Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

what is the code of the following equation:

 where h, and g are matrices with positive determenets. 

Hello,

every time I input a formula I get:

Typesetting:-mparsed(x^2 +5 -2,x^2+3; "_noterminate")

I can't get rid of this error: this is very basic, what happened?

TIA, Roberto

 

I am generating a lot of random graphs in Maple, and I need to generate the LaTeX code for these graphs. It has been working very well, until now, when I got to weighted graphs. The LaTeX code does not create the weights. I know I can modify the code to add the weights, but my question is two-fold: why aren't the weights automatically generated? is it possible to have the weight automatically generated, how? Nothing in the documentation appears to address these issues.

 

An example of what I attempting to do is in the attached worksheet.

Thanks!

graph.mw

Hello everyone, I am studying to be an engineer  and I have created this document, where I both write lots of notes and make a lot of exercises. 

Suddenly my document crashed and I got this message "There were problems during the loading process. Your worksheet may be incomplete."

I have made sections for each lection - we have had 5 in total for now, but my documents only loads 2.. :(

I see that @Joe Riel has fixed a similiar problem, but I just can't figure it out myself :(

Hope anyone can help

PS. my document is in danish but there should be 5 sections where Maple only loads 2..

Edit: for some reason I can't upload my maple-file.... I'll try again later

Why can't maple integrate

restart;
`assuming`([int(GAMMA(a, s)*exp(-b*s), s = 0 .. infinity)], [b > 0, a > 0])

which has a simple result obtained by partial integration?

Is het possible to use the circletimes symbol  ⊗ from Maple's Operators palette as an alias for KroneckerProduct(A,B)?

Instead of KroneckerProduct(A,B) :  A ⊗ B

An abbriviation would be convenient for the following expression:

A ⊗ B ⊗ C ⊗ D ⊗ E ⊗ F ⊗ G

 

I tried alias, macro, applyrule but was not successfull.

Is is possible or should I add it to the Maple 2019 wishlist?

Harry

 

I vaguely recall others complain about disappearing Code Edit Regions. Does anyone else recall that? I had one disappear from the very top of the attached worksheet (right after the restart), causing me to lose about 15-30 minutes of work. I've totally recreated the work, so I have no interest in this worksheet being repaired. I'm merely posting it in case anyone wants to do an autopsy on it.

Another issue that happened twice with this worksheet is that when I unchecked the "Expanded" box on the Code Edit Region menu (pull out from the right side of the screen) and copied the text to my clipboard (for posting on MaplePrimes), that copied text was missing my most-recent changes to the code. They reappeared when I expanded again. (But it's really difficult to copy-and-paste a multi-screen Code Edit Region when it's expanded.)

My final issue (and this has bothered me for years), is how the heck are you supposed to find the line with the syntax error in a several-hundred-line Code Edit Region? Unlike with inline code, the cursor is not placed near the error location._Binomial_missing_Code_region.mw

how I can determined time period?

thank you

period.mw
 

d := (10+20*cos(Omega*t)+30*cos(9*sqrt(2)*t))^2

(10+20*cos(Omega*t)+30*cos(9*2^(1/2)*t))^2

(1)

with(StringTools)

period(d)

period((10+20*cos(Omega*t)+30*cos(9*2^(1/2)*t))^2)

(2)

``


 

Download period.mw

 

Hi,

this "sum(1/(1+x)^t, t=1..infinity)" is (in my opionon) one of the most standard infinity summation and has the closed form 1/x. 
i used maple 18 and it was executed and i got the closed form 1/x.

with maple 2018 i get the non executed form, also the same inert form as "Sum(1/(1+x)^t, t=1..infinity)".

if i try "sum(1/(1+2)^t, t=1..infinity)" i get 1/2 as result.

why does the version above not working? any ideas?

thank you.

This may seem a bit trivial, but I prefer f'(x) to writing diff(f(x),x) in 1D input. How to achieve?

differential.mw


 

15

 

"maple init loaded..."

(1)

In Document mode, this works fine.

f := proc (x) options operator, arrow; x^2 end proc

proc (x) options operator, arrow; x^2 end proc

(2)

diff(f(x), x)

2*x

(3)

But I mainly use Worksheet (1D) mode, and I can't seem to acheve the same, without using diff(f(x),x)

``

f:x->x^2

proc (x) options operator, arrow; x^2 end proc

(4)

f'(x)

Error, unexpected single forward quote

 

``


 

Download differential.mw

 

i want to gain diff(p(t), t) and diff(q(t), t) and Jacobian matrix
 according to the attached pdf file.

please help me.

thanks

simplify.mw
 

k := diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))

diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))

(1)

j := a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(6*(1/8))*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))

a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(3/4)*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))

