Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hello Everyone,

 

I have been working on a multi variable expression. I would like to have the intervals where the function is monotonically increasing. I am trying to study any available method for multivariable expressions.

I came across various papers and sites which are explicitly mentioned single variable equations. finding out the critical points and studying the sign of the first derivative. Same cannot be applied for the multi variable expression.

 https://www.math24.net/monotonic-functions/

above link explain for single variable functions. I would be grateful if someone could explain me a method or idea  which helps me out in solving for multivariable functions

 

Thanks a lot in advance

Hi,

I try to define the action of projectors of two discrete basis onto a general state. This works as expected when I define the projector by myself. However, when using the "Projector" command, I get a not fully simplified result; see below. It seems like there is a confusion with dot/tensor product.  Can somoeone help?

Best,

Henrik


 

restart; with(Physics)

Setup(hilbertspaces = {{A, alpha}, {B, beta}}, quantumbasisdimension = {A = 1 .. N[a], B = 1 .. N[b]}, quantumdiscretebasis = {A, B, alpha, beta}, bracketrules = {%Bracket(Bra(A, i), Ket(Psi)) = Ket(beta, i), %Bracket(Bra(A, i), Ket(alpha, j)) = C[i, j], %Bracket(Bra(B, i), Ket(Psi)) = Ket(alpha, i), %Bracket(Bra(B, j), Ket(beta, i)) = C[i, j]})

[bracketrules = {%Bracket(%Bra(A, i), %Ket(Psi)) = Physics:-Ket(beta, i), %Bracket(%Bra(A, i), %Ket(alpha, j)) = C[i, j], %Bracket(%Bra(B, i), %Ket(Psi)) = Physics:-Ket(alpha, i), %Bracket(%Bra(B, j), %Ket(beta, i)) = C[i, j]}, disjointedspaces = {{A, alpha}, {B, beta}}, quantumbasisdimension = {A = 1 .. N[a], B = 1 .. N[b]}, quantumdiscretebasis = {A, B, alpha, beta}]

(1)

``

proj := Sum(Sum(Ket(A, i).Bra(A, i).Ket(B, j).Bra(B, j), i = 1 .. N[a]), j = 1 .. N[b])

Sum(Sum(Physics:-`*`(Physics:-Ket(A, i), Physics:-Ket(B, j), Physics:-Bra(A, i), Physics:-Bra(B, j)), i = 1 .. N[a]), j = 1 .. N[b])

(2)

proj2 := Projector(Ket(A, i)).Projector(Ket(B, i))

Physics:-`*`(Sum(Physics:-`*`(Physics:-Ket(A, i), Physics:-Bra(A, i)), i = 1 .. N[a]), Sum(Physics:-`*`(Physics:-Ket(B, i), Physics:-Bra(B, i)), i = 1 .. N[b]))

(3)

proj.Ket(Psi)

Sum(Sum(C[i, j]*Physics:-`*`(Physics:-Ket(A, i), Physics:-Ket(B, j)), i = 1 .. N[a]), j = 1 .. N[b])

(4)

NULL

proj2.Ket(Psi)

Sum(Sum(Physics:-`*`(Physics:-Ket(A, i__1), Physics:-Bra(A, i__1), Physics:-Ket(alpha, i), Physics:-Ket(B, i)), i = 1 .. N[b]), i__1 = 1 .. N[a])

(5)

proj-proj2

Sum(Sum(Physics:-`*`(Physics:-Ket(A, i), Physics:-Ket(B, j), Physics:-Bra(A, i), Physics:-Bra(B, j)), i = 1 .. N[a]), j = 1 .. N[b])-Physics:-`*`(Sum(Physics:-`*`(Physics:-Ket(A, i), Physics:-Bra(A, i)), i = 1 .. N[a]), Sum(Physics:-`*`(Physics:-Ket(B, i), Physics:-Bra(B, i)), i = 1 .. N[b]))

(6)

``


 

Download projector_2d_space.mw

 

Two lines that look the same, produce different results. The first lines gives an error message, but the next line that looks the same, does not.

copying and pasting both lines in Notepad reveals the difference:

Determinant*(R1 . B+R2 . B+R3 . B+R4 . A)

Determinant(R1 . B+R2 . B+R3 . B+R4 . A)

It seems that there is a hidden character (the asterisk) in the first line that produces the error.

