547576749763509433902504686617281530678180774295/23)*n^52-(19066888942775225914647639230081169927110258850260132099221725211063195543631155972195114012005224686552783900090415497916302758475336914526013691624429323737688475909219720004584482074652917277514771/35)*n^50+33807895731032292531104475059716373377326927841494840605476700862886421551916233081105602379815782169897727425119022899106140844531934424057307190801523477700574069524291833042941068366895498910117025*n^48-(42503058195964532575727798231254868025926568842199749857741821910246565486741719106624953382639600030710810606636057129671492074404939206440727078051325420359783830273717215341766526610466999085624378511/22)*n^46+(11548164428381775157186823931521818164548130159594175351818473941705880333883924836225436573188589232265322196696151313472420023677231441025103951464323176070430922429844305059597464413901271978293223759725/114)*n^44-(29128676568049036476877614392028980117850970985860886537890697224057176158999683076093052917351169336098909526646159313465878077031817065850236626382835370685260506582487186113958028394570157919904184054055/6)*n^42+(1270557030752014533746190124457155505593353899122391362525599662102836630616919725384222589174968158290446930302512487089752421940998653733047978762468007597909258856320563958292440566334607292198258125853735/6)*n^40-(50206393473946422889004028449573179630363137348641453750478412461395229814317431849786918700290004208201401051919380088897046551347271323295721166731103244808111443107415372493688004745551270410485563432366765/6)*n^38+(19668774195811485150125915898270962316522343910707234335096615920588491640937228731771079594789474952875844380020426362088359260293842661937239291701755488516546471660170689227834744919459950273485906722152802775/66)*n^36-(57068363357159029079632591341807124185752534817464276779537698812945885419747847894018200332598789993094270844296042223480892649728794692802503652395110652485302824013800336953881167805719672043693452566343772965/6)*n^34+(1621916671747882696436853524507795288487633528216234313208641223126116957179714395845782410474740468762121234290495153193631534017658863765944722742349398636320368419761929385150273267781084058404044929727709957525/6)*n^32-(2343410211717502389415963898151699673228503935768478714507611471364098627471987450770869722051466311553411031726042299677961743149237469234203846702048824155109020129630681159303968905175027405393896400688577148219087/345)*n^30+(449065812776869709305934925889053172161180938638843408554685104699949282866431876852236486740571696154825071761638109539185436438241125552878357247687659856674491323212008584779636876613608970256172582729262347247645/3)*n^28-(38941299526830759780996121954314399142472219911148288098555135080087903060986844842102966378337350454336793991220674535648105081274685827273773441287809907744435710275670947862884169374303364187622254875605984786811845511/13585)*n^26+47195915797001200681727464801958882295791158629432019239953332452097732112565807801072016888495961359160254390189529625321756179980983397055063725583837915567905211737401169312697344984818446463400263147359615070785975*n^24-659908555125805105411264358975564125976747358239772259940197952651981537509795484330931549510721458184646968170542954880321155292838014803731197501783968962596420675646304669976623945695403125737320232331670457633890545*n^22+7722643686571445681738435390972991289284178833440149044799748742547838920206784789791982271206118875092961028421340130414075542103248682225578969111415173239168510554570791192169514849597978544259227326222056722796881385*n^20-74334402921287353449235636819355751740347674009620147740339311817692873080363865649060724299928071417512176393402714634896115654580634391066419780179901864457506069801465832769388078432778849719741667690242547736385550745*n^18+(19013649640716829609804944524160298939208941416667854149548424342023483809136821863068679326047163132557552163168362532809513680868432294041678253001997419055996356130051429392736269496598963736022834671006708684184548369225/33)*n^16-(546421338119035925607255947536373244137707478701939827789067322492134969057176391450309784769168329968577201937533183653305487414229372426630325051961378730697240906869912111866182635199239292601137214135342524506634105650215/156)*n^14+(193774198609777727895769358767968216268283900721180813514144821350143291466118726974183160943322213832790652960278063904162166736259498306817492813782451694781687993611706517154262906391129211577944585373185163472733443527675/12)*n^12-(647903228362108014640732209701162645424663703533473786537246717676309829485259543798789241344952369503133698227399317398867638870131219901243024337880399865389219133325133655930340110885422867981338799493597770721104225119843/12)*n^10+(4518272226308378741676359383513782144877237943128409813320775601440628393080477041896567171250516632837000832885391212660932037692828472080071684962688037433215475808349408827358393989929037173042727681142126965795081413021463225/36708)*n^8-(115234864756670967161702503537606788673740093610192955766088963138095853898879842468610444210910320586442700839704049620962408923802964198051000237646457818656460534515774216589050709909865588785541345178602625198228066962520767/660)*n^6+(1592145394637811239320189948744207933776430342250002528607281705351170799985016352111271807495114001853332037210284351386737381342057356578171955184542205370992469376490851483127492182106455487467474714921423488768694557156305/12)*n^4-(4536102414285133047230035738334590047221206483281180783330265715366275458366832049686252054099657593921642259624689130059845791174623775019753181767828932034553823256068907068918088415784764614997002857726310782158209019701193293/112476)*n^2

(8)

CodeTools:-Usage(Faul(500))

