Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

I use one engine per one worksheet. So one would expect that doing restart; command; to always behave the same way. Right?

Because each time, new or refreshed mserver.exe is used.  But here is a worksheet, where I run it few times (all with restart each time), where sometime the command timelimit hangs, and sometime does not. I do not mean it takes little longer sometime. I mean completely hang.

I've waited 10-20 minutes and nothing happens. And sometime I saw it return back in 2 or 3 minutes. But most of the time it hangs.

I wish someone could explain this to me. If it hangs each time, or not hang each time, I can understand. (ofcourse timelimit should never hang, as it was supposed to have been fixed in 2021, but this is separate issue).

But why it hangs sometimes and not other times? Does Maple use some sort of random number generator inside it to decide on things? For me, software should behave the same each time when run from same initial state.

It also depends on the amount of timeout given if it hangs or not.

What can cause this different behavior and most important, what can one do to make it behave same way each time? I thought that what restart supposed to do.

Any insight what can cause this is welcome.

I also found that closing the worksheet completely and opening it again, results in different behavior in the timing. It looks like restart does not clear everything, as what happens when closing the worksheet and reopeing it again.

i.e. Sometimes when it completes and not hang, then issuing restart again and running the int() command, it will also not hang most likely.

It seems Maple have remembered something. But closing the worksheet and opening it again, it will hang again most of the times.

The point of all this, is that Maple behaves differently each time. But why??

9704

``

restart;

24868

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1762. The version installed in this computer is 1757 created 2024, June 6, 14:53 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1)

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

time();
#hangs sometimes and not other times. Most of the time it hangs. increasing time
#will improve the chance it will hang
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
time();

.375

Download hangs_int_june_16_2024.mw

Here is one screen shot of one of those times where it returned back. Took little over one minute. Good.

Here is second screen shot where it took about1,800 real time seconds to return. (30 minutes, even though timelimit was one minute). Same exact code.

update

I tried the suggestion given below to use _EnvProbabilistic:=0 but it had no effect on making Maple behavior consistent each time.

Below worksheet shows this. I tried 6 trials, each with restart. 

First trial it timeout at 74 second. good. Second trial took 1403 seconds !  Third trial went back to 74 seconds again (good).  Trial 4 took also took about 74 seconds (good). trial 5 went back to being slow and took about 1400 seconds again. Trial 6 went back to being fast and took about 74 seconds.

So the pattern seems to be 

                     fast SLOW fast fast SLOW fast.....

But I also tried this whole test again, by closing the worksheet and opening. Now the pattern changed to

                     SLOW fast fast fast SLOW SLOW ....

I also attached the worksheet for the above below.

So Maple still behaves in random fashion in doing the integration above. sometimes it is slow, sometimes fast. All using same exact code and same integral. Extra points to anyone who could find out why and how to fix this.  

This worksheet have pattern    fast SLOW fast fast SLOW fast....

1036

restart;

1036

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1762. The version installed in this computer is 1757 created 2024, June 6, 14:53 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

 

Trial #1

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]();
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

4019.660

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 74.618

 

Trial #2

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in sdmp:-mul) time expired

"time taken ", 1403.978

 

Trial #3

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 73.979

 

Trial #4

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 73.732

 

 

 

Trial #5

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in sdmp:-mul) time expired

"time taken ", 1396.089

 

Trila #6

 

restart;

1036

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in anonymous procedure called from PDEtools/NumerDenom) time expired

"time taken ", 73.383

 

 

Download hangs_int_V2_june_16_2024.mw

This worksheet below have pattern      SLOW fast fast fast SLOW SLOW ....

 

restart;

21096

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1762. The version installed in this computer is 1757 created 2024, June 6, 14:53 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

 

Trial #1

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]();
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

28.483

Error, (in sdmp:-mul) time expired

"time taken ", 1400.316

 

Trial #2

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 74.404

 

Trial #3

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 73.993

 

Trial #4

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in PDEtools/NumerDenom) time expired

"time taken ", 73.550

 

 

 

Trial #5

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in sdmp:-mul) time expired

"time taken ", 1373.684

 

Trila #6

 

restart;