In the worksheet itself you cannot see the asterisk, but using the arrow keys you can notice that there is another character.

It's hard to debug your code if there are hidden characters.

``

restart; with(LinearAlgebra)

kernelopts(version)*interface(version)

`Maple 2018.2, X86 64 WINDOWS, Nov 16 2018, Build ID 1362973`*`Standard Worksheet Interface, Maple 2018.2, Windows 10, November 16 2018 Build ID 1362973`

(1)

A := Matrix(4, 4, symbol = a, shape = symmetric)

B := Matrix(4, 4, symbol = b, shape = symmetric)

R1 := Matrix(4, 4); R1[1, 1] := 1; R2 := Matrix(4, 4); R2[2, 2] := 1; R3 := Matrix(4, 4); R3[3, 3] := 1; R4 := Matrix(4, 4); R4[4, 4] := 1

Determinant*(R1.B+R2.B+R3.B+R4.A)

Error, (in LinearAlgebra:-Multiply) invalid arguments

 

Determinant(R1.B+R2.B+R3.B+R4.A)

-a[1, 4]*b[1, 2]*b[2, 3]*b[3, 4]+a[1, 4]*b[1, 2]*b[2, 4]*b[3, 3]+a[1, 4]*b[1, 3]*b[2, 2]*b[3, 4]-a[1, 4]*b[1, 3]*b[2, 3]*b[2, 4]-a[1, 4]*b[1, 4]*b[2, 2]*b[3, 3]+a[1, 4]*b[1, 4]*b[2, 3]^2+a[2, 4]*b[1, 1]*b[2, 3]*b[3, 4]-a[2, 4]*b[1, 1]*b[2, 4]*b[3, 3]-a[2, 4]*b[1, 2]*b[1, 3]*b[3, 4]+a[2, 4]*b[1, 2]*b[1, 4]*b[3, 3]+a[2, 4]*b[1, 3]^2*b[2, 4]-a[2, 4]*b[1, 3]*b[1, 4]*b[2, 3]-a[3, 4]*b[1, 1]*b[2, 2]*b[3, 4]+a[3, 4]*b[1, 1]*b[2, 3]*b[2, 4]+a[3, 4]*b[1, 2]^2*b[3, 4]-a[3, 4]*b[1, 2]*b[1, 3]*b[2, 4]-a[3, 4]*b[1, 2]*b[1, 4]*b[2, 3]+a[3, 4]*b[1, 3]*b[1, 4]*b[2, 2]+a[4, 4]*b[1, 1]*b[2, 2]*b[3, 3]-a[4, 4]*b[1, 1]*b[2, 3]^2-a[4, 4]*b[1, 2]^2*b[3, 3]+2*a[4, 4]*b[1, 2]*b[1, 3]*b[2, 3]-a[4, 4]*b[1, 3]^2*b[2, 2]

(2)

``


 

Download weird.mw

If I have an expression like this

f:=ln((1-x)^2*(x+1)^2/((-I*x-I+sqrt(-x^2+1))^2*(I*x+I+sqrt(-x^2+1))^2))

maple has trouble to simplify the argument.

In particular is it possible to apply expand() only to the denominator?

This is meant in general, so if I have many terms with expressions like this (possibly of products with other functions in each term), I want this simplification to be done termwise for the arguments of the functions.

Expanding the fraction doesn't work as in frontend(expand, [f]).

This is not a problem per se, but more to understand the background.

restart;

f := polylog(2, -x);

int(f/(x+1), x);

convert(f, dilog);

int(%/(x+1), x)

 

The integration of the polylog maple is not capable of doing, but after converting to dilog it finds an anti derivative.

That leads to the question, why is dilog as a separate to polylog(2,*) implemented anyway? Why couldn't it all be done with the more general polylog function?

 

I'm also wondering why maple has difficulties to integrate

int(dilog(x+1)/(x+a),x)

for general a.

How would I go about getting true or false returned on these propositions?
I have tried just about every eval and various syntax methods, but nothing has worked so far.

I know most can easilly be done by hand/thinking, but I'm sure Maple should have a way to do this as well.