(1/501)*n^501+(1/2)*n^500+(125/3)*n^499-(1035425/6)*n^497+(9115881700/9)*n^495-6191962644725*n^493+(113780128125296750/3)*n^491-(2078646535025781895825/9)*n^489+(4187434948895208270081500/3)*n^487-(16735640807673489861018659205/2)*n^485+49754771364615400721471260213875*n^483-(586810558212131214513247638756085965/2)*n^481+1715908754225678833877367177297129699000*n^479-9951711688628574576089874460357077449056050*n^477+57235220619885152695300597611472238857581214260*n^475-326419105945176336747608305622749118570214536255850*n^473+1845945915148316466015943648742733640239371721977251000*n^471-(20701794638589973008426495122856099499720791532416288159975/2)*n^469+57548891061915201338731353324247035438249702600987708276871125*n^467-(634468427566713898718148352824062328520130456406533762384987557895/2)*n^465+1733768932967447262139768167178837642716800798863543582443118663969500*n^463-9394084157349527916834766885265118925075093436080148232381794187654667335*n^461+50460722776950987444140695342406069346379642503021599735933895361752378932750*n^459-268702615437238990682037415647528065075266536043599820256760466422021251953194675*n^457+1418381962452674750901702748711349387869490518562036988625930162462534303750852586700*n^455-(14843308306840876460956557472668144354841911053177140562454457888294462477121001876714825/2)*n^453+38492632431904314159023797391141005421967388260875806193013948813725792879276511169718430375*n^451-(395764583593275341124606153339641572698904318932697360061666927816300551419083780488348289952225/2)*n^449+1008257705726377371144272465280951924724413503872597606434301261453443920545812690995674352001518000*n^447-5091599028701589294580854164063046166807141184568815352368864116199788891393951424422577121281936818020*n^445+25482230472677882934759761851138294506677581611891905124384839845750803338477613350538533880883166342217000*n^443-(884711633823871546376904546379643419984823315546550522423576474373938061676419832725365493775680085959286176780/7)*n^441+621205407353785562857628985997914399017303493922686257067029001666087082180758812409218079834340956910511424894000*n^439-(6051236365847483339782274149859814103198358554847163857141476974381119876627452195715774551725245159704394999070089475/2)*n^437+14602335113988905912432685452939913034686453888874780208608518660392479736270539345716950054520612072345729719637945730225*n^435-(139659845224682269685446987917294922290425954230787859620941064170917947875135614333116117191433731003689357595061130713649075/2)*n^433+330867010301151280229353871689204837918752448002167174624402112028956946809260757745228570950673074044324690041734268964829868500*n^431-(20192161378840947966960161836537911528636960167269157370987686729340345901872013152672626843166934441777224867068911535053057075296525/13)*n^429+7224050623631663034191641571350515017504403288977883310622921235598649759435190013884276799451806681168696690404510491881972317685379250*n^427-33285763115156019766850082290572442546571783350339310701923772210556769498121547770204494124758898383787954390087041985916656017986762138213*n^425+151933508922836726167233419430156231719076829382554579822166210765183951552713235761983558795175717742515081926307167383003179460922583472554500*n^423-(1373968086339225748880763963572892005146138412035945784285339553927345164714867898990894223271679414617182779901980485313460052197412427476785018485/2)*n^421+3076934838944593526792285337363771812072764307872856022499310764180730993040364900364100324025265871475613157961763019980252126279048402074486716725875*n^419-(1064739754848490134102480760779999614212134917305581549806564324440820345193266996829153973575543164542909249356810375062006862362275870586403585492723719275/78)*n^417+59981664881159671501184574992166891083778327380290497592489920624657846456229271273541531462853412704430492465819691353495181799488556538285792069484566943400*n^415-261040094020753710642318804365268029914082935172604378957412999357202542991367402411781216475026622561616045996188263980317030080937268566842801356959300768893350*n^413+(3375328161579564776358140800625231858328629141365726900639702363941685651451519882935143437448067726677756737928225270473296040048445711519234795023202280987296720500/3)*n^411-4802426093567587583922379392571779687339098837159214768360942683772648311079825727423951120254163426655476238753405203497495660402536148390086629756905214614374980009550*n^409+20299457164599143427284298016524851903152748392504028605159222896319955719952985554081138188468855490745351376965493745663849385275808393993813312227541232108797884081833000*n^407-(6627347349224851340569696423134476372756309918955126435113030790447643400518732049240253593991878631775189702796304463269814470255173565443286256283653139795024647200631665186065/78)*n^405+352145207394014874415111564128673399964239532358917573293725613880223331702951955065913776136754613539856732512048947595220848199334629843590540221474062060699869432812745924325125*n^403-(2890168346705867671239245789503212487882307122760627875239686245004021428046770728391630939029071472104035764104090159544515910342015044523962122863272670502989832345161000791337492423/2)*n^401+(41099431241174824393838805706101234292670113036398752463994388816934023305796770051180178695187013756537837791018674484209199898525745467822346285033994601765646207389165827553204091240500/7)*n^399-23617504290100531759497392360924030890577379054083417289816110772580687514908395052778355153748012918173819472303942228476220376401477143392061531417959761461298754883690293444078555109732675*n^397+94050250991961415213550576311459897480372315430718429561863020423436473908066419297299261670935342168738285157181477576491970603835637567210570896264717445646091901975437777100667064781452256550*n^395-(33739211750573521089372308900565926036919133054033228837186293971110740898533938084536342394079785080090889655887884617194464106059054850572060881876370747338030443241263613908261765907166635675138725/91)*n^393+(33276700375118950797566486888972096399664601626743828993568775394329273875089232410900388901934788710563226495912671493877751880506886226702420475619111184867602280277183829481214066984428228141111210500/23)*n^391-(11176968930116752648917204808593173833791266343961202861667160373156678433475845653284010353987520775961043086693390992125582595329656795369250515408082736241702774683627642736548219426626711331666214071225/2)*n^389+21365626802303533477684868990526164515827749979117740494447849891314974298053315966151150365808295442425279453788956499090388772005827025497612007419514682634227524782589959291708856409023709601005320304182375*n^387-(161690374470805984479926236851977128345691270671232166758241846234114270199856761580047451925787945088219730493803077864406936523417651502495740898321032872210954173612510553784080916802615411790871585124777459505/2)*n^385+302751559109166480158808239344602457662537978357621954553765430696953982986743287267602593417166790776090438040627549661631665468520345534362505663338856423287987162990433644030595805047964653776882785332538695692000*n^383-(14585863361143869650364927688616427812133998140330162738485380826101592388030102752727460679852556174430554076367010887329951489276542247568480555787856554244846000114077461617855165983276747728168917914338067331058561160/13)*n^381+4114694765416343453203466140239223753915236574062812568092923879259409507877475565932912115972962856895052413730292832999329758775085069312661520447487788974405236535440674521930303885470905240284667962491975452492733674000*n^379-14931687672760529924395179957412559089225337487693544269681503051427360110086829118876051428868047746965683346071092449926325554243239389801634814153805005257489140783933645990693350840271244768512760476082574800179449593969800*n^377+53614017973089455023281792525596010768219418451887682615012602965828085084907398597367182997067186033066093834388012059080899007285002911085469213898923101723964851120082720256885539483365128740203779745514659939598278781068112352*n^375-(380935532729956494275287189166102017171848208804111495111734384662838280451243954013471191328850701461094414858016580990475244276371095530770948350778692012452476015024265412845623884431965577981361078071525910961815583953947482569775/2)*n^373+669442875208399137966675386834254992266166564997441785052975823485477449572799358259708229188919856691557250507395820956185270455675513192480114328434313724662159379166468842771929413444012138373379522860381565705372150293936639102265125*n^371-(1391972337687846628607427920902537568288945526501225498281034245160337917878518530221271844405615572436805487384081524197177577716025404317577284450435445053347752341897500336669141681331275862203609592446167360856031973510635068132984144075925/598)*n^369+8006521401593868588694891896088488830292385841037629769700716809370415069172853087724731583665886546425191938699980478573253958699582229667153619345795554014301644206422748253993103754731085737275495455302590342644929934405612702265119180928500*n^367-27241516579585208427054582577050459693615996728433340855777721146668337572362666368998502247678713910294738832064897883007352394027392013094393808763761720638761088593825951603491722505788145244738669690936279532547017935173964003186708661678724545*n^365+91678139915218114115015667263339877398146354535950914544540998739814491009573422460212994969102364191752681915681180114869004555202917057784428278137899354278695302440917991261382720832459483063623701574269140686680268825094354727695720405466250415250*n^363-305155535220070630538383197755361853421920033797742641815319040399054034863017826927140847431715273838160952738126707684452319123029155653266828750115647910247450017502579276148077191207366280959690482902887655055604703146570476134159886721430920726739845*n^361+1004549213563795975688036612542501912881025109378641417258690412599266360494570398831861466110632333204894371200174097260363487081830810075117357542353029866795280266346701855357981717740202500918421801198951063292882043652427098558749196657849142634060230500*n^359-(1445477133638635062409171032843889395589950604681842764651394748232780647631552888810114625268311120552494513468832801260656068976471660969057870267070606123179461427667485467365126921271171081791685867396043723055228939637031693568199579986546993550785491499974325/442)*n^357+10528037758777926866249256284779917908581191221173266712997725819647603421817287698818460509513899419445400720352175064981989689019281550602819644096745325728228159043402508373978632991720038761980316090995980971545627373601532364922702017862902963101577730519867775*n^355-(67026926884708233507811705688245137787168569585937650912552862902345471941090985105266990267464666053439254318406724322472985141872405448292925817511425693840062555834241326601276045511092061584556094911845659890757507031767374830764412743625446481428760172259691501025/2)*n^353+(738371600568779282877954259287941706975198794166385036758332688648391434830085645019558234050211787688509922690713639115863627772163197121006756920025984021936780216882190603676508426557274870457529138241677182577927403505413378837241848035946451919012344679751052242189000/7)*n^351-328240653408352144163424722488360542662699244757598203574025443710954119181154380969837893533464602717353527281281367230586711368104306607102780014537737369845200867515923722824106480707956669076973197786704161767373640741094027059739591787895489627842253959612560599696294850*n^349+(23225503551263757750416342781421164995089275633400503969396990910640909570082924995923351162007061222534824282963789583781484453024229433683383915705514308535003241034610278222416058891572216210991474636265743270135880025460357525382842641597488138877605032680759245654824661775500/23)*n^347-(279463138363554205507345729242539601781254304590111343524788710925673676307239661859326718114765158743435405922457545006731467462846796273400475585260139352199071478692958110057106504380883705236208905679392034767326286601180933112562693003864342250252741052763530896201744563628991390/91)*n^345+9232109363011104626790879465584923759667366316164600529510243436360505394139695910786193801511461765021564605519888055180075404567775289117183633494318441793318574117999597023716755008107093470145240010275614315630498834865652786567897347062300937811299487342648838236732660245904939000*n^343-(932696499664332489741099568946396127117721458060140811952499494734806507670366135299270735045967543569373518108736921134542410918562799307716614824599733044786365514106269159779949988983367456131193855350104889513580228175241468349208260052662769853550001862793543851757206784082528232175795/34)*n^341+(241688643328829343537638316761329757425574689075729810536011792856819205311613727884308841940482771470312324080628685934295408486457301300398615814641959712696022075734657281069400751195592589377551876994896150100447707805751470313075344106070729691058474517255553427155026500351472303153190875/3)*n^339-(467650762288021856786408032232163567879901933630724178514697014241779306761095892047562600786949343810595828345846713988957427876673219412865667776798243956442850549710601495102459636821456353565427340746325293824914618783332896887035158949268626074988287207003905691944341789245182800286389311075/2)*n^337+(111999881617535796159261411578475676211974842572213197172989263350407621687857717226158295459702866905018667022579102726067001629498665468117264577790163920837753766506058370170699558243102208235617108693552263201791582816203030712141810271412672320009299728864053565763869494569657657039039021516470900/167)*n^335-(5702350188078443472874467607930550691613445862504345361411013039220998743259864574999671478602027067393056030298619243770349358823856377164777407247494854035832505852874612373175503915500326245366674886881938557318091546493465035573145024093414023880971077564520729856169362149802994723506930968286914225/3)*n^333+5322984604830570570629657744507079342051547327904554087286133399802836865248199006215381489828692664815973876959559161922400107103487646584742444254995330855639895687911344457945373419780821158051539289013345265075694094083603956237127306783726300628032722249693080091819472766983521162381260427322818845750*n^331-14727784031583572628942536603096615795732061048226476283194309343341170116498877146410672985876641537294921549384046962253065704755425542254675847565338514545247981279248385888086075172377305837132628039729062634816104075740685574112859412899099687577560997703527864478929501329254366067695865666871277042809975*n^329+(120772669741516703389678161596448113759712161451875903768133819362910496255138419616920170006466602434528940481283083486586122967765436849291421565976505894608447213817806415473807936940780264023914759146223192264477280314765827334083028126946913429416341171553542962563295374180193784847838402282819811428480860500/3)*n^327-(85007996573472485735140500786471011739001770678659518460979662192617185006119920851982413698234105171855139853110988571528984902379778817627501992980607718042917133742202398557562813066872959251230764103968436674693364923413610111089131171976702276730223868802605950275561368272196898670466322097724895153509904566777563/782)*n^325+289949031521038718386041534083148604545451409149199008921914021135274306803868440956741709493415610312486037518483932384551898951491952245286475659402154878008953176893216782145181288785581714296824646470085762505090179071068322082703109777866558743335205637277608265511792281044811333344409467507882524393441336937055875*n^323-(1527743045559588631352288605122276112842284011541538723692895622351409327500316513427299987553519957350705405506438010658501404246528123591319083856552748646860528961854182341445804903303758215104570576331345418002724503720389201896715976842037031646924265400262570773885097744186790495297489657247604550566931353994514933445/2)*n^321+1987538700418425647637454480659753179696826608214902273257733950295585418925552829386111624047607932974848506479273961446376146873697128237417408130883281639563916538392020823743553729706643324133755098859331811240967039063848209396034591783193328935590591617747543659477120482492477439013619998325023561409563222167640666258000*n^319-5107091749938632719862154934131657822293465956596981517811426806009111216248514927684601105120918317296862625524819486540363572963568947052913325117717408447288854466210897354987763637094648241517165527556475607737924101926895671030397779521439152408445178118516736269870918173354990806142757316125942497454475487424247983063659100*n^317+12958665159831182861093764821445624464983242776357589453532961115256145310309166293367527420010168912126227483308378248077508784782483914916244996102516256281188775188547047159351299074087555299385434908774293458422901709178642973100721401265168200482603366379322777581009353427724838468085117463838193120537569849133954313549296403800*n^315-32466893273286362337244440253132314368563313746404314617648287411737651858874471343466481421149858956872881619805966311082532182764587832079557231210125623598000426593773983484730638295033908442286388858589841016841668638047769224974657661537381469769313812265840096355648048591280617904990335562943259155512370206952327524809226201766700*n^313+80311905134366356573354223176360743883379058358870654818301334928529194686747996957698436209017985691400923781435736234678061280245173632911702825315288432320106911639838202795220509948916252357874960429871721619313501816496910815055775089612787580247319220173236588797534141434877074362346254391188008716119110910852920102529349800835522000*n^311-(6668393068700093212788808331715752604711622177711300848445587995932065108833152974245509431360132002571755554204320184660567032438197667999233350969928001227877837639419169729358945913646671673665193749456299473776383878670955491129193945684453734614015433307168761126664003975223617147611632016433913377445386327441426294092385999170528856533775/34)*n^309+472815530794697198596530915002453910887696780320497682537612533711855