21096

_EnvProbabilistic:=0;
expr:=-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp(4*I*(polylog(2,exp(I*x)))-polylog(2,-exp(I*x) ))*csc(x)*x*(tan(x)^2-1);
st:=time[real]():
timelimit(60,int(expr,x,method=_RETURNVERBOSE));
print("time taken ",time[real]()-st);

0

-4*(1-exp(I*x))^(-4*x)*(exp(I*x)+1)^(4*x)*exp((4*I)*polylog(2, exp(I*x))-polylog(2, -exp(I*x)))*csc(x)*x*(tan(x)^2-1)

Error, (in sdmp:-mul) time expired

"time taken ", 1383.174

 

 

Download hangs_int_V3_june_16_2024.mw

Observation: When it finishes fast, timeout is always in  PDEtools/NumerDenom.

When it takes long time, timeout is always in sdmp:-mull

Any other suggestions what to try are welcome.

Is this a valid behvior by int?   

int(A,x,method=_RETURNVERBOSE) hangs.

But  int(simplify(A),x,method=_RETURNVERBOSE) returns in few seconds with "default" result same as int(A,x)

Should this have happen? I try to avoid calling simplify unless neccessary because it can add csgn's and signums and so on to the result. 

But the question is: Should one really need to simplify the integrand to get the result in this example? Does this mean one should call simplify on the integrand to avoid the hang that can show up? 

This only happens when using method=_RETURNVERBOSE 

Just trying to find out if this is normal behavior and can be expected sometimes.

25844

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

restart;

25844

A:=exp(-1/2*cos(2*x))*exp(-sin(x)^2);
int(A,x);

exp(-(1/2)*cos(2*x))*exp(-sin(x)^2)

exp(1/2)*exp(-1)*x

int(A,x,method=_RETURNVERBOSE);  #hangs

int(simplify(A),x,method=_RETURNVERBOSE)

["default" = x*exp(-1/2), "risch" = x*exp(-1/2), "orering" = x*exp(-sin(x)^2-(1/2)*cos(2*x)), FAILS = ("gosper", "lookup", "derivativedivides", "norman", "trager", "meijerg", "elliptic", "pseudoelliptic", "parallelrisch", "parts")]

 

 

Download why_int_hang_unless_simplify_june_15_2024.mw

odetest should be made more robust.

Here is an example where the same exact solution and same exact IC, but when solution is just writtent in a  little different form, odetest no longer verifies it.

Do you consider this a bug? How is the user supposed to know their solution is correct or not now, since it depends on how it is written? What can a user then do to help odetest in this case verify the solution?


 

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

ode:=diff(y(x), x)*x^2 + cos(2*y(x)) = 1;
ic:=y(infinity)=10/3*Pi;
e1:=2/x+1/3*sqrt(3);
SOL1:=y(x)=arccot(e1) + Pi*3;
odetest(SOL1,[ode,ic]);

(diff(y(x), x))*x^2+cos(2*y(x)) = 1

y(infinity) = (10/3)*Pi

2/x+(1/3)*3^(1/2)

y(x) = arccot(2/x+(1/3)*3^(1/2))+3*Pi

[0, 0]

#now we rewrite the solution a little different. But same solution
e2:=simplify(e1);

(1/3)*(3^(1/2)*x+6)/x

#Now maple no longer verifies the solution

SOL2:=y(x)=arccot(e2) + Pi*3;
odetest(SOL2,[ode,ic])

y(x) = arccot((1/3)*(3^(1/2)*x+6)/x)+3*Pi

[0, -(1/6)*Pi]

 


 

Download same_solution_not_verified_june_13_2024.mw

Maple gives same solution for two different equations.

eq1 := 1/5*sqrt(-20*y + 1) - 1/5*ln(1 + sqrt(-20*y + 1)) = x + 2;
eq2 := -1/5*sqrt(-20*y + 1) - 1/5*ln(1 - sqrt(-20*y + 1)) = x + 2;

Solving these for y, gives same exact solution. But this is not correct. As this worksheet shows.

Is this a bug? How could two different equations give same solution?
 