∀n∈Z:2n>n+2   ,   ∃n∈Z:2|(3n+1)    ,   ∃k∈Z:∀n∈Z:n=kn   ,   ∃k∈Z:∀n∈Z:2|(n+k)   ,   ∀n∈Z:∀k∈Z:(n>k∨k≥n)

Using Maple 2018.2.1, I'm receiving a lost kernel message when importing the attached data file with ImportMatrix. I traced the issue to a "*" symbol at the end of the file but would have expected this to cause an error message (if any error at all) instead of the connection to the kernel to be lost. Is this a bug or am I misunderstanding the usage of ImportMatrix?

test.mw

test2.txt

Hello, to all,
On my computer I have installed Windows 7 Professional, Maple 2018.2.1 and
Physics:-Version()[2];
 2019, January 5, 13:32 hours, version in the MapleCloud: 276,

    version installed in this computer: 276
When I try to compute some examples from your poste "PDE_and_BC_during_2018.mw", I get an error in Example 8:
Example 8: This problem represents the temperature distribution in a thin circular plate whose lateral surfaces are insulated (Articolo example 6.9.2):
pde__8 := diff(u(r, theta, t), t) = (diff(u(r, theta, t), r)+r*(diff(u(r, theta, t), r, r))+(diff(u(r, theta, t), theta, theta))/r)/(25*r);
                                       /                    
                                       |                    
                                       |                    
                                       |                    
              d                    1   |/ d                \
   pde__8 := --- u(r, theta, t) = ---- ||--- u(r, theta, t)|
              dt                  25 r |\ dr               /
                                       \                    

                                      2                  \
                                     d                   |
                                  -------- u(r, theta, t)|
          /  2                \          2               |
          | d                 |    dtheta                |
      + r |---- u(r, theta, t)| + -----------------------|
          |   2               |              r           |
          \ dr                /                          /
iv__8 := D[1]*u(1, theta, t) = 0, u(r, 0, t) = 0, u(r, Pi, t) = 0, u(r, theta, 0) = (r-(1/3)*r^3)*sin(theta);
   iv__8 := D[1] u(1, theta, t) = 0, u(r, 0, t) = 0,

                                       /    1  3\           
     u(r, Pi, t) = 0, u(r, theta, 0) = |r - - r | sin(theta)
                                       \    3   /           
pdsolve([pde__8, iv__8], u(r, theta, t), HINT = boundedseries(r = [0]));
Error, (in dsolve) cannot determine if this expression is true or false: not 0 <= -Pi

or I get no answer as in Example 10:
Example 10: A Laplace PDE with one homogeneous and three non-homogeneous conditions:
pde__10 := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0;
                    /  2         \   /  2         \    
                    | d          |   | d          |    
         pde__10 := |---- u(x, y)| + |---- u(x, y)| = 0
                    |   2        |   |   2        |    
                    \ dx         /   \ dy         /    
iv__10 := u(0, y) = 0, u(Pi, y) = sinh(Pi)*cos(y), u(x, 0) = sin(x), u(x, Pi) = -sinh(x);
      iv__10 := u(0, y) = 0, u(Pi, y) = sinh(Pi) cos(y),

        u(x, 0) = sin(x), u(x, Pi) = -sinh(x)
pdsolve([pde__10, iv__10]);

There are also no answer as in Examle 10 in the Examples 15, 18, 19
Can you give me a hint,  what could be wrong?
With kind regards
Wolfgang Gellien

 

So I was trying to create a shorthand for creating a plot of multiple arrows, with the arrow colour dependent on the magnitude of the vector.
I currently have a set of vectors, v, I want to display, and v[4] is the largest.

I know this could be done by creating an arrow plot for each vector seperately and then by combining them using display:
arrow1 := arrow( v[1], width=0.15,length=20,color=ColorTools:-Color( (norm(v[1])/norm(v[4]))*[0,0,1] ) );
arrow2 := arrow( v[2], width=0.15,length=20,color=ColorTools:-Color( (norm(v[2])/norm(v[4]))*[0,0,1] ) );
...
print(plots:-display([arrow1, arrow2, ...]));


But I was wondering if it could be done in a fashion similar to this:
arrows := arrow([seq(v[i], i=1..4)],width=0.15,length=20,color=ColorTools:-Color((norm(v[i])/norm(v[4]))*[0,0,1]));
print(arrows);



(btw: it works fine replacing the last i with 1, which draws all arrows nearly black, or with 4, which as you guessed, draws all arrows blue...)