643864146428498040431632209903488779326917977491264813158605453692167724097926382175257897084126854709941891030129987364218584715745046688911542276463764616992982148362153871151373871747800563202837303565835127658247271043279262205970896905648928781936530162818062866246623069125*n^307-(2250203492908636089420783110133753532004383259148133997268003722950700643381511623965963356861023976464185993871374178716234468269068327607824194542085138201579378804682661488870834684719830270005387055954735645168578867998682221297612291551345378478062291461579810798803701662222103192685937192937716459023048458133932576077215666636610520787538175695/2)*n^305+(60776169006170913884885214589180251034741661910211220181203930271773125084743607234263023347609613917641268482308188370719397214675992450082530024078515575337956475252067549237950691966603813304837330932589548246938334767944526958573572904193155210622601930421871287601467028932744395617514370275417649639624375462848081929081226360494141688849415921249500/23)*n^303-6124848063449931902152489530005107613791639404771158880428974774887271864077393250087164576113181401590957320838315068257447961920938404092118673473324343328790753778208050112264184416260024509667690648073331772651136365466638154430248404442509859181075840351450582059909736576371651806618995811310219292272030134081201921437880819917792384328058671305295149*n^301+14009522511066483941130037191722636412373113609624865741695984913865226856929864326321881741649062877548979753076829816371699198764398927295158154974153695840663859005583618070711309619015835845234511089921562951566006819492212393805706813191199873312352143498264260328215538331450722537744240020155645856521825993680843416562554814497809758732404979121537834250*n^299-31619212484425090167745176541537261550185471530862299324972322172638419790629179251543471265762768946040072780423895689610969450565867542539627009282187174012615472038863188646945352930983779125847071259238865168097304661124591339957233168082850026042890765776070792909199375612979420066951467838121199035700300222712240760120075516874978821347000710282768066916225*n^297+70410831451967009498901553748205608428841893125176863243777195859459383227998242794967817524766461624527080744287113395988757602583743185403056591303920478525191015854336141458384659886125334164757179014163776787026564822219302731572452711826199820331453830509793191005872626783842702834309795365542680881083158038757095872461705777746657606318268382933217130382250100*n^295-(5259300666075134149045203193624972510206622928748913100493513694935564792322264917500315478800049977120572476334124418460506591513734089627812887682210719151152719224433356121020196989213744378811244378789021104179011348856712042181403772022711625954282195254992496358198350863787496302886844433477022287756042770430568075558240742048974955265337250579190373928344544696425/34)*n^293+335227638357744160361225340054020249595217525650491249598204582598345368611847575869779158187360046674855036143741716157097373800034907931637947230829265064893800232547486170865671507254655637992239129300000857687071975532311682785974344700113980199748493280000659479790954075971745525097584165494979390919985027848571262820239772841204192431695448904667262743802823479391375*n^291-(1433181070453418243895675310709207254924838499770037279015220467009846492108496857164475246803521547102639996120601543533755696069721625943207047295732732846395112427393373747795802117393749106602184328626977502937396803323600443098104112792924025333262133324192498918653791700323986162577801972704592108658244414432961691864642742756594563015171481469284273554390658591152969825/2)*n^289+1510781511703911916524247724431974784272255664069217636169698009091081254492662660702754322043948195274405568998684361834668798336394044394340161874713994262205482873334258711477071677011514782743117999966830321671823525107814171924986770619116539146089073471930474650736735721949190170242442869641587466797131617697895148744029902606925743930751516446647150998311144684460173161000*n^287-3141158525816726389743841255583917970611153173638431786302523607983377383493054200235040366111020184818142980767802213305224967741300188030152542836841788303628297127270511808111157827364295852899208093748146306922422253330279296192845518464776316866728175004402702408242713135949902506482124960487074889164759095670388041860108707092533805058020305462739082001046684531971100311598630*n^285+6440110483342763833086443499262398339735412164766401873825037533954227609745316396087948633639301606065831128046917657888171449341834759842939561064449470797278729354528485072662287109575263628431339190016568520892985382419962014498165319979741124525148360013613105094322405400243766819207196718333373464353650023062350658061557052419687408792252318480229227602555651721524154217532981500*n^283-(299431138168751183082110733077061099350149591711705545380959908199399664764467574382271048188977031344072813375557047815578957140563790730320759694665148661506754696506178786413271934726327618049748589265819665060197532702838311526744364995561486074130370932220986688172311319146300326524499666119473995185355452301951392388256437404478452767737828291484927570884784419487566057253212192199170/23)*n^281+25946198697863351575726674959436727345120340435093317410136012591258484137128268125067439045567244707923153243486930995857977306255302419763838402583814960462466333931240181250269955401202276120307368603358212330979468468318683427160666856046540094626333055857857216671854387357933456468646444771519498470333303349235587627889612918177664055296218139694162365155177398449322354589190738721593000*n^279-(101951353956069105599041682026537974486041965594214075108461627128135375778974032278387369470760503406022499217534382061769253157805265838020610376227791567957668025010578372342870741861572926003327341622626292575835595963011106406916867447278359254646442004867285354962472069051397901420683794360142385145959997514961164447753716530593044225243586061730359145329147636600992796156555973234235449075/2)*n^277+98717038139202028334032207128409031158655778522048458483139328046689289993159756000465417520255415140875129220874451625496121103327380810460302653499807604210722136175280181213859652769367499636662984251388168261743382872609934511303744701586176527684145908408396135001199656289688283449956808772936785750725955847836881861152233768978809916736059269065320669774854734377898917008192802977811408936105*n^275-(4898791824856843535797329165109010731488730179626149083146558318441423823360063517065191376457986021579840383525432688529777131746795545130923291453359675595301450906649684168473468576908800320178869179248495043646676709834287278341266323689008337525754430981002345976342970377575174508987756338780698409654458743819430320174119561886967203800350749835668605111502978921021645947626583926621773915397919575/26)*n^273+354394889683898896394595017346022235937233732201600182346150840674868989590119826567242474054719812827028163401644216065874084179432147925399054058176206464099109770776256295973993704937018121940494225036854994465719766020369369988039966719903545248572785977663168110837320290531586154885233284046247238946881881471035681190841725832802160205119857182673451179062515388074576753731924742051886427477941949500*n^271-656841779679354150040080540745567284649958667787867449623364312096086804626105341102289654712910304832001921524309595810240314539663621217404627278240879175322637072600140732382977521401711698519218614317369223976979976683967841775240688063954121367642864653447266056761630531171261264182458292857347906918555688622017162523847527825298168651901611241728385444142006485836600135815860821610876648209097189937975*n^269+1199466454182738137539287763977937348676450089194089391308057028323170666551942713337325451518250656307184570587828849132870262257386650999703021790922247019776418122802615726499860355657336862298002825062058740483777436963570599942477080505558235820596170498345654881416896643759146398820593693397461913548489063296978841060514682347771232126260840795942138250898777511756514486216982514379452809407140107575884750*n^267-2157850078052868504070867567859430102197392035342517572700352426846002303850476654545657406572996564892181230083729860939806049597676190045019803180840914654134686398340744675192648918286822108003087924258287509466673681604312579837688859859899663800205574938799201381919147990240312385779998423404068778848802510729627680340940274573173477431135460028529544754102088099082580351907194231357192741066924462687491446595*n^265+3823942311302672437555452910833148033260154590340446348993521912267042067270795626367555191983795342433655645179092488792363740536540248994459025670147232391257849134539990270883381903085109615465889426655087780380247106514009715111081388223217773336456110339729487084577576488698462830574582165632603969952599935678811302744410204213448407558309120556608314771233890447985034469951790709719150743183709713822399609371500*n^263-(173532963254130330311060730391908777935225368799530932372821984255069356317728432264193050444303764356621911961895062054570762484618516579090027259753235266066405774562729167410869962305418630680103849257456781895144980896329091099747094447318721504135264375949413441397977364732067791195261201840011265951144019390593418713390597166650439659497365626235999946015470499704971857586475397650505148825051331489816534274513649545/26)*n^261+(263870347807345904817062051226458162544206856190038490808576059069359287583483778296997230565092533381400702663540823718438026994640776570909022640223869141095615459171102873237441763081233773922964255514264039114763076455695020985045473631209779456097839587648191694893850882979161145000043571063214323370091168724348772375140136545685371906225246574782112099465408856989282768745509983098568000009796091396462977195353583667125/23)*n^259-(116512826288525960673669049921983783622126948548000780487506585800226713309275589136321123414396503950595062817492151484701539834992242755069554487529837731438802358765867396998299270874937369943322612125666072062272479168644593994145651635923503143421311232640836181260570488202879656223428273014148224336664115899872141600665278071572051935966309077792389919274470821805815471526340644696431903420841019012014520635035562791560975/6)*n^257+(291258325396834318370695852192135787128621837319250312473309748576762753226468103875281989835179700032209050274247996035896189012404749226614164559005739953015517713660702649017424951240729405965184984927552834282898659225778427795674061133253984577205639976433319786892553512401370953503057874914636641389207515647958418878449351745768364770757320281711655910864047439126355466413871408594972770338092456736719133685992539843889537600/9)*n^255-(159283670088731843654754917483260849011204937424726250651300455519769305264997384074441809524924153674165923530615160883944512439707854879241789503230695391968381595916878916164100585784966306973804776014677335488351539705772651450603502883108398134274677510870781946901289619869849782779998961998145546810676726960925072654350410226401222640612782368929947334699984767436057112557535858767221860040726958337654898764354684313686724115600/3)*n^253+(21522119864408567059677027449969019834000206811387925078664322910709913322033270503740690060112367891675365482670788925529053680688588127073437285661874691118884244446777161170927142878198435265703631367864200475540904322533968607540764201151928579539453965640881215503325210834899430616141737165087010005683160351499386652909832838488327979649535182681644263125169387984861428392758661596111268625789000763623745610224280840377400547430852000/251)*n^251-(15945978695064693504500379932755360192809437526560570201047492396572631001232799081501086705950593813393530647027759417004092474944561559135412092303997803288758915057782695683088886833399145076550257429634112806454572944098761604967591695122268504216619027102889036786147874757637872853150462358308111321595408970975343219996997574898345511056711445938619858314389147098070574902833144036617305666335310941616703965398064889908123639180056554800/117)*n^249+(639554948631716740124521294395882954666095389116608682681036510540606353533927757544196675701639238080328784827961381807713782728859137382473868189732396269350396034100541245027229863509289860590843189477241285010500550080834738924231905397503835673724077514011544127213209668618693417937806009735337008163581510999472902577063610252377286919847321841399374556012995555675182063405551683032622162077822375644273912819251686895579070192953298872000/3)*n^247-(1968702908926680262884626694015023915020632484737201245066983334805627573809716914945626680233511415842719931826916789719355815322087520084573187071713952992025534097680761232040717402575835416182945928791657163105874586984938517703036176767664726736629030914208040647513585916682639381782797355526413835858750798471427400933608521199805509192879357799564779416404767427562084005561265330584616282491132889689358479684358451378021118260070166355680635/6)*n^245+(4471648068892470140847134539834034383354282550320818944171007040439850487437613955401326349514327915490734499275846601876396646410460632549292590427310766049414344336339025260709322722336851083745642559987033024445637695976810621847917653100827978654685883348249021303617414617486787507409058582839542633227676639364872026094644841102881568956624811722261687590718327421108671143289120742365240482508560256595553063992510532765332183940797961396291950875/9)*n^243-(1480188429787443550083886349019922238644028466446119037941124892066101303816655895455867781371549461834681658652039256156191443292066432225587813941382371865597771367445406420884589814967993728197964620436868120002189274756201992009659563889296604756446482795766144515850341470312607672065869343685288924845012694236677635385366703368227861701057823680325659366401361852803984096763222587383991576372019775399258170878682743981182051501101742245400404242265/2)*n^241+1084315228093844240388093171041854105205141091992431281331309228950417786576146752580720657603514661587581769966365376519834071220437664895672090348437425194452424369079538916216500971370839785039782624139163922288296713350024565082852344470752505092823739874887801148126401357442290462546869409180723425036502964111322750789610986298058940238014879848029523428482112676725477716309810624813859423830944494818458170201020162370563850053905931363857652672079500*n^239-(467134417780976934591956459285624859126853664085560178032499033912755590616244305629789595709326452628804815951007779868040504139361698266688368090053962465136224870590343250887356470573887198943569816268633012123453981406276468211397020171348961594816945774610863832392158067144156418817085304908859291985350516667648901713362849819174147395413973975599629583749062117603319211203594052517197223169933019090723981730585403157761868776188663442895449638612880154725/299)*n^237+2213458024778584126390911980929074289751902512531246660378253624964228319747474118307045390362377324542186987168977270937865516127800508178256849798655699162340671828341694781055528724545816689344221147816030183318801748962037438311691563076840135598656123410841931753715233159449535884424004384985471179222122947704098377899154269522221244091708731274770911442386570236628961042693290227509534796999926218931336985457784664582425478213040682395790485774459672657550*n^235-3083154395963927841233262465128224353871270364792104948077119504880744380395419731647258905049087182570627750557235394023343371448292259725496446976601587152668652826562177425978724690543527511637766390148611530282501581002775519121862160283486962083299819996233891627932869451085335650716661019830145571184974597171122952376501281471868262922848726782290510512815510045303288837257940481147592407602357472912624922621256151307608645658166269066052043769716514163421675*n^233+4221622956078934581587908398568983047786674425490731291944255644307344859777442131591274757827060374079967890463895318835586661486288104513586168700254670500105275639530098664123682687539419112180239786626082304501210258601324693516342880750178432120015165836408825164861432785803152085943544161039101281587365316771944645932606398759679029955188756996917994862369547556429219084798760412207634957809480428402603059885905451164610416632980697664315826010449772384248345500*n^231-(11362908711504041096112863312529921189081300955667002009267564544410350746118756063834155255141908237489959380532149093267820494541176704792737721668635979021592601354174555193966968629079941474475793830076582312890840753931957494954613057209826830701101660514711791157931980985257277917234870034652667137273610984288858763490406995677097472913626685264992056977541250901916141773217896441679000902304987184444876184086947621524342284607184999761291234942880098172944661404175/2)*n^229+7513981380798373624260563528335661999037492124252270326741133603709961668767858769390676371374383602669089570923163236073049075200248326545920625567242488476104158713414539530411107024910602971657659895233123203436718229904518937743027072389466045845143471222917928600415455651576391655497887431604506308387104556484646411451882236234837719132214905946527888647332925443199757296997142718638669405948423182431285596976337568023307159855611404685370153671509925123994968974329625*n^227-(253873880994521762544855002925856884392873916350893049958141448145619550543093536369959396748629698685998563499971643704941108284801698253154538144962427843647597325181816502132215628635985425647564637695156929448422421233179181747353745780883650144697706771204026245769988982857689043072782021746523518392689597175808545631738329880041168825901752206755482982377303323021724763227269799316404315240926888470543245767481166504769427247684793510726203647170046636622902192379704750907/26)*n^225+12465665641915796154657947226889727435237448179094045861141583754850868099802146206748432324542510318819624896976544759270805803735912467039