(2)

"p(t):=a(t)*cos(gamma(t))"

proc (t) options operator, arrow, function_assign; a(t)*cos(gamma(t)) end proc

(3)

"q(t):=a(t)*sin(gamma(t))"

proc (t) options operator, arrow, function_assign; a(t)*sin(gamma(t)) end proc

(4)

diff(p(t), t)

(diff(a(t), t))*cos(gamma(t))-a(t)*(diff(gamma(t), t))*sin(gamma(t))

(5)

(-mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t)))*cos(gamma(t))-a(t)*(2*sigma-(6*(1/8))*(alpha1-alpha2+(1/3)*alpha3)*a(t)^2-(1/2)*alpha6*cos(gamma(t)))*sin(gamma(t))

(-mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t)))*cos(gamma(t))-a(t)*(2*sigma-(3/4)*(alpha1-alpha2+(1/3)*alpha3)*a(t)^2-(1/2)*alpha6*cos(gamma(t)))*sin(gamma(t))

(6)

diff(p(t), t)

2*t

(7)

``


subs.pdf

Download simplify.mw

 

 

Hi

I am having some trouble with a procedure. One of the procedures arguments is a mathematical function g(var). For simplification lets say I wish to make a procedure which calculates some values of the unknown function, g: 

SomeProc:=proc(g,var:=x)
f(var):=g
return f(2)
end proc

This does not seem to work. No matter what value of var is inserted into f, the return is g(var). 

Any help would be much appreciated:

Hello

I have an expression which invokes the LambertW function.

LambertW(-ln(1+i)*EP*p*(1+i)^(-(365*EP*hr*kw*p+SC*i)/(365*FIT*hr*i*kw*(-1+p)))/(FIT*i*(-1+p)))

I was trying to import this expression into Excel, but my version doesn't have LambertW.

Does someone know an analagous function in a form Excel can compute?

According to wiki The Lambert W relation cannot be expressed in terms of elementary functions.

I have gotten around the problem using Newton-Raphson method, but it takes a few cells to converge....

 

how i can remove root of from result.

I want to plot function.

Thnaks

root_of.mw
 

sigma2 := RootOf(43980465111040000000000000000*sqrt(3)*Pi^25*sqrt(32*Pi^2+2)*sigma+21990232555520000000000000000*sqrt(3)*Pi^23*sqrt(32*Pi^2+2)*sigma-98268851732480000000000000000*sqrt(3)*Pi^21*sqrt(32*Pi^2+2)*sigma-44495861186560000000000000000*sqrt(3)*Pi^19*sqrt(32*Pi^2+2)*sigma+82188225740800000000000000000*sqrt(3)*Pi^17*sqrt(32*Pi^2+2)*sigma+33095407370240000000000000000*sqrt(3)*Pi^15*sqrt(32*Pi^2+2)*sigma-30136000839680000000000000000*sqrt(3)*Pi^13*sqrt(32*Pi^2+2)*sigma-10618895073280000000000000000*sqrt(3)*Pi^11*sqrt(32*Pi^2+2)*sigma+3822293002240000000000000000*sqrt(3)*Pi^9*sqrt(32*Pi^2+2)*sigma+1210118016000000000000000000*sqrt(3)*Pi^7*sqrt(32*Pi^2+2)*sigma+118805400000000000000000000*sqrt(3)*Pi^5*sqrt(32*Pi^2+2)*sigma+5028750000000000000000000*sqrt(3)*Pi^3*sqrt(32*Pi^2+2)*sigma+79101562500000000000000*sqrt(3)*sigma*Pi*sqrt(32*Pi^2+2)+111484894360500000*Pi^2*20^RootOf8+1765920726670320000*Pi^4*20^RootOf8-569534208772147200*Pi^6*20^RootOf8-4505569481375428608*Pi^8*20^RootOf8+972005049637797888*Pi^10*20^RootOf8+5143616921914048512*Pi^12*20^RootOf8-554194415829123072*Pi^14*20^RootOf8-2216777663316492288*Pi^16*20^RootOf8+(-9231519020818020433920000000000*Pi^22+195541371952408496701440000000000*Pi^20+89300299589267320995840000000000*Pi^18-333503605675043554590720000000000*Pi^16-115500365322956203622400000000000*Pi^14+204706142659640339988480000000000*Pi^12+55783620627641021399040000000000*Pi^10-43454880575740151285760000000000*Pi^8-9286786763553830541120000000000*Pi^6-635208422610519981000000000000*Pi^4-16054449064166199375000000000*Pi^2-85686765999732421875000000)*_Z+(1683627180032000000000000000000*Pi^28+947040288768000000000000000000*Pi^26-243897798836910985052160000000000*Pi^24-105849518880314282213376000000000*Pi^22+543806205557386676011008000000000*Pi^20+206745517628405562998784000000000*Pi^18-493535946568048375234560000000000*Pi^16-161556685841710476165120000000000*Pi^14+209521703041307302907904000000000*Pi^12+57932333046211895115008000000000*Pi^10-32606166808014116503296000000000*Pi^8-7574931806403147431400000000000*Pi^6-916854325001083153125000000000*Pi^4-60848666758777034179687500000*Pi^2-1531121744500488281250000000)*_Z^2+(14538675656595603456000000000000*Pi^20+6360670599760576512000000000000*Pi^18-24363640065154351104000000000000*Pi^16-9459367828326973440000000000000*Pi^14+10040437028153917440000000000000*Pi^12+3693930616897744896000000000000*Pi^10+1609933205706216192000000000000*Pi^8+58674582771546096000000000000*Pi^6-1202653471578517170000000000000*Pi^4-149668239567146343750000000000*Pi^2-4663745768352832031250000000)*_Z^3+(-8723205391669003498291200000000*Pi^24-4361602695834501749145600000000*Pi^22+19490912047010429691494400000000*Pi^20+8825430454852624633036800000000*Pi^18-16301436833461042151424000000000*Pi^16-6564233354119088386867200000000*Pi^14+5977256592087501137510400000000*Pi^12+2106180608207148770918400000000*Pi^10-758124018049754123827200000000*Pi^8-240018107472837924480000000000*Pi^6-23564187036740637000000000000*Pi^4-997415989180706250000000000*Pi^2-15689219628471679687500000)*_Z^4-13647882752248245117187500000-261292721157421875*20^RootOf8-535230827832343213125000000000*Pi^2-90526382422649463214540800000000*Pi^8-18587959930253464168320000000000*Pi^6-5863377073505044924800000000000*Pi^4+305811336261213249011712000000000*Pi^12+79115470702645314657484800000000*Pi^10-239241111641945951698944000000000*Pi^16-79895480796476508576153600000000*Pi^14+7986315188014109687808000000000*Pi^22-60346149989113268482867200000000*Pi^20-18258684357505568263372800000000*Pi^18+14855623787650488886886400000000*Pi^24)