15172

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Case 1. Solve first then plugin x value in solution

 

eq1:=(sqrt(a^2 - 4*b*y) - a*ln(a + sqrt(a^2 - 4*b*y)))/b=x+c__1;
eq2:=(-sqrt(a^2 - 4*b*y) - a*ln(a - sqrt(a^2 - 4*b*y)))/b=x+c__1;

eq1:=eval(eq1,[a=1,b=5,c__1=2]);
eq2:=eval(eq2,[a=1,b=5,c__1=2]);

((a^2-4*b*y)^(1/2)-a*ln(a+(a^2-4*b*y)^(1/2)))/b = x+c__1

(-(a^2-4*b*y)^(1/2)-a*ln(a-(a^2-4*b*y)^(1/2)))/b = x+c__1

(1/5)*(-20*y+1)^(1/2)-(1/5)*ln(1+(-20*y+1)^(1/2)) = x+2

-(1/5)*(-20*y+1)^(1/2)-(1/5)*ln(1-(-20*y+1)^(1/2)) = x+2

sol1:=simplify(solve(eq1,y));

-(1/20)*LambertW(-exp(-11-5*x))*(LambertW(-exp(-11-5*x))+2)

sol2:=simplify(solve(eq2,y));

-(1/20)*LambertW(-exp(-11-5*x))*(LambertW(-exp(-11-5*x))+2)

eval(sol1,x=10.);

0.3221340286e-27

eval(sol2,x=10.);

0.3221340286e-27

Case 2. Plugin in same x value in equation and then solve, we get different answers

 

eq1:=(sqrt(a^2 - 4*b*y) - a*ln(a + sqrt(a^2 - 4*b*y)))/b=x+c__1;
eq2:=(-sqrt(a^2 - 4*b*y) - a*ln(a - sqrt(a^2 - 4*b*y)))/b=x+c__1;

eq1:=eval(eq1,[a=1,b=5,c__1=2,x=10]);
eq2:=eval(eq2,[a=1,b=5,c__1=2,x=10]);

((a^2-4*b*y)^(1/2)-a*ln(a+(a^2-4*b*y)^(1/2)))/b = x+c__1

(-(a^2-4*b*y)^(1/2)-a*ln(a-(a^2-4*b*y)^(1/2)))/b = x+c__1

(1/5)*(-20*y+1)^(1/2)-(1/5)*ln(1+(-20*y+1)^(1/2)) = 12

-(1/5)*(-20*y+1)^(1/2)-(1/5)*ln(1-(-20*y+1)^(1/2)) = 12

sol1:=evalf(solve(eq1,y));

-205.8850616

sol2:=evalf(solve(eq2,y));

0.3221340286e-27


 

Download different_equations_give_same_solution_june_12_2024.mw

 

I am using intersectplot  to make projective coordinate plots. Everything intersects the plane z=1. I find the plot quality poor, i.e. dotty dashy lines and circle. This seem to be the best linestyle=solid can do here. gridrefine can't be applied here. 
Any suggestions to improve quality here?
Maybe intersectplot is not the best aprroach here but so far it is all if have figured out.


restart

 

 

with(plottools)

[annulus, arc, arrow, circle, colorbar, cone, cuboid, curve, cutin, cutout, cylinder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, getdata, hemisphere, hexahedron, homothety, hyperbola, icosahedron, importplot, line, octahedron, parallelepiped, pieslice, point, polygon, polygonbyname, prism, project, pyramid, rectangle, reflect, rotate, scale, sector, semitorus, sphere, stellate, tetrahedron, torus, transform, translate, triangulate]

(1)

with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(2)

 

 

DistCircle:=x^2+y^2=1

x^2+y^2 = 1

(3)

pt1:=[1/4,3/4]

[1/4, 3/4]

(4)

pt2:=[7/8,-1/3]

[7/8, -1/3]

(5)

pt3:=[-3/2,3/7]

[-3/2, 3/7]

(6)

pt4:=[3/5,-4/5]

[3/5, -4/5]

(7)

pt5:=[-1/10,-3/2]

[-1/10, -3/2]

(8)

 

L12:=-(13*x)/12 - (5*y)/8 + 71/96; #LnPeqns(pt1,pt2);

-(13/12)*x-(5/8)*y+71/96

(9)

L13:=-(9*x)/28 + (7*y)/4 - 69/56; #LnPeqns(pt1,pt3);

-(9/28)*x+(7/4)*y-69/56

(10)

L23:=(16*x)/21 + (19*y)/8 + 1/8; #LnPeqns(pt2,pt3);

(16/21)*x+(19/8)*y+1/8

(11)