112003485712688045966100682560393828231435760822929566862771869478348740239073784672131299053967478769075074919054444318093847525470711590587025014526709982005418185525878896757249275327317897916512663330410197493622385669477332143433958105828255935225986598493798323890832328050260607650534900226094360798305801089848087154564449153354588401000*n^223-15631965025887160713134011542622270536999172990550683651390374556823847277232666615730237577036188980122433009601850164132802689808296634472372948512383752174041556098208204880784813331265726938801967221922046012370412055303689956786052200256485595426291045681002869675940227610359909147874322328232157032989144113872398849955815494712486987000285349509355656137976269099209290080142420545996653798273960792163434304681153931692194416179062374085094019814127754192485854225998698128957190*n^221+19251687014799341632321979836030200407425054905106615226831637699985771803273675355251339515284344644689518878348546753569581175468309107252504057999468413977772148970177423302002357339563599289627054628510992014832416600282976802767423305807187006184599374540299927150170314383870933325388943977795630611063355326159865470737674231769716305127557743188155688925121975615868169302221513415100578908582628446763570043517930903009756528734692540010894497836321466617531484019831045055177749500*n^219-23281430645768913992116358209959332314837628640022240110484908807708983621797604619000947795994690775620255892193883876926232389855318473176292578507571743718824341220586964218112800535194694810989826925972870477161638041545058031140473216586037093669248063314403217203307312453201554958799945796903075970622385916402884167324547125876191794131812461652661986166761526412386515337540113994475675197339902831719433997076195842075688769895349268004024346357804026074083143933676081850174812711150*n^217+(635757143251982375522985197470341474216110699203492545651567098221448576812156225453129466921498055980038493841104467624690005771353990364649598386891535451377572568997933069484193249203735965236767520016132821869258033230800897580156070820332439555595246860955005667854195346852264832438002767462029535886286757703500996255565439916798166428010314190601242302412736239190762389785751947555346071741621158917343924909663351400972778011454797359791909189005663133698690095029869200077569907204672600/23)*n^215-(837585705697930468669635123999896915394956030155633434221459224893461892184947017863528210182046405858907290813455314697782705521822178070156035927683012543357197850264900930866806838850681940474151623101172626443014130432915453708688262431060896615683116672888686374330293635339251299032963605108133119442290456512498092409358095604665427609633623278509882393377330440127001494105114016134156207243222841443465857116842735071027283338461087489198454754536466014054811657715315757655369304179581229425/26)*n^213+36847806220777605538795152523405660726702545590158157226933671938921525118192120253116891617192000946395068351490595782035968702873015465816871901449802786410371725539552182826707262695837469640902876727443681275405953078021212603784758520380725579359375654180776460725026545278241374354191202000001556993006859670653819096403890514052849550762360158855950264745164515551211878185537323605470281991708813266469606935685678782203650224899264129712420739757386627840192860945938867997303523325020933317375*n^211-(82714880317920511883112203718730110778939843120215862824653792767559751797507692027814409771643547430412900532969001985317112547113010677127700224221705541728420601014125532071708949344835960603980348147532212536342283648606801900011776181629317204071483575812822787819377650030043533039452473839726366328500705559113462479380896074553556417629274702378481529486661091480254100757704875155445295929065971838046458198419448579484462667935490416684783709593226457323546270940347782657106882860522938293427925/2)*n^209+45541101890362441448752055211038725617216860066979308317189696854381806673187488835858120017279582466075005514510780092567312094355419862950923026452907716297690449635019648588472266154505327807596845289917236244964315644899431532457230846910684254714960302254344517515776513878298668825098656142412681337998426027218565089251856002225396915813030790918078542020141928405202390472152163041589525053899375546153392206002724879355633163357294142675130855668768170508125491946095428011210304267025033483009436500*n^207-49190514327871408535528845169053956969386110035475755242420244693341871866091155972064082793247978577226220562281788358483752003011029321874426463923849696679506507007568853185792329484833410178193608706827518059027668660970260949115170248404772091609060415829733978396456130817738447258466756408686392091190008702777117040268559052130026165624071431441233390867462382951745643352965067094208674460464506952907162359869133141851101005363648553074950200465540251375915036561594146442236184512711040987028262824165*n^205+52108150073485327724471075956472269003953092314398965302035920971540574965706790438881097858023759773695586392078890181966194763563321429258563210460290423479657240540145683432969847512341783751636315162015779606182214876437480678261231478925215944087586447059658565501100074395799803723862096228562297100050645484289844957246148101370118714377240689760591521935132057856727896438206962243494796367087234460735055640428140068218553851271307970134236960338049265489442697031428073682782985281501696109085306076322250*n^203-(703617574119978001797659055310724444530300345717819589745207945263215226346908818325177411087836153032954015292018990701797125280576147707295633385896162104828462164932342772211357044459561755393738474101628760643988868810487952186362647862601215330318944651669738649002718920695069811912073013685736013424607907286449358761650551931617360342926363996655309261446649372843996920918026361310580860397955643213990232336835150094983311933896287838179293926617750792308132254758207932835373123424512390371865421829513095637/13)*n^201+55113709437379563140781339162394537755239331075472545586058950048743009049743243219963411921985520909704519715809488112809451027431673224311942477245048574454706138922966768456925137923656493106116667977319510299759940932669094222412707988761160241239060057831859902858471126146057188112020861401125083467334963687919195529112192813455721050156425891122087558016893150796895634863523702287108058292125130392779666577194206945870365757926547536702267590406171538250817118370299934087470340947856757789786884830604582814500*n^199-(110014053806044142532196887032415534311792314099954179471845137399364208841488407493815547135587871529987595571712300655614882341769800586104748637675353479404559931916708804759049581550898968378126194386680303052866811971699759806362890078338097219514957494135010047561420177913091205024455410507163416514166810434136463565202892162562274632242437630765801766873947808678544660412740920330654043399567738509419391718416977606626114529998411038712190122092748998421693258549273220029916273820571496991992698022827236128867675/2)*n^197+53799808899763476681501274504519010268490305179202739940496862886890816942094418194140271599858450468390165709098409708271506399504220025431907909701604204337117512729332309058381739019940252921561549867259386990163091247453823996072179822032690183268704935390842976258912561720501131005825912226050656143086723143206717269867751519336790844993516965614672237896967058211024194469484986330237045004353525521398504891134492906917398074248140068515419274504560000226847973399908622533756132349109143410665400596757657818930873525*n^195-(2371456535807477257794695589974406492109092112629135989026268666402620427711799438053910749175165208465842843954234059573332249891658993735958626464398848089159568103485435868058238358015591452771345701809964331413870114947874676461675575533416557719918767145264631417434149804303879199283347846535642523834612544957680316465616406353293329601426461999340420923127159471070104620514616106687392470953587526956403945343148935040902982984191318314744501850833419554365108473499954712540118663981292044612524195507186003598867727829925/46)*n^193+48390057548581264197231378577764719140262893804010446873475009480472446103216153388153215211726772957520969972149520341865323205926887510332511085500546717785392054720439675796325013336888004219899473344384780791810215449286393437432469645863305975480090423621372264484759002570985382325582651118057387541052579504423813129169813634000962829514384705044352275855966332912878670756660632828489328296884940253920477852620924063699350142306592227683145208394723789056062450051641899826270766390211329204635754305714415027562158226738000*n^191-(578264754136813027551014781546652487245699154665010101759480359403285675811898727604520486016977140219183225818670698271428782866606995154418515258135603818744986945006388584103880159913111779444136995062476488365509561944626923141488504919839590308214580299972122304844449344145639308492981606417599771400383152241821654309151031223518170514353280641398790862670490961529194973496469301509595667097354978143716918814048267693558928892573503008541075872703390907657115568715911852125636576772958853566928089184642220207420093524972550700/13)*n^189+40035318401261144731464650318293496943466312154108005209711978428721378309027493548688185175227643528336673637832097500639654800790320616746694141119876623649087081080871703044055998904891804076271074371941008354154278447782462975503211897842265664864885830561463869274901979798142714977583305399267725019254949730081619201850466407395959567355503348441555578071797770963569386995837298903746737898444273922683517505429729959020272981331664080582182719875484058265538122262375617077210439150057122221773619579538938730542943627578950599000*n^187-35272650960533100767387743107430638390503439130902526430355576207050000223058603758374412359002235895680864095532585998161643924347784915539614515064155168777557185324140077645384074572806329031360739750750714754448623558725071367590758717001124242302854255125566425911897206530176479896266327462536016061927258311355707188811941575486033986597366795176692471356970929975737423161812682493277683766677979745975295352690484343644329695628333866746018301449317200090246235820326749961235262975109965567430036080783882070940678108698474950728620*n^185+30413606004411419337104097879271426254522206443390452724944953133309445817406008876422740314385376835286216907713627498254780553051854810709807832270707008138898777416677744864928643381052398012727474155663004275581514012876623260050822425098913587070891519338245896302452490396231550782416097617251214234819247493491545002215302300331618336773891057147324717647139556747084011803971846713027856408553678013862800010788356391158248069293809890432044113026770627342738674254340991780304965001472396566910882641274265755337838897605682210714146000*n^183-(51316928238335553566083422145502825003402816058146946143191320792520048962475784491414811376409035911853650073930001511155827410785430201223518537793848807800423583129924387232699112787068054244827479276935952006506848439203233672142555121435590024869329766844668230236742392173707944846745269351831657079247907667648047334292299100779169633834704376528416261595333603728351665195262585942345708411676471245111833110516927707493279102224731642871288854997787628773783549062660908461921693458844301674522150117235497778658505922614830774803333616745/2)*n^181+21174930803463049494050471799879399537905853085117897693797543083409443927554253830498366753636297444628338497111832934915906608504422826294017403164715820085117969555679530898159997730512035816672608397418444253990109436333633919837839451630090815910787388739853721787106674856663581441213386780505706118863364386215643523749968332606628308370889356648958446412356058843395258162438810359250726521082492392513374693898753947951152435738171501436629571047194906024949168893507740391947001156093038324273878383264136164273790250505153901527488010533875*n^179-(102538402428592622417778702652080917713148084189735467659617759710903259104480623164092593301252301586531449870525871765943704406107084452282438035755758168612932803098946217761634964222878062724168971556508228743862959461729317019612592506097238901248113740274582453586075906031155654070686685268393833580342602199363635967424191427401741724665045997317831154051925958035888336106419696246508648782228233564286181922222053130146363622280591537001706656118494251232889332269392605731029614109216629986692995443191107390378238907974509878769374480323511275/6)*n^177+13485327369111457628527698471107463365721093878444267906718356392407437676094534881693810074648018171082892717762868023048451382766320001547016078694163032364103558388163082128192319060853565033496206806481584402513010457233820639992170413084222572706999349820391483305702042475491594784395772322782078899287643644419576860799537042219372696255309819235059728428061722831572957663575079582446019680699439524494806464796455481986976606345470909946448915778773195974796294684955244032720172669616613970838738628412438795443086347406244416347225597928750979260*n^175-10401334281040705952787404298454045287556079257933575397131113193756986420707892371255826211458594156736245800180642354440126513198694698654676131562377186275446054654708696345704702687208289294624291426964944437581249006846888609469734131076329399575006737037179537119111775796205337234134659697985823851083273498837747063405020221301021701845163311815461662260630176430511897058717402905933207052986671210570138049688357248426319290658667672639790621500814401066964753809532947923609570345568091849678306837234404026785501262645772072771321077604752641450675*n^173+(540944809688662101640474263318074517558173705275624062990799945099415487713980243180850221610989438594961874309793470045974264147737679129938434978993789947405877865936723930463115336635874443099159748864970919326907351250208687458594479181115301579645220389751597109692598075075835271980970814306185108028044241911890329318726956209812904341088519332004497824085588599080311859368330740400272413907597093455469980833877573251124047478777804863356765452399517112409579319957038249765073138364937234214080581009574801135294611645917601573900230653124021067395100750/69)*n^171-(964063484614333629195506976747382744405724989015100510635926873461887745996749524578955420824450712079245380764323824289688318081626827906626452849546371047474221089439579805048671592700527714817003060748355375125602941537074246407772155324692611291590549379399119356861743687388526862355751146812715597116584433203364068893380821771779347262352386862636486936601681983899176863815194423274178908651116030970110858975692351120775187035531051774277325595011586538388163059372174706362094597725380586266081099249811852692700816090143238378944463746322489055279469498425/167)*n^169+4151694723367544559379492714762092924602392694055973214266416405002910087310883630909454577972945102753325626454927132134574352770619805948861843853309441771888298711169435913862237733760378660888249542717720304845068121063062704021726481099287837773933121382229315213250090205599193905810116041018097931765191219238122572759079665618462359493355871255609911211703485838056033101479626229817565272600316395883240269762485743437752328926116428803299271716282920778325646390677067748212303798806592505625242674299988124701028664813796853208354592313180134942963533191500*n^167-(17492081208719718896393231191095090095605643528707306208809016215596479268298968396651554639303000045838007073295833929241828061114551970363089667061139496487026565098807832230586026682914540700686186281417066556725435944702683152827715812786176290669974295370217384653056793375395159966483409861720749461213613376614173275544554014563836393196045931985272031870712286772960319419506781995965841915277820833131068447769928382656443434503084774913343101790347586590233540939353107937062565004793220526037262774593357291401059839523307593635868273278016773836034839618361405/6)*n^165+1998288964920886773215038519373419911325685151765182397548359459515278472596224436102926953007088904365000384468052687777393894938358652735636016690154249313165330623687500926256828342271039012833217722312602050041520424827711010027960462163241263481757017363541978104036054781547178786047207020825801355029590136589515997379080191111482744707524242493706826264939862310079466604711138066850524005519069958951190507956884269294742650599881836134191357649996951543005780872892865068983252498196292942761879995367352845388080966239591897058425395312541577096093862245454061625*n^163-(2673198249054277850720906885094345306432018579966370790959679085739378570090538737583718972085144692706748469425488340797810902549444185341215209735858878088468186847335776079638966710870474705823711933456766692597495175000330987392467236524099647259988414412687921925702923598146600189392741710688780144408058799937576998768539137902020090951175665307995575505157662020060601285386548222616296311161108867469350241944743283262515179380511259783682729441906061797168988306928951655761390360192237639030714282232083570607330071803748303683192754016250355489822718483453825946935/2)*n^161+872142186469469746086443495444779168021783657004792326645128015273501972531283817557666647208099791811928389953118711583302844652178589060235978738913309591882640554500725129788722462248497185725139785537068191759441124633793906774068221130617047215048571974312936880014667716463042638340088770981317858252185962618033498098541343963203717895563442742835580221569340381031645848327261389340751727029258394516017411212545299309734008409125926312802579382288823436976240696681755338129222977478860233091341722630430600493380270787706409901401573258308242006030338576940611206867000*n^159-554985669082838448757975710472732902385961119720544553573779479807027778318219507394453944128933570875479106094929528719769127568273929094477092914519278231041693552479185925647764722243199102047738223