Help appreciated!

I found a case where pdetest fails when called after another call to pdetest. I am using Physics version 272 from the clould. Using Maple 2018.2.1 on windows 10

restart;
u:='u';x:='x';t:='t';
pde := diff(u(x, t), t) + diff(u(x, t),x) =0;
sol:=pdsolve(pde,u(x,t));
pdetest(sol,pde);
    #0  OK
   
#restart;
u:='u';x:='x';t:='t';
pde:=diff(u(x,t),t)+diff(u(x,t),x)=0;
bc:=u(0,t)=0;
ic:=u(x,0)=sin(x);
sol:=pdsolve([pde,ic,bc],u(x,t)) assuming x>0;
pdetest(sol,pde);
   
     #sol := u(x, t) = -sin(-x+t)*Heaviside(-t+x)   #OK
     
     #-Dirac(-t+x)*sin(x)*cos(t)+Dirac(-t+x)*cos(x)*sin(t)+
      Dirac(-x+t)*sin(x)*cos(t)-Dirac(-x+t)*cos(x)*sin(t)   #WRONG should be 0
 

 

If I run the above again, but with restart call in between active, so that all is cleared, then pdetest gives 0 as expected on the second pde, with the same solution

 

restart;
u:='u';x:='x';t:='t';
pde := diff(u(x, t), t) + diff(u(x, t),x) =0;
sol:=pdsolve(pde,u(x,t));
pdetest(sol,pde);
   #0   #OK
   
restart;
u:='u';x:='x';t:='t';
pde:=diff(u(x,t),t)+diff(u(x,t),x)=0;
bc:=u(0,t)=0;
ic:=u(x,0)=sin(x);
sol:=pdsolve([pde,ic,bc],u(x,t)) assuming x>0;
pdetest(sol,pde);
   
   #0   #OK !! 

can any one explain why this happens?  Is this a bug? It seems like pdetest caching problem. it remembers something from the last call and this affects the result it gives for the next call.

any work around?

Hello everybody.

This is my question. I tried to evaluate a list of polynomial over a list of values. Something like this:

eval([a*x, b*x], x = [p, q, t])

to get something like this:

[[a*p, a*q, a*t], [b*p, b*q, b*t]]

I know this method: eval~(a*x,x=~[p,q,t])  though this works for one polynomial over a list of values. Not precisely, what I am looking for.

I figured out a method that worked defining functions and with ‘apply’ and ‘map’. Here an example:

m:=t->3*2^t:

n:=t->(t+4)^2:

map(apply~,[m,n],[1,2,3]);

[[6, 12, 24], [25, 72, 147]]

However, how can I get this result using the ‘eval’ function.

Thank you all in advanced for any contribution.

Might be a beginners trap...

How can I evaluate a constant expression or an expression/formula that contains several scientific constants without "Constantin'g' them out like in sample 2)??

1) Example:

Rb := (1/4)*alpha/(Pi*R[infinity])

'real' value of (Rb)??

1) This example works:

evalf(1-Constant(m[e])/Constant(m[p])) -- but it's awful with respect to the simple demand to just divide two known constants..

restart;
T := K+F(xi)*F(xi);
                                    2
                           K + F(xi) 
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
                                             beta[1] 
          alpha[0] + alpha[1] (m + F(xi)) + ---------
                                            m + F(xi)

                                   2     beta[2]   
             + alpha[2] (m + F(xi))  + ------------
                                                  2
                                       (m + F(xi)) 
diff(U, xi);
                                / d        \
                        beta[1] |---- F(xi)|
         / d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
         \ dxi      /                  2    
                            (m + F(xi))     

                                                     / d        \
                                           2 beta[2] |---- F(xi)|
                            / d        \             \ dxi      /
   + 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
                            \ dxi      /                   3     
                                                (m + F(xi))      
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
                                /         2\
         /         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
                                       2    
                            (m + F(xi))     

                                                     /         2\
                            /         2\   2 beta[2] \K + F(xi) /
   + 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
                                                           3     
                                                (m + F(xi))      
diff(d, xi);
                                                  / d        \
                                  2 beta[1] F(xi) |---- F(xi)|
                   / d        \                   \ dxi      /
  2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
                   \ dxi      /                      2        
                                          (m + F(xi))         