L35:=(27*x)/14 + (7*y)/5 + 321/140; #LnPeqns(pt5,pt3)

(27/14)*x+(7/5)*y+321/140

(12)

nullline:=3/5*x-4/5*y-1

(3/5)*x-(4/5)*y-1

(13)

ptplt:=point([pt1,pt2,pt3,pt4,pt5],color="Green",symbol=solidcircle,symbolsize=10):
txtplt:=textplot([pt4[],typeset("pt4")],align={below,right}):

plt1:=display(txtplt,implicitplot([DistCircle,L12,L13,L23,L35,nullline],x=-2..2,y=-1.5...1.5,color=[red,blue,blue,blue,blue,cyan]),ptplt,scaling=constrained)

 

 

# Projective Geometry Version

DistCirclez:=x^2+y^2-z^2;  #a Cone

 

x^2+y^2-z^2

(14)

pt1p:=[pt1[],1];
pt2p:=[pt2[],1];
pt3p:=[pt3[],1];
pt4p:=[pt4[],1];
pt5p:=[pt5[],1];

[1/4, 3/4, 1]

 

[7/8, -1/3, 1]

 

[-3/2, 3/7, 1]

 

[3/5, -4/5, 1]

 

[-1/10, -3/2, 1]

(15)

 

 

 

L12p:=(13*x)/12 + (5*y)/8 - (71*z)/96;#LnPeqns([pt1p,pt2p,[0,0,0]]);

(13/12)*x+(5/8)*y-(71/96)*z

(16)

L13p:=(13*x)/12 + (5*y)/8 - (71*z)/96;#LnPeqns([pt1p,pt3p,[0,0,0]]);

(13/12)*x+(5/8)*y-(71/96)*z

(17)

L23p:=(9*x)/28 - (7*y)/4 + (69*z)/56;#LnPeqns([pt2p,pt3p,[0,0,0]]);

(9/28)*x-(7/4)*y+(69/56)*z

(18)

L35p:=(27*x)/14 + (7*y)/5 + (321*z)/140;#LnPeqns([pt3p,pt5p,[0,0,0]]);

(27/14)*x+(7/5)*y+(321/140)*z

(19)

L04p:=3/5*x-4/5*y-1*z;

(3/5)*x-(4/5)*y-z

(20)

ptpltp:=point([pt1p,pt2p,pt3p,pt4p,pt5p],symbol=solidsphere, symbolsize=8,color="green"):
intp1:=intersectplot(DistCirclez,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,linestyle=solid):#unit circle at z=1
intp12p:=intersectplot(L12p,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,color=blue):
intp13p:=intersectplot(L13p,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,color=blue):
intp23p:=intersectplot(L23p,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,color=blue):
intp35p:=intersectplot(L35p,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,color=blue):
intp04p:=intersectplot(L04p,z=1,x=-2.5..2.5,y=-2.5..2.5,z=0..1,color=cyan):

 

display(ptpltp,intp1,intp12p,intp13p,intp23p,intp35p,intp04p,scaling=constrained,caption="Projective Co-ords on plane z=1",axes=normal,axis[3]=[tickmarks=[1]])

 

 


Download 2024-06-10_Q_Intersectplot_quality.mw

These are two examples of challenging ode solutions to show they satisfy the ode.

I tried many things myself but can't do it. Feel free to use any method or trick you want. The goal is simply to show that the solution is correct. The solutions are correct as far as I know, but hard to show by back substitution since the solutions are given in form of integrals and RootOf in them.

Extra credit points will be awarded for those who manage to do both.

28148

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Example 1

 

_EnvTry:='hard';
ode:=y(x) = arcsin(diff(y(x), x)) + ln(1 + diff(y(x), x)^2);
sol:=dsolve(ode);
r:=odetest(sol,ode);
coulditbe(r=0);

hard

y(x) = arcsin(diff(y(x), x))+ln(1+(diff(y(x), x))^2)

x-Intat(1/sin(RootOf(-_a+_Z+ln(sin(_Z)^2+1))), _a = y(x))-c__1 = 0

-arcsin(sin(RootOf(-y(x)+_Z+ln(3/2-(1/2)*cos(2*_Z)))))+RootOf(-y(x)+_Z+ln(3/2-(1/2)*cos(2*_Z)))