002205823684693296622471943261528944208810697838021000846185330536628443017028986420594902775172237144373465015158713278817669054673905466825231162265783105288198508483025620689341714026855019308193991647877335445137532190465313156269998849655578501048741672715413936802162685351197742844600393921605932748676880712222740962431654837691675311774522392576555430890112669255830719650*n^157+344307341378256827790047169923312522737008630490075580158716531253285031457005441373248775018585321688141486869436867660069900909661196161841089674249756933092885953314467646317339553296729428332052570810009816507895814835569058179149537912248405405287669586318902717954113647917583350351786090625559964135240800630507836762666117070236461950769657355201168610430913175365301614690307954387499379847113077705640277511183712521532727605454869048492018454692588992517231165873873268233969352566471240942066517002289097582706239464396978596027651295695186524479219731816973040944788246100*n^155-208179981301779933847927008714750259555760408857766833496688180490286566842812519547957007319447227372807838780953043606499225218381408921482337592434386136220953222777398247284566287645163285622897598590821726622978756466672377785717783767293781213171923926506445353071199226695755921021707409499978244228979790293234463998978570546117734368608851686936769082057695648042153862674837703938940763226660900804281775826742711591286639462055265833104470744262537976685058224857919659526496360985106830915783142670356035907238977468052666772209691187547493402347064798045923254384094526585050*n^153+122634946863215216514260116235395382335502110574472949791075610814568198435610908060288908832550759645894177346843339155689319685746703695026352593017637252333920171120121839724865560048836511642841306278484089508211740622682701805044450212176959877574685489689017835443838481839430781435825412441114898036758099855264577007245419879902419711787222848198954134369405398450402226231718236683196517543818013101181877356658102812354923113245890019622252342927988420312185969065202950315686790010523637590173268294426123437544380615762884913033679699906347393388366522546479864013734786728163000*n^151-(3236536793781748159031663597690800205048276408666319863826803455109445439097912511464875284461127226502151645145822029896077446637640313999608574924852356790474122403564676257523757703783439875752614073579198546383290514086138763513307773129200368264152139004374230335161315443283434761682768781216164904464819090471476609611141994214327988701370881162855929802004647323962013819573102236790957208743329169394542690222019979939565781211445882136292763870210354747610679992367307824400037206472369659815280040614420251510557802034448932098522210935620840172075165165970700394689150796653462934275/46)*n^149+(275111664171325900290901510828861348772885454636324378766692292567004375851217186826557174927282456807460336909634675328877063932042442104282027478404193453329941100931017983650473761759471762441996398073779662924412908208269834302370191907410134978349470018696538209161042485762000220027451458148960004429677048223266850140855055316072968264673391233291259612717770376701959179345675673122608915084746772063302501522523761033580532885179095642959790007003402779437410106207895578485746973664714427219285512053117496781840695782871604715601798905187764822175136390846877787877762232924933272783625/7)*n^147-(42731822273250620486276307154189189779025794927119171158353942612951262243810160411376315917669999020742153670766034005991195620573870011623304676520482407204569526329077897528749158406740238622865651867220921975788852831771151804498138644873510037505137100828958961270447016043873430720778151832243555784517764935523678019680567449206698036794770451337381025605960346642877925863449511433178953056520578978989127330488002875688999761857095958619189471792978356640925833508666859140365491284835929177868710508251328230853525688771037765335749441673868631355108143323951709804761613115947560446078645/2)*n^145+11300357299110588247031035222545338971773502159700365598901137012243629887722331499338574244795491532568253704217135410202438123973356943046819160504284276779577470776614676295192187986277028676568568472508088802108734592708418159175998434954648337499447065774962574283714397794462725027307056852613432175790581049047846483587106352920558585216581530364969520405567660593706146316707117894876082657700395549806992666066737687051515279235766033321701108160632755529541434939433041569910619663917973243849443345008616021854842435359604352583067255618305243507780071046165036046711178386810828324000418500*n^143-5812417752286311887164733466695926733320854605343248641947431733881344084858199276601672392913017230223031015811213075009669378830205569327641362031846653952723043428628666580574829735845715670263563637970867160227477618156329634681432359443651166342403311209191140981917314742323910695120155749779178963422482129518946492956234784529108433327931881667027153998154605174323439824307585853057790472001372004532120242284163923325409081201339819256284249661785158219742577682955942822021122707671369595613973826978678249186936129801019713790320420352329945728423358588194323457954812740222463592976522154745*n^141+2906325364405377643941399385457054045928241495273251938906249465407442850908593905321347175966733246594562804338857920677631135826188460682756489051548643795230832149082978982845568001860995209235852087919823410735269123451166003094708173494200178806214335863247550110519931424377781501058439413636707472847909078812216277459967854078316106517873190453675822159487941215562114615102989871352727547977815385063440428722492365378083486527274820438536271820347885293716896169489369088788235216620535759722407664932428642997573129806312830037647196731655734806540999144150902702351386582920103454775019917223250*n^139-1412142039195376401318069431655674114209708260190538039796569291028780732585957885313018269501317766212602490313631339910331334727799637068334347287501394825194501994069672461097084101480736225552251655492434659588968879648766113663870771729567219588133104789532931031651895737937419231488632206483096358806903970765262590560992925320783300273752075883267488580935865977735104828796014888880599926395214322251912696132964728077177179519203707097554750912737310326639952382951363342302974483968120401732439190111464055154730804401898390593475524986922292423914970279568674145605405651802054877166617584614556525*n^137+666466187626126391822480912250879372423355963949677394570350247383805053697990694606960590607381679720370475153172847635683815359468841315849936759471026555064120193020254582825255309920210726055743351250569887043989848429997982353111582810114020912095641754211234605279631931728652815286654047781153172651593067497366086036220260067842083250961375743342537332105247299753383751046720156579191086139184477428509307664852932610670158205656862157783091499990950194799124030349981310640184082264039105515331139203637464702348950538457103366759361940112760319966734612194327178231858569908471469336767561258690689300*n^135-(610783008325333838069282570612115222823141283963453334405244919823739715508237932982475439911903666978249796079312240829821733328556928773105669635492314602364148514058052417057897103821621930435262391529344042380345427978001551275330716007041882732632930925768392064482560192490016264045130799376662429254252925639537138908485377458639930162425136226666307540310140827835004018373704748889509763800407039670575973731280163825494428557159779892508367176324924996200362283700492764977894184609269281228919023897900717720710790493011847853073442018085525089704415942298941259792442422717422056012608474971411238846475/2)*n^133+135807197259294644758899568001696663716688736195907280873336491477375462427194718053576485837231535207252922419526605433254763462039553808044408403755730158063775742968449704826600128474015483160970228056440126924423202930705352697696683186846175161403020544035489860631273153022762585793513804213691123904192957986991776323511824463305386816040538283212981375569908284624744112334953484428005135925605749198877692466281903207042537410478305954812904742022071037661552111740614933913395361074261498762796093526397994580110912636975904532131022216144383956712445253755421431494985416997678476095365149849120212478911125*n^131-(117167642964013463235736109945845480414018673566979445957502460202198974893673842681553528547731654353091989451354379354400259769041100771221937860333569120398651797333523726596877967062794115406639021934522983497552623417624102980996109169872918236115202859927880510176351802894050454204385609249374364208025162553983740226901983726151812705104975104666101308736725297754788608129227133139135688796854074196589265825058781206400668971954877229488734208921704641930129326741686205566099736756536431253907259135017359957513406147457363043389141618528823342645805718848817102897176107556780394942580674063665153744178546675/2)*n^129+(563566899011040469666581620385746496535508359454310271864602738728057586855313786292155638188993222883298174387229340051891981400057844391402635766694424771655952749711923138507515014066731687770016534300332283618678105065423521780557548205176987850436556165104138296758717173202020812293197179907321422027709676771402581038173619336240310991070734005142702467885872530774674525762862303235342898591853822360524718013451706175507496770993443255907123561728225638349388346932411091665970848135776470804204454925726378912049901743323336629289034884391055974864002779117732642456572278545043529322123800110337495808836103572000/23)*n^127-(49659480806607944760726522213445045306863459226081213827192127358658602460479317636861564381127080306385399085727929844952183367682488753639437008111139471151896412132500829502905835485339621935574511396883074430725027047796993864564078599807922127969256692085403105072885696984856198936444861591941695413462509323743660699864765413338983218513893890536428511795408968548612707786144463903186979616214007377355045959597227937423808829397025191897599852851924573111944517831773074179053279076826015523322309776838821581669555552700759725540963204326740082787685645220454573044086467016935794591577173672847657867996432412435784/5)*n^125+3899456965151840344867390025820583613039515047874224153103673171888975030687368670901305668077294895581058224890775697216598570973643301470709196891074523149628756274114496481432453232718152018961068195796300532860913175952726637525559699675234828662997859019376558626817333603032924252354018271078253291117173964814938170195362408073485867580683894569104204242759518957112378356348703030888934075615458878419538165874286226968752605231369328449467011982095140668225874352972865847253259898721547522720042524420186705121398331572645608653682631333295368692229500398820390953041332887536667641615612621152935902098636841271018000*n^123-(16304294915273118282379992039980771717066626376156696553999090949302405427006678404346026434980035548595340009313806953726498289769210811598316749584350100853730597629639184039671220180292099379950817974902887098133302813900041761346119588749265598410935564145695265141594338430079992040785968308450610764732636839624236518183469780138220697326003353193597721921293024068089201837392760735144339438630764573943228780435380050938484992487086809845236841902773227701122300709996904444598764589577370388514982231037513301806407109091791363380064591451957938357596894504683942744564233094788202895489802959161627427397690591123001973720/11)*n^121+545150251558843119192293128657259518335723393796582530894580537460148159185979553668096001990081614109365319616203395155737046053602729698035217778357146373618605991666662080685219158788862195049042541099635225514723391832708091276236174221299105262734460807987869312470965975174322371666034462495945005022923221146696534308412526371036474140048040473368701849509835430651558447261693743710928622366306440929174063800804297251659771349793980301121407834530704880521306587373420516353407868281396681128508141145421847530877872292470149175589666368603733838038707939060255539460611058220957982802243438784320753621948816440191351916000*n^119-(5041488684697260902129638338274972058908760704603878888778931555772084085630627060663837310619105529804842136593954229803891855102473330134608505736507845153373935740289904870016874194932754526803893687340925917479204154958188906993314760395039848885708177118454923405429551706743971639374417820743255269144975395838605089465829615755527867812319938503569893000246859074642030728500145990027446199358450133158971527429284875339106910440151692359753460480245382152188738325549705110603021168462626646107939214671702766904795266964905909574667077759750913091002027676304162411524747523143882745090099909206304339488664129963516412838093825/26)*n^117+66660652911313769672657157722506937276797385292038227215269497715573380929733641144153127985202647078745562800548381235960215992842774605315468150264154354277810516468798733606028589426682089076971604419850792822910650991164258712448899448702281056251317274382939728028970304560932161557316847628343128800879474971753942809050186871708578891169544154068188713549261915079433510182055831682386711330150509171185566931431764491155026014692256669685665030380881829576151931492821120445781445182847254469779249944168449492905979027091925684260915118662290726297144438686537496803024439695988254772684602706933514690253882777991964244339149975*n^115-(44273363153788837824938395296588256598313925436898421125297402527286890714417815679380750240478396675950949554119761179748565987869962024916847724686737867070360677951115962074171083419641018575005800799468941243156715392691768252429050635959424139017586226620554138475131951794519330147780456013660599766269196344648317952192718789276965721589930347256342024236055848212628898139074608442133386180209077465256493581984076720515687932945082937072654452263948604161685920109075509005641978123527633770676415536574955901071304479511696352261148435026027453050001096122955240081812824979029697321337151998513262938482698300863830495923818599925/2)*n^113+7096582361656077955780443031263901005577691589921669014194294194181979666942115470536575543347496515179761259081912749579576562640716770977539187441956040343462976306177044533053589756050153505775717761891978248531305117215976279202738313557627918289064019418376128995677417190216105137837649608135288606404515127243169495830343670884770196601466869227777832456628498117123556431740849774819532749013539275932251101116565068615022843926903398054479120710612920526075994425282142115821439336843803260650405113906255468035001352404479342367008727038742544277110085760134928400975017464750333748543793713765315104530348229238120304000937621181500*n^111-2194851665641654024247398211908436167097232135523529989501901928478403043849770722865704076133483114101124883070280421410597858622540891908043528664478267588552095195579330807744800221244333537581657935403426499048061614272545834238969757262217118455490899810670016539177561377226763435143297358480193526315400074569598430749212184393355826903930230756922723305767728895052206504208045681647106529620829948591641665647810745336506541942962260552470726140575118455609710968378121652000281126508086968906561647911800501006391815481021913012433969889337311705979238766076527332679813043966259689195369779473770354028727018186163614917230891508570075*n^109+654478962831623270974630517145114445320442698582998808766204193041545796682508313323151646670817928541761802523120363697011672126872506121048343246809846393828295573320337772831083288597514315567103228682343492912579483465988191508227838044025461156519772813782127350223928825734940879196877206123829243551046823945975279423323165312878763377068319054466576323704324445959676937310262398234504570893310169797909995067729669300754600212415287565253852455316925585418143755327197184213919397794180981117607460876412288805997197377901928994097420461535085119506955674435158731318471702835940063912365054289820809182267636781138105383909005793914475750*n^107-(393545386885675662398543668585267723645529374791403107706863837013456539298888313887411384869107088239680686455894341708103497872052349671648387165558737025365469453885886956060796263376122742389836660615797747193074100335890257012602572016442282038284286674831855778931876601031979921327531933294358188543124703307434092832119191040770770758191275817454023205812850901320830656580871202399743177496424878369723873636573421469098156071129182105438677792382714025427107696727713202780981401777973015178411133609373481740271366431931824587035845470731267776364972380642620345830498843163044201742583424160701150633183993686168889689436268230451431141471035/2093)*n^105+52010197064658796490469539832686890522924844509935792147277337839634662686739051905073661222328684754123741239524613896615130868720033461361995909468373293181591674670208426368287463240837220584487508469433492694512974307225186948843560449189988406276075188204350854516854011362488752398621845519451343460786004203441065013552631176718397841051144730880416184583891355416631537161232960012954948253226878376472250653593691984313605604065541463913850650768502237449622794112839701716819519703704750074866622113317306874847207933423995640825458265204973621830494866089440984560422444444796568347591212901046329909768936490652189301805975960470921358975500*n^103-(2795873569177728084486626148266384801365390143731236129603019122980522665488692253200712361837126555683408429384828394320997701259260070463003772225228083818884093723677893293452041550593412241155591641294232806088837019373582012869426595474296048580654524758281348617072197717018910941783491405776687307045146311414868067041936344180281315666927705167718618592730787325029933725614881283169004121268034046358768006433610644882696555996206392152995862190780414058390141053203386720497082363100427227969768221215583523826157687867374399031968220476289290102635652078851922