F := plot([sigma2], sigma = -10 .. 10, color = [RED], thickness = 1)

Warning, expecting only range variable sigma in expression RootOf(-2216777663316492288*Pi^16*20^RootOf8-554194415829123072*Pi^14*20^RootOf8+5143616921914048512*Pi^12*20^RootOf8+33095407370240000000000000000*3^(1/2)*Pi^15*(32*Pi^2+2)^(1/2)*sigma-30136000839680000000000000000*3^(1/2)*Pi^13*(32*Pi^2+2)^(1/2)*sigma+5028750000000000000000000*3^(1/2)*Pi^3*(32*Pi^2+2)^(1/2)*sigma+79101562500000000000000*3^(1/2)*sigma*Pi*(32*Pi^2+2)^(1/2)-10618895073280000000000000000*3^(1/2)*Pi^11*(32*Pi^2+2)^(1/2)*sigma+3822293002240000000000000000*3^(1/2)*Pi^9*(32*Pi^2+2)^(1/2)*sigma+1210118016000000000000000000*3^(1/2)*Pi^7*(32*Pi^2+2)^(1/2)*sigma+118805400000000000000000000*3^(1/2)*Pi^5*(32*Pi^2+2)^(1/2)*sigma+43980465111040000000000000000*3^(1/2)*Pi^25*(32*Pi^2+2)^(1/2)*sigma+21990232555520000000000000000*3^(1/2)*Pi^23*(32*Pi^2+2)^(1/2)*sigma-98268851732480000000000000000*3^(1/2)*Pi^21*(32*Pi^2+2)^(1/2)*sigma-44495861186560000000000000000*3^(1/2)*Pi^19*(32*Pi^2+2)^(1/2)*sigma+82188225740800000000000000000*3^(1/2)*Pi^17*(32*Pi^2+2)^(1/2)*sigma+14855623787650488886886400000000*Pi^24-18587959930253464168320000000000*Pi^6-5863377073505044924800000000000*Pi^4+79115470702645314657484800000000*Pi^10-90526382422649463214540800000000*Pi^8-239241111641945951698944000000000*Pi^16-79895480796476508576153600000000*Pi^14+305811336261213249011712000000000*Pi^12-60346149989113268482867200000000*Pi^20-18258684357505568263372800000000*Pi^18+7986315188014109687808000000000*Pi^22-535230827832343213125000000000*Pi^2+111484894360500000*Pi^2*20^RootOf8+1765920726670320000*Pi^4*20^RootOf8-569534208772147200*Pi^6*20^RootOf8-4505569481375428608*Pi^8*20^RootOf8+972005049637797888*Pi^10*20^RootOf8+(-9231519020818020433920000000000*Pi^22+195541371952408496701440000000000*Pi^20+89300299589267320995840000000000*Pi^18-333503605675043554590720000000000*Pi^16-115500365322956203622400000000000*Pi^14+204706142659640339988480000000000*Pi^12+55783620627641021399040000000000*Pi^10-43454880575740151285760000000000*Pi^8-9286786763553830541120000000000*Pi^6-635208422610519981000000000000*Pi^4-16054449064166199375000000000*Pi^2-85686765999732421875000000)*_Z+(1683627180032000000000000000000*Pi^28+947040288768000000000000000000*Pi^26-243897798836910985052160000000000*Pi^24-105849518880314282213376000000000*Pi^22+543806205557386676011008000000000*Pi^20+206745517628405562998784000000000*Pi^18-493535946568048375234560000000000*Pi^16-161556685841710476165120000000000*Pi^14+209521703041307302907904000000000*Pi^12+57932333046211895115008000000000*Pi^10-32606166808014116503296000000000*Pi^8-7574931806403147431400000000000*Pi^6-916854325001083153125000000000*Pi^4-60848666758777034179687500000*Pi^2-1531121744500488