                 /         2\ / d        \
       2 beta[1] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             3            
                  (m + F(xi))             

                  / d        \ /         2\
     + 2 alpha[2] |---- F(xi)| \K + F(xi) /
                  \ dxi      /             

                                    / d        \
     + 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
                                    \ dxi      /

                       / d        \
       4 beta[2] F(xi) |---- F(xi)|
                       \ dxi      /
     - ----------------------------
                          3        
               (m + F(xi))         

                 /         2\ / d        \
       6 beta[2] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             4            
                  (m + F(xi))             
collect(%, diff);
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
     - --------------- + ----------------------| |---- F(xi)|
                   3                     4     | \ dxi      /
        (m + F(xi))           (m + F(xi))      /             
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
     - --------------- + ----------------------| \K + F(xi) /
                   3                     4     |             
        (m + F(xi))           (m + F(xi))      /             
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         
value(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         
simplify(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         

collect(%, m+F(xi));
Error, (in collect) cannot collect m+F(xi)
 

I thought in Maple the standard was to use _C1, and _C2, etc... for constants in the solutions returned.

Sometimes Maple mixes _C1 and c[2] in the same result. Is this common, to be expected sometimes and is OK? I noticed this only recently. 

I was thinking may be some part of Maple code still was not updated to use _C1 notation? Here is an example

restart;
pde:=diff(u(x,t),t)+ diff( u(x,t),x )^3 + 6 * u(x,t)* diff(u(x,t),x) = 0;
sol:=pdsolve(pde,u(x,t));

which gives

sol := u(x, t) = -(3/2)*_C1^2+3*(t*_c[2]+x)*_C1-(3/2)*(t*_c[2]+x)^2-(1/6)*_c[2]

With latest Physics updates  268

Is there an option, like AllSolutions used with solve, so that pdsolve would return all solutions to a PDE when it is nonlinear?

I looked at pdsolve help and do not see a HINT that looks like might do this.

For example, this PDE, Maple returns one solution. But Mathematica returns 2 solutions

restart;
pde:= diff(u(x,t),t) = diff(u(x,t),x$5)+10*diff(u(x,t),x$3)*u(x,t)+25*diff(u(x,t),x$2)*diff(u(x,t),x)+
             20*u(x,t)^2*diff(u(x,t),x);
sol:=pdsolve(pde,u(x,t));

#sol := u(x, t) = -12*tanh(176*_C2^5*t+_C2*x+_C1)^2*_C2^2+8*_C2^2

But there is another solution

sol1:=u(x,t)=-(1/2)* _C1^2*(-2 + 3*tanh(x*_C1+ t*_C1^5 + _C2)^2)
pdetest(sol1,pde)
#0

Here is another example. Maple returns one solution and Mathematica 7 solutions

restart;
pde:= diff(u(x,t),t)= u(x,t)*(1-u(x,t))+ diff(u(x,t),x$2);
sol:=pdsolve(pde,u(x,t));

#sol := u(x, t) = (1/4)*tanh(-5*t*(1/12)+(1/12)*sqrt(6)*x+_C1)^2-
              (1/2)*tanh(-5*t*(1/12)+(1/12)*sqrt(6)*x+_C1)+1/4

But there are other solutions

pde = D[u[x, t], t] == u[x, t] (1 - u[x, t]) + D[u[x, t], {x, 2}];
DSolve[pde, u[x, t], {x, t}]

I've tested some (not all) of these 7 solutions in Maple using pdetest and Maple agrees they are solutions:

restart;
pde:= diff(u(x,t),t)= u(x,t)*(1-u(x,t))+ diff(u(x,t),x$2);
sol:=pdsolve(pde,u(x,t));
with(MmaTranslator);
sol2:=FromMma(`-(1/4) (-3 + Tanh[(5 t)/12 - (I x)/(2 Sqrt[6]) - C[3]]) (1 + 
   Tanh[(5 t)/12 - (I x)/(2 Sqrt[6]) - C[3]])`);
pdetest(u(x,t)=sol2,pde);
#0

I tried setting 

       _AllSolutions:=true

But it had no effect. Is there other options?

 

First 6 7 8 9 10 11 12 Last Page 8 of 33