221915604119207611793555281810186603759813244505368190002594697942431515233669202246623/202)*n^101+(24787106692548807638235393765029814730649652279960188441238210923965048073124268631612862920135538757097146185053419150494312367616030435764331374256875451591308575204032419305889814907101475177262484578722759846609229658233649937884925181062762321684926641576008454280305577119548059465816248202102500494683405880777069225994968800216454484438524428975703721395127576019030708514840752496977702474263873298024676842708376676701334116099324128939218862906773247312160259417289325429558535531354685809558388246729564413259118325019209046479887835220657846205823590116152210376673881912701283471296665154715873858404785968967265285781914523064889664399162053875/7)*n^99-(1740441079486464442565189584261403502710639790922261956462908565990925892282726160147120910802900526911682108155132139836142575824661322750253692370955138089126686997014057762720269465275889822201481855904916855695825836740159086380117405884853078039944582462097000393700288465836942832613996258909955708641676349996381994482973686754183804734551801024157313666350459302650350644089017033988616610299518283673356237976281460469348012577495680938070804982555625413950244321385326386560668343673433886856473382843343678284743883772434158938011889307198988439255220789851778117643114230762563986327884989366124515743361219965849519303789969772721437585671211007275/2)*n^97+205263892471580585412972395774250795154893667448240023456542194248925428443267094510759018553196454857086177204075404896396713564315507007120752618060636570756023814131400465781680586277333630731292787387113317516751269557514181441405705276304346869779192893678555021904413448056492737198190339203504062056306324624462702102549967929968466322443899710836018394291264018632452838897589960308369638575331324742898455661090951671068702849596433722296817409428473163582832047144827729869249483331444616555002903201529929441330588151180698355213526551643426684087822194294709251054754509269466906459487394006784466945436581635123687672201054498821921460527326750996200*n^95-(1810793344036842984728882295010015431443534726876225194058955258639091299589566861462964926447407399250388824394340802200436863191752159297115556140733492042781212001966785302111706440486860933329413917053668609146642509866817720539351733502575971475923467848700164295275172363414484081206523705298484452670774272973814306164482711786860572239253427353442822543100376346335954268867758018356147727651990917341650560870140461467497003690192572899839910749581031791761856284440422213071913073630439388552897157787001125704621595149858756919908296195931933133120260776330248934003183548487401320975174752205458341020617159156050922447340500900571839325921903803784111850/39)*n^93+10062718452998396931522170317890729147148068640275680912410907450264863555879743871994606576725778624746632528966975947172700431327105757294486967602264383851361527924277736283918048654328473099872061484063617028513010705611837997817182669551836201104817644685541791216041321560791517492290699845060348598517534421281428931279094053967719578560647742127481297955578408575785974757861037016867833400758924261121008536343553383123346798965298918444032067675340955966349386043107744276774537923839991828337406717905116912596085156418435642913182875691006611845079893294770384027873712156649309835835812224606977135411744508509453177590750969529057315112272601537634981500*n^91-2087562499489859341891828281453747669973151336612645063015844281004692506203682959948546197693703296600139751966202265359123789646790464615397786342656681794059977813204926387782843700693821738734691222400065330784345099018576661366541954038796194679982140288612506794770419394521174094953293968945897233193969341372100633070708360488455105361295890603752189176916392338591190386194812957220705351602991526587982551131365571318229909973697713669903212689475299382637092104361236095465929939321591922330727605139187334959742610193577450462828189582066676529341218743816466750882415974516215430515088195088684130037761230336447265126286799661562283564282737888347558691950*n^89+(1242435018028683751401552271841570782872788723200098978911968189894874127182000134046769556606568096806684724925250749713429183092678238006454287252033599435207305541841302499891434837178093232391781743237352399465433826767077316290180526587897281798596327509179912713787129877934370883247811169857965991996288717826944049655953038191116056312965718360942423578162780871645178822376615973292705944695185968516857708447107753946436998369180944603820155131023441752473074417740174015815851127722150661982464090540295095647764673716168838949184149461233929990916366093307878855193123707251997786489120145941631964298150265633346161204429215040587985386684838374017510044611000/3)*n^87-(2668635831470911377402129826213978106369530093446063780152752639631707384453515187569620554283933062869482287237793361140998334342935277617858963528825981521457177081536275143032738869909953862979008987461434823056083997495993709517857075329525018650215018471453022137325046287111201140193888293122837522805107779074985778708026397078349792358629296181345946853143403607239187752718615016803312146772255382358634613703990855341955567263999308316305564925223939052980386755771776058478333583963768127891711483797138361145005139419485410504958896277582991162693859957157809386549278527474260437378347896090092874516172799054895050998950548198348764207018887004648510550282462065/34)*n^85+(326495129444646758581839715652790434416173669433456284317746749413953016378521623150966798974938878774857297492946477381820656490483851984374138388957883788547105162370922813620035803838534322384719062916129384624857119587359503615264886075541568243992425941584105228243258589383541637699806519030526403255488212549753074068589224840581016936922301205661986958546072799626796761654848113686302397730154530767054152039543050782816958626362607571869216318786518973375319498042833063686370439572736636095153611205814730699914476163130519337614378668255580479719109999610065678876978792642723370314655172995004614129396185592197190271312665143018425122167438785326128770608854457125/23)*n^83-(190886705121690812377557594921772548375216077460582753096759864596724127978943860847623432127760799047087308599016054718346811098952557694469737970211145773076091061116336253147397228323301197920049332348283030844049883759899647845506735711735626698480686030421516180471021797974716689329021333185762702750412129101680228301713400437445265517055862182181504804530556451016285699311369809455194258623270011861539208754661970000058066532586168911024069666753277584734415988325979545032071032971231853258592036084516956833343976040414507781667164340482950646345883566162842483888047883168492470788760082847669785705791855797218938233961649658369480696538002484481061351640752350799015/78)*n^81+401694928016862728141799782092159051759764201605048303711779376158900889131429942682049895612836998995620421754460126494839885155312720076002161504010427428440302124117157016528436586078918127864323665271732182562768692654940893756456687471518908621054847267081218955085004435647020349093788963602080609908189470018767941476286767155445481495806077996449194090475843402661810865572968726878788301516672246151441930639501654577859378515239635360951899599500698642337062504651414750340568837875263626769177180836565259954625309767433598697274099273837515192801016314814003758645962196003473513202152813233949169598193748924085922277302122629059775477858214872678627254826851502118500*n^79-62698666680264884757170721911716592284479637704546781066573328447903256276941442743142098047648488345296161219267168905931991651428593972517694649073261944154623585470955728723651415868199566653297136152628163822577272501396283449746000266269531267439687644335402724179276527670173714544683576535249859376995594468412498856712845637613548370005579706477939133716501820422294013999873983177124621871041192231422988468029659740120931850593033970063064959945362499633202150149647223530890454446270455802176840446410543227823002208561250694347741185123492785728565300156938821513846509654163434439854193205931905298834028581763697423144648105334384344412063954600868332227690289468516825*n^77+9294004665790152877208967979923030239993287684567579707025379113870113913704180616949685294640697610494924308484200400264409453181442057472276831092679851703940675848077988224552686968892818029086625586975994307398054444279228367442829250964472888863068442092151644457761563083190336949122237905237555257291884604816858951146531014001096202039939244303931064954846428483741010924232284594633905617587903590572535479042552669764495596473677006419809534956493397687640991178725540259051591377495143246446188098052038116179008934719363072960984556022622377542194793361090696953602280821888184345145244589371458650672463547290601237716899208988374365520037263827152564523303833192253651570*n^75-1306580380502434577664234163918408120263985541032296776110393477089417384292791221565220057910460749257537478939908101418304493737688527518945377691374302622184209575172808730965884885793599756738052103814930185929312944569372976963164216901625118199051158614598529010333183034091640235901240581833352016124068583042210936025516078673644619778163500020661681994227539353860403781660114878167558040183798917438507372496266059901212337099889049409019078833613804728471849726026469446977110938295008420800374302255915135481460221456237257175952441603360836105592811926578410600188487974584497418441402268467290381382500172966829130072714016422812554308995067830560412426213180695609995924525*n^73+173952931668740634595843963513409061621737747476994110009420717460839292056889871551661892721227798768435783157985931369403868632758773656600932969589338062292831216463212471418717500005645094161846587886110164733326353095296651263871801276107216953706027581207968558101621391280872797750529574797940743442976110523799516171313307619274867212396003599810477288299842741271085644526765884399455529212934014812016909998577586342467429263851495803174730563624224304328915902470540602287657884072835729855744410076431191330884137031386369165740884268759086648765126299720998096794589406776192638589421942796258217797145975260905900670324789979741462266665837039856513336033008217153689239296500*n^71-(9679449843800520849406922739833147969034795860421756246660742462483627192758221064551509354357163159228612477333666052427197602839046697527675699218776951779212673598532278720557999650681537942632217421140103235989830836758348067282626532888681631826534345740055048190968338728281885390733283005850002212105913150039398262412923517670154159746738997576587296041232070229523843968496093231943363363533300639066161048357712500768806664512440414222365055265317553172719365669354000522753245225973747577717106734176080974367585249938152026333937472896238206664540201688303422319855043912812716435134222965962332956736827616672347078175511110169500369268245212031272589833975007769982017355115100275/442)*n^69+2602715336440584841015071210250282615692933081352956906530485766597879585944667437206371911977177290883380642773770799192461242341869435989126551909742581671102570600654614624445345341171709605303941792974931167474246264580934197142518360571760283604965119407080974099032435966744418711341798916146672282820087668010819214103649260473286829030437336105480293539023573857210745479472572542657881420179775175704097081195893197909676483758482781587493079615665593362231952053265278943382464354070222869106846176529335131622980881123145802688348940427484865565817662797721434400652536577088330411291214689655448993425247859842649780171180949746758293697240079693541595392518489701368529536363302625*n^67-(583063249043190435050616786377043328397261648986964273457615533151377577594306443496845429146870483918762239824693021494339860416947355214203607732132270744279727428701532650122494329481885776694460460842634542011302296952918653206277675569654262964433816520126256920387344081139891074949522752930622742353941145265588539320992890343784928734957198219096888575828963772879028435916589732134385562425131493672644298378687287219824381750819164831746501314679302221962806672584517880621924023826004240703868908167200861819509782812108445693887817519507095921557269515679386764089796104555800832765048275011782366942769660212795423323149791028686438437350754061758676689633329087834607277948426372855/2)*n^65+30719862436329674906918768957600940451065273530922568060274993909306314943117423585545329230431779508021134177590320990259282958158204338365972907693802147314724273042627749479906192805175481123613496961920196947594018094222968855548372384955951129417136901108531625061093146684018381392520042264960088696383405950735831216131325418042255654761204997765919343471344977973259371766699405926878311543399446638131691248281370080925893002654781276489662240435995141641308425873441767378455660154831491240319979504443058452082649306270834165861589947608131429175851172701677291973442782797371344818865126677768496177243677088948252317499123402511063165290952346295402122004013920508208170484201639438000*n^63-(69906829326674200490704348182125913038892241187758701991483626577386195572263454517299446605014320592161698212020612835782938431617453725249776829210091353794938788304130778429854212499747921566251624541668539794265057204095789532867349305289780854926947875004229066363281215180689043077123060713404944647236353515678011879584788010995125321971440443252041580959525553110659383937458551942320393922756084978965627958709275026475829104949695924890224093419822752895398068553408490872174452195601013901482463323929884410195383076298589668271401638241546296062149246662542933811427796553631067292038384011296564496471255123527067807228358570218326693086784566137755362208734523355917081731668301744913020/23)*n^61+281781915792882224915057055094274786562929753684249452328107336232991944825254265885503800382443421703608919298316613119606076720423336708298620454776513195092933550249813645743101676374943071289199778352496763961848173038617065911330859191194736552103989182434057909825417214723151829060730264775600198289573386412683156360569437241174895614570697401181717827010159808434507680978414737714894359239241856652308363404163197765150376746431608135646220543581698743588774892245659728886079274879776459597005781736064640221385423874757239584563595490282819812583268108998758166285876477278876075017931623598588733086530857271677628724732192073433393957917295204242360691223543083451773529971310503955401000*n^59-(2222668928149996984383065043595829620349503117179552096975221386265630593435019682272922230560615220200613226924636533147777992561852456957387710396288792784325422692170961055685700124327037853047237200288305357608091373123652023866822799467575064187289108456113007961169022888510860049196834285599606108440706008386205710451672115271151128869762484457725026997650469853471861563531398048246284157427688779989605605081829026251028778873768449251707987505605832438722478406508390677830417943669585298739943109888759163540521926110382649326545291608676747394250916290158302848074107770166927980265224954724278662275989198662570095366053930651260947621109139764253309362757727584665941462994730318447585180700/91)*n^57+1974860993657941908702207540675215380368572743181821239842354218611393116979431250858438171468784518724172261218311340630707009221820752526875533674453260813317527751680209828798238219591412498426787235910353874492433723911796517448348465647944360312114134361594319494132927157809662795650390440064147587044245221088195405810559262134780225924953591946495803722673132562974436627027577861222745349148383007444386366647670907241737581071079434763316502882613080017380653140105268083281966480090222319854108791745023381517790983819157490032249033737393568223238330493860371834658448003883462259351651374762956503719310883649949937920180995242389106537211814089831435033191377329861204586848466963018557226800*n^55-(5051404672247243493189441058303492551108980054761241644707450936681506048325798590600536051163368474071533932899996694214484207511232979895530158037339428233044867047207900211766112843619212578055208813554868039437159145731270001404973116416331513894148587713873207994780880642074123932836313445273091348293606561764865788310445993470675679782750439255582057113933555325857673286704495390184874246432482434059169843385041346340770075186210679725031596069772606197693731480250138132343178275257018060529889335458259486350516508177556887445864073911829425633407748622062127545017318965739592608931468794034155530000095704321205835813542004478727835729180605791289712201892340317108768343793018502349162973630725/34)*n^53+(72602363854801202747805618229927286118275629840386015519224424780878630298240588716121270143225169218500908767278286366233754557344000875669517231130763046207024872919349667387153704991457686281974291671295170373352368230828346824046893414699981696630326101805048699482510197310294527241790998246644317331886358963597711810332505446058817687640514320961394956202245949374986631035852813477514474529513838627958465746204682921486513549442234801184365731659240148017758301746267693117137952178530537196059542898918614769018854980102229654078679078400609874600297064055671324123543742465087128685301711263332508748517168504086540158976046803980152573873719294586484212952053406747158629961187705098488053236438625/7)*n^51-(1339871533896453833236930381798410228908501410054622929542432932031029669555690716886599299020818948882560997761823927626302501492580728461065787613158097159647132588459290956191703221481255831192359317589192337482796965380964084299164675657578164413390184895593525011081034457589317751119097917076323960868548940721627602658747768112035210258863533697359824372600533783412260223279949717814929495653070093167572111432234036623981458943688336022704311885334068787465439443187689627249594818749301