281250000000)*_Z^2+(14538675656595603456000000000000*Pi^20+6360670599760576512000000000000*Pi^18-24363640065154351104000000000000*Pi^16-9459367828326973440000000000000*Pi^14+10040437028153917440000000000000*Pi^12+3693930616897744896000000000000*Pi^10+1609933205706216192000000000000*Pi^8+58674582771546096000000000000*Pi^6-1202653471578517170000000000000*Pi^4-149668239567146343750000000000*Pi^2-4663745768352832031250000000)*_Z^3+(-8723205391669003498291200000000*Pi^24-4361602695834501749145600000000*Pi^22+19490912047010429691494400000000*Pi^20+8825430454852624633036800000000*Pi^18-16301436833461042151424000000000*Pi^16-6564233354119088386867200000000*Pi^14+5977256592087501137510400000000*Pi^12+2106180608207148770918400000000*Pi^10-758124018049754123827200000000*Pi^8-240018107472837924480000000000*Pi^6-23564187036740637000000000000*Pi^4-997415989180706250000000000*Pi^2-15689219628471679687500000)*_Z^4-13647882752248245117187500000-261292721157421875*20^RootOf8) to be plotted but found name RootOf8

 

``


 

Download root_of.mw

 

Hi, I'm using Maple 2018 and I tried to run coding from https://www.maplesoft.com/applications/view.aspx?sid=4194&view=html

however, it said : unable to parse. I figured out that the problem maybe is in the if loop. though it seems perfectly fine, but it has some goto commands that i cannot search on maple website. does this mean that the goto cannot be used here and should be replaced? if yes, then how? 

i am still learning on how to use maple. any help would be much appreciated. thank you!

this is the coding for if loop:

 

label_7;

rv:=vector([p1(x1pt,x2pt),p2(x1pt,x2pt)]):

numgeval:=numgeval+1;

printf("%5d (%8.4f,%8.4f)",numIter,rv[1],rv[2]);

max:=n;

mg:=convert(sqrt(dotprod(rv,rv)),float);

printf("%12.4f",mg);

if(mg<tol or numIter>=max) then

goto(label_6);

else

numIter:=numIter+1;

fi;

v1:=x1pt+t*rv[1];

v2:=x2pt+t*rv[2];

newt:=evalf(subs({x1=v1,x2=v2},f1));

numfeval:=numfeval+1;

lam:=fsolve(diff(newt,t)=0,t,maxsols=1);

nv1:=evalf(subs({t=lam},v1));

nv2:=evalf(subs({t=lam},v2));

printf(" (%8.4f,%8.4f)%13.4f\n",x1pt,x2pt,lam);

x1pt:=nv1;

x2pt:=nv2;

goto(label_7);

label_6;

printf("\n\n-----------------------------------------");

printf("---------------------------------------------");

printf("\n\n Approximate Solution: ");

printf(" (%8.4f,%8.4f)\n",x1pt,x2pt);

Fvalue:=evalf(subs(x1=x1pt,x2=x2pt,f));

printf(" Maximum Functional Value: ");

printf("%21.4f",Fvalue);

printf("\n Number gradient evaluations:");

printf("%22d",numgeval);

printf("\n Number function evaluations:");

printf("%22d",numfeval);

printf("\n\n-----------------------------------------");

printf("---------------------------------------------");

end:

5 6 7 8 9 10 11 Last Page 7 of 27