690198506715825701886787248673455565957537637000078209249539190198687684560059432143388390054046618752725621732396402767086804045835631315771664260136516388459865276181973807950702679819641144896396002196149011075525/2)*n^49+39912666704460638715821772479141999054415614323714230771143748546065397192299393653564530857080419734277651994104848733951621745991900023683742889201152996003219821479942353680306395080239206178012478654324511678916262618104824598362178634629572920544501444797857201566365360749098650021449686045502585849568755353716103618757157847383253534931826437971853103275333800835517055049226316010010987622104544872651919658824141483207759582257765243620758796506181076094638573669258401144918916507957431325272324772989471466549023327580786772675725492054492518344212849360844135619679266799436575728327537787471519834914842273296165873456522455731465250235931274575734524260999685054043618743518841333620607517915339500*n^47-(28415156393496215756523796462347447607307957757307812533948395957854573501627606388508479277742409220180275709292318726047717978641556897776204581492399586490486389972502729828569505022278663577157316435145902216488609831874846265651171409439028181580549823532564914827758700958761256780022064051501119131732532910059931304101618317040748244539844680195322282393998107384133253450243317810299340885817475191630320369341069806725676265486920496380178094809318589716234640490149037489957864022654993811426995883098354051284607553817089668559087733566527104012374623945538239174881959743609879319046345145456299933613119403342480985527677837060726880470396396378183681793798620866286807605259858717701296307209801967315/13)*n^45+109625642553056405242572099345414197997753663047167648773800500761096189418952882820518993476308711603726644482217025676156064128698038065005949255214617361199010006669498059715456265370688672440044723440671397358521641579053832752287186660919650314673406805992461670638295792814931838403791243237955870331363170759745737813549665098625987500511532709086435702143573384608505594790757179221832406962264447229387973488686166048285150633325850951951040847047472764061310076431460059844316557747080606254454827169234011422461766761868843101861683409905385978362935491686972852891564102209013695205882163931077304573247885406978831801458661157209061116811445953777690124006630707861155462612116234808040848628467750156750*n^43-5014991037253919038255578127407879232783092993000548956436366437670225076737240657285903745991339046528946807787428898372156616836052549736441266838763808604516954798424015187628946955674917205170934791323899562061731680199506960757065056057359012613676384794712108983599472330862425092637027598631534000198554323832115487899838802100092184528467955876439408336912312947313519754245414979881957121710232272682723730496678714764716728188783442026177678301988538396625796311478396498319786584244003363667203185733488756423833148042480705705281638990006777814112167608208417879631887593545760766315894511777699200865104065517502531835040677878194602561591269090532838890782848945372209334644812990020249110572423426495035*n^41+(4791617126628162230666788890439591014820260985596282865657708823083606714721279878885366883072175462115018788323140491569889763292610617108085247907059003091568991206890313970819266954740797644147618526559356680077151988101466638160912608765041410668788265679723687915360655697271462061868417561224857318038300693319842056023423405408835623030577918170363175808044165048971129549336113080714774780796797105953555679577762287839858942011737585024384099435042955158147120944487157707049430494593486918302412886271355679374005560401193021666708284502286095206437153241629692724187917023178753366789171670343501531395857762441656851245197576459498244530161249903172553282702723348815410063080590804727179010601357361424230500/23)*n^39-(265902032187494761353578738162367826369281859099588267327006217333444469258815235176635995239271610886872900204835723372397753710806396269850356008347064429277052373063816487283388625460258029346727800183679498519009330420189992525294423090552617446680535535071681110757848222681204684757864234837795936775121854244053338090287261141184422174958353775271633096101384170112378506519727140554629928659487926840303206782347077145264110446045523176249947397687949029358342849182862023702293175707007032930192414154389255611816658362097570982661716821304413453914174465949785685258760686351466693045409931679346361048980531414552797349361278488804509702854911667692165914746018358466740612024995689791772079513441388980323240675/34)*n^37+263868305152017900378009882947293188327523640989539628599097355182333129836973189037974402946227877131093495709814385271135655969617439261190948273317380700392368443025217393771973884248831634035985726035899726714897670780067788840843538680680538968724823040312771564243437750907970155913669078689528672383090644853747834823679452336245622990219357091577391840629102135757104120542499112884596347333763255172413977264467699625430603378265950540068647644167313143079245617520298373545963987207209017592237930988042021077485463382153157184858857622493552521817478973814452195887953895551593778981557536349227431616939214420388786926409034326416407950912975538842217684361419335126689377982509521162402887529665992125618443525*n^35-(206798698043619713404757937165307573662316455594077701418513687616381283336054286509763585251159873982789888858388561533731450883046549929626810316555738938639000806476356968692050835274394745743315565042858160748380756614112209152423305674815483130888906386857791126128156329465092126276265298570036741606096598815023691540436947321464182421088247574954173763639613028349721670275640049179923340711735402708708172223354309270030844128558754958370192291021457009872563904785395088381532241750133287331503076475689616353322724635929390622245743865553211788410123446256950677272310497028224789219282031400874775040655557666797443964633510918334210197258407428360826715424384603784267262377558269988521823444918533507158551109775/26)*n^33+212754440747273951847120203451778608718742947217595425920307965447083465487173841235385402043477742481513698076509459115767104676134685892212373947215170103207467562938853090339685983890951598363133014193071128076288688598104146943676316000077208013260407399288378939132825678398929012234021088541526700808833756523050592752079022654178466081055848174063063647273779058906498086691442308897088663343717216798575231324747912722222641931259860162907850236680317100168539793437018084786814601034372719107010000122820004306893258027293131492089502055281921428341878615296122591427768403981206836541156782448169520070561525699504688004802289601166167636437281376609737850588193755937635771538604283507748308429741406711991845259000*n^31-5011893634589998792346034567614975123734370920407949458126872876294210823186893678974455229410329077239669004922596357468880964593814743615881734420242066828963967624743131071859193347275485211999853229993336283578684873092223886042659710718472622407993184581718145565513251464772969106064625350099179115120027729662082396728190607781551288962110949904643594877805919268246863611723624391332116762635268594707423484754671086030980648453533098685668104437132259126287515622169160088147118278262109522225922536288921859491228733690729449159429884980284465339208965263987128457962322238839384720143772155609533431771183584621879354972852824234496466485995926660327941117519094668477504560018051018051530553650330453597654743746450*n^29+103085632055269868069771439062101034029856247231111648666566025155611009753059440695734359670466189205243541246961102955633860481860778021245536998087604174234280679487899379366077403893656332063891610828715065400404858678750284933538671010541421912296051986225124004906812475157278406631424794367327397574562846875843625379844065230471618520255618557167315327570444207959862523709455741791273105367158046433365729132018520347644528260937585777403461037454897470109773588915588166503381232289458310340146777096224441448682757126504617647344106374619555455743030473235663702016672739155201870179345600090643167574161538516706839749793089131788600630245679979732045629858188460496238658521161983190969960932905773711997706744584500*n^27-1833055073990909656175742414383046918325617742434240960425099285423121332066695083434700867146536316013808548383527090386457985014938089517837469949249111516476298548902906746000988657310757219841887202962288306989881630670750376868348326168841523719428382924169699236523459889846319500789632655894160816907579543415094718074485550948778093523420242783167417641835462775417067794102549944625591056322209661498549819304678952592036446001911829032255613113174680529101068769667778485614072774222464931090778432645650990243492611162011437176112977111644927523206766310993717865024816420274320128676979269791993739556453983467866580287328212918260008904519311674097367776727850662491604174297256685669763800531661247449424709598410634*n^25+27859096466752801315659894362373278002318799906983072455588131977184055169302812840016817971298405634287085276550182546969844785087977023199042850665651469993228882861581872083256532176078165871399720014022665766300976412140868067398192436895987110503975595281419721663152575170895843739345448906310743405330074395049762242985154192876168793348642492915906476406855132137413948822450071006921554286018192644386483836548174478049827521249897759992627081579582064511546881486858434823408385027602288639855781852742429000916474271559332743857024586635634615505251976339450195044311493395056417290128867601224404684862382469571668439618360893117967860124328291007861075860973394776566050644987960607070898416350233919042015837469243000*n^23-(12140504222264312392007631832442218249584444246706880762695745027898985577357385142608525424121321325678179329877168532194688270162528901742419392208397757329151721665972246494400269721002750363768784720017408057954302297560647881973821871571402093283431177996346348631162510650370772875222040838697209163683194770803797811145845913241189354313095195284654805822574822143612516765032757302744324301884385895787654231907813726103515391312203834018575635811728032040472816434420335271130001929780310428400033937767905125816270220608394380116608875449156162218227223677365496440975506935112897310722018151351785878125347675514115293695732137458973023450154898684528767438217557038565847314427871314394860251191239016577051160006477796705/34)*n^21+3798808149133383739419830938265448903939289815615888411760131587967810638379945592032650895900900816499454070370011737329967371946259085889169583645785219923928322722775831053195240635079767848361738953414014999581480007867673101947820814951998624772873844748504986133806900716370637639694076635827022507387226470617727057730221158543841717612039425332564942108780780342288864921208189317732052114296675704245528038439821421384417421497218799158221805214029339057654590005417863317303353125595708344219193613003691716690768251888319783244017464933675646559066853598009044841567382387520761082757295280306770811594865516573522927639930087480851522998628245073972044683066161166910552742849278787288499405459435251416915831813995987875*n^19-(1513810669948687664375481673371996693757570882491077197150788586791231217261669151327199269099526808919117142824877974005398511962495149252721075144862870234750178790691727529109346586383193768166606989093814124571424403212600987516492547245694985483912016681091366574103648098131654598818827955348705210260857384862488267064380636011568638298427696617245687958347085859324304358208024305571147421791946580447097404635754427315019305266006764728077020652552414222842760204582708199309974300972040742957286492582941466523233396934195012438056350371169499477968687772243902284644867160574807191004446425308742402771558406854993557323598603371902260921061119196581325128657351451020361070172260361439694368619059945061925913724493266981575/46)*n^17+(2040635356531218035039135015759672140156448755638834185902011257699882841090767165623703081027524470542596170307266111493545011221737777199320040859279831914396957255412291403440848366623812191452944352849729064111356961572742400211184992044761621763623315336317310282132803220053569640156574153486098572405410232540176824937110252713795250046707211150512373931974050324533135905398517668998783746132882123094338921242075866603808649193724703521450694988192586615517230900923568936740616431268283899207651871491834983674692975905783003549386306068171250899832769649879297966956190316054403008587784953385577400419943329496078190861238821340063103814378688821002267121010219416786472726656466708062603769921198179715124531247846214038900/9)*n^15-(3618292819857571712236618390239495590753270425533353476899528164822732136995507926750419381546180037527484838288390927769148525898851998264708095275096558296985962347711323182902515988924577215032115951439246086397064790877590087545547391884039810098828896931013616092011540395025713461198416450148634483700588926732624994594630112046711382389034966379957451752357576832975843962102262059360560643159790182699946970399595337653234128852863245050836707501636093293055800055595690847560401192576937799521938377651888598443042540856179273987888133338804639135389409510791361106571949149449727202349772029489880222120110445528830983328597580323997685571832501079495932944443548127620183796232727853524825327019564255950189186483988035929575/3)*n^13+(157275566135920176400106841308690674685735100728616151371405817985853517270830837655076775855259620835251222350357799943201441894562975065448813343803494241845193447613546874124798886543406780502662517510974490922715659618561609621760158417924852963496911279849321954456824707013464670264808575095769439285002391129094968427917223779316030747686182410112439982821991882952155421789583998594162232351778453197257729649508381248401814443772668600913993671588053252326921263859214774466181623951381630112448742137565281871279495616425150407912674944115813723545014041808725545422945699883091503019847745923850419205256005254202857791087973905005885724280337206736705989694339623987839544638968841627627493098645195352860204730523573415408250/33)*n^11-(836605692242785905339319848906424065140673027011946966596746673086685883705981417231978845943671552524972973105717227622349072597781223738113366601960374992115881383205128326357781591075088042385930562810335125233061359065940772134941641996425672772891735311833044734639210607566373186447547635350154645102965629289428819122468758008387098319904428793446086882044084456564499411944713892397846893513940816687722223864829824424504513919721581465853578607197566050732680144379488849318652799810974709082960024834940240124236632119758679640695052067657854186363964525063774674921571661309765268644379579135153556641491481677760853354938369698658029436246151575195841433439134161023634315095555563763766111889606960720186337907185732165180975/63)*n^9+24218822565701836307771736675253217941812431600315539478300774706357191229574370887984336475966915473600027926156685068080660047366397574868298022700823191866072890146739248163650772295785234562679546199265003192759437775159263953314858906226799746008357684892590485331930158692506329940011745880194565208208853521387082023877189796543613905258770862784271346334985607907725733243712409635853855581357267238140389206990278841592588404742923301516257500152283683752544673508202021661171118396600003732949461914267947633846356080986736645044554421258702940107306939697034592972939996390766278303670485192274905625898262328136341754535106066899837573318933952370866363775571148342884665018921595561268989911427290854875306299940343166294500*n^7-(2628105232364097349184905309369381049324670166708636025969159401084450084971890278991057380606514794925730551622346720401772871325440554490194498618981407787311193201745317752881341113266003223553104779997962632736486789800626261316098126009264047476306619060198560514383688345909363211170753210963366169050404515029158547109013146752412788495191585988425661804386884901577385273861802040197676588364558001273218695221070039079789305147511271917063305530435209466646513487514552701419139898747728898084894388892825103256223710792804288433249407225970404545705289542925287138433782756495304679543257237976150453709006720307528998223953441734374335105610578853204546360616397510975526361941023177694788249561062980505189269950418479526743165/102)*n^5+(137331403560189480764591950742862707193052367845460700685477391056872048183112429342155295905119048133430593626045705321007958822466051209182718909115568640660700349380676650467730528803294827094981747911778426477737136543541680765124469542452046686327555817037361270939713718291092858787394670786919548754072123098304569223716993774697344201838926458880631864288178161692439973246989161523557304434105004262915816623033465124729774632176473231552825676823416182487328279789303950622896833244740086726969403467001693241222700384123204865461040544412417348921059029894886407889028806545300039304094095830085885500038528725794396526272690621455617857486749617551359386492581150263263633348582975953485929212640602224976429012582439905262663625/10521)*n^3-(16596380640568557229852123088077134206658664302806671892352650993155331641220960084014956088135770921465025323942809207851857992860213463783252745409096420932509953165466735675485979034817619983727209844291081908145597829674980159889976244240633746601120703300698329029710482600069717866917229113749797632930033559794717838407415772796504419464932337498642714226081743688706971990010734262076881238322867559275748219588404488023034528296023051638858467185173202483888794342720837413737644410765563213220043477396887812891242952336301344808165757942109887803692579439427973561487863524556256869403384306433922049078300720480361757680714198044230522015775475287075315668886299978958150756677417180004362981454396613646612327019784141740499835461/8365830)*n

(9)

NULL


 

Download Faulhauber_Polynomials.mw

I have got the following function:

R = ((n1-n2)/(n1+n2))^2

I would like to plot R as a function of (n1/n2). How can I do this in maple?

Hello everyone,

I have a project that uses several machines to make a computation. I wrote a package (called here "package") with procedures, "proc".  I wrote several .mpl files structured as:

read "package.mpl":

W:= Read("file1.mpl"):    #I wrote a procedure to read and assign to a variable. This is not the problem.

Export("output.mpl", proc(W));

The situation is as follows: in all but one of my machines, this works fine, and proc(W) is exported correctly. However, in this ugly duckling (which is running the GUI version of Maple18), maple prints as an output, in blue:

Export("output.mpl",...)

and in place of ... it gives the answer expected. But it does not export automatically. I can, of course, manually correct this, but this is not optimal. Moreover, if the output is too big, there will be display issues.

Help? Any light is appreciated, thanks.

Marcelo

PS: I do not expect an answer for the PS; but I also do not know how to make my package "official", in the sense that I always read the .mpl file with all the procedures. Is there a way to call it like the LinearAlgebra and so on and use the package:-proc syntax? 

Due to the mechanistic process of our students and little creativity in analysis in schools and universities to be professionally trained is that STEM education appears (science, technology, engineering and mathematics) is a new model that is being considered in other countries and with very slow step in our city. In this work the methods with STEM will be visualized but using computational tools provided by Maplesoft which is a company that leads online education for adolescents and adults in the current market. In Spanish.

ECI_UNT_2018.pdf

ECI_UNT_2018.mw

Lenin Araujo Castillo

Ambassador of Maple

What wouldn't work in Maple 2018 if I removed the Microsoft Visual C++ 2015 redistributable?  I have older versions of the C++ redistributable packages (ie 2013).  I hadn't noticed anything unusual when I initially removed it but maybe there's something that's affected in Maple?  Code generation package routines maybe?  What commands in Maple would be affected?

Reason is, I'm getting errors with another software and re-installing the 2015 C++ redistributable isn't installing properly.  So I'm just hoping there's no issues using Maple without the C++ 2015 redistributable being installed properly. 

 

how i can pdsolve this equation

 

Doc186.pdf

These are some basic questions on using packages from Maple Cloud. I only used it once or twice so far.

When I click on the "cloud" icon, on top right corner of the menu, I see on the left panel "Math apps" then below it "packages" and then below it is says "installed".

When I click on "installed", I see one package that I installed sometime ago.

1) How does one uninstall a package listed in the "installed" list? I see no option to do this.

2) How does one know if the "installed" package needs to be updated or not? And if so, how does one updated it? 

3) In the "packages" list, I see "physics Updates".  Now,  I did install this earlier (1-2 weeks ago). Then why is it not listed also under the "installed" list? And how does one know if they have installed a package that shows in the "packages" list?

There is no marker or anything there to tell one they have installed it or not.  Is one supposed to go look in the "installed" list to manually check if they installed it or not?

4)What happens if one install a package/app they have installed before. Will the new package overwrite the older version automatically?

5) It seems packages installed go to some temporary folder. Is there a way to configure it, so that all packages installed go to some other user defined folder. This way, if one moves to a new PC or such, they do not lose all the packages they have installed? 

It seems these basic functionalities are missing: 1. option to uninstall a package. 2. Marker of some kind to tell one if they installed something listed in the "packages" list. 3. Marker to tell one if a package they have installed needs to be updated if there is a newer version on the cloud.

Only options I see are: Install, view, share link and search. That is all. All the above also applies to "Math apps".

Using Maple 2018 on windows.

I've been using Maple 2018 only a few days now, was mostly using Maple 2016 and never had any issues with returning an output (at least one that wasnt my fault), but with 2018 I've seen a few times where a simple task would return an output of "__SELECTION" and then my input. No idea what this is or why its happening and all I really need to know is how to prevent it from happening. If its something with my preferences or settings that needs to be addressed, thats fine, but otherwise this is getting to be a real pain. See attached 

 

Occasionally I use the Variables palette to inspect some variables after a run. In Maple2018 it seems every Vector or Array returns something like "Empty variable structure" or similar. I never saw this in prior versions of Maple.

A bug? Or am I missing something??

M.D.

To demonstrate Maple 2018’s new Python connectivity, we wanted to integrate a large Python library. The result is the DeepLearning package - this offers an interface to a subset of the Tensorflow framework for machine learning.

I thought I’d share an application that demonstrates how the DeepLearning package can be used to recognize the numbers in images of handwritten digits.

The application employs a very small subset of the MNIST database of handwritten digits. Here’s a sample image for the digit 0.

This image can be represented as a matrix of pixel intensities.        

The application generates weights for each digit by training a two-layer neural network using multinomial logistic regression. When visualized, the weights for each digit might look like this.

Let’s say that we’re comparing an image of a handwritten digit to the weights for the digit 0. If a pixel with a high intensity lands in

  • an intensely red area, the evidence is high that the number in the image is 0
  • an intensely blue area, the evidence is low that the number in the image is 0

While this explanation is technically simplistic, the application offers more detail.

Get the application here

First 38 39 40 41 Page 40 of 41