FAIL

Example 2

 

ode:=(1 + diff(y(x), x)^2)*(arctan(diff(y(x), x)) + a*x) + diff(y(x), x) = 0;
sol:=dsolve(ode);
r:=odetest(sol,ode);
coulditbe(r=0)

(1+(diff(y(x), x))^2)*(arctan(diff(y(x), x))+a*x)+diff(y(x), x) = 0

y(x) = Int(tan(RootOf(a*x*tan(_Z)^2+tan(_Z)^2*_Z+a*x+tan(_Z)+_Z)), x)+c__1

(-arctan(tan(RootOf(2*a*x+sin(2*_Z)+2*_Z)))+RootOf(2*a*x+sin(2*_Z)+2*_Z))*tan(RootOf(2*a*x+sin(2*_Z)+2*_Z))/(a*x+RootOf(2*a*x+sin(2*_Z)+2*_Z))

FAIL

 

 

Download showing_solution_satisfies_ode.mw

Hi,

I am exploring the boxplot, and I see that I do not have the option to integrate 2 lists: One for observations and one for frequencies. The BoxPlot command only accepts one list (List A in my example). Is there a way to create the BoxPlot using the 'Obs' and 'Eff' lists? Thank you for your insight

QBoxPlot.mw

How to make Maple simplify a/sqrt(tan(x+c__1)^2+1); to a/sqrt(sec(x+c__1)^2);  ?

Below is worksheet. since the second one is smaller in leaf size, expected simplify(...,size) to do it, But it did not. Any suggestions?

24832

LC:=MmaTranslator:-Mma:-LeafCount;
e1:=a/sqrt(tan(x+c__1)^2+1);
e2:=a/sqrt(sec(x+c__1)^2);

MmaTranslator:-Mma:-LeafCount

a/(tan(x+c__1)^2+1)^(1/2)

a/(sec(x+c__1)^2)^(1/2)

LC(e1);

12

LC(e2);

10

#we see they are same
simplify(e1-e2);

0

#both nothing below make e1 to e2
simplify(e1); #not good simplification at all. Adds csgn.
LC(%);

a*csgn(sec(x+c__1))*cos(x+c__1)

11

#expected this to do it but no
simplify(e1,size);
LC(%);

a/(tan(x+c__1)^2+1)^(1/2)

12

simplify(e1,trig);

a/(tan(x+c__1)^2+1)^(1/2)

combine(e1,trig);

a/(tan(x+c__1)^2+1)^(1/2)

 


Using some other software:

 

 

 

Download tan_sec_simplification_june_9_2024.mw

Can't figure out what code makes this simplification.
If this simplification works, it will be a part of a larger simplication procedure ( if it not conflicts hopefully) 
vereenvouding_hoe_-vraag_MPF.mw

I was trying to find out why my solution was not validating for this ode. It turned out because I was using solve instead of PDEtools:-Solve. It took me sometime to find this.

This made huge difference on odetest to verify the solution.

This is very simple ode. We just need to integrate once. But first we have to solve for y'(x). 

And here comes the difference. When I used solve to solve for y'(x), odetest did not verify the solution.

When using PDEtools:-Solve, it did.

The difference is how each returned the solution for y'(x). Both have RootOf but written differently and this made the difference.

1) Why solutions are written differently? 

2) Is this to be expected? I have thought Solve uses same engine as solve below the cover.

3) is it possible to make solve give the same form as Solve or change to that form?

I am now changing more of my code to use PDEtools:-Solve because of this.

27860

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1757. The version installed in this computer is 1756 created 2024, June 5, 19:39 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

Using solve

 

restart;

27860

ode:=x-ln(diff(y(x),x))-sin(diff(y(x),x))=0;
RHS:=solve(ode,diff(y(x),x));

x-ln(diff(y(x), x))-sin(diff(y(x), x)) = 0

RootOf(_Z-exp(-sin(_Z)+x))

mysol:= y(x) = Int(RHS,x)+c__1;

y(x) = Int(RootOf(_Z-exp(-sin(_Z)+x)), x)+c__1

odetest(mysol,ode);

-ln(RootOf(_Z-exp(-sin(_Z)+x)))+x-sin(RootOf(_Z-exp(-sin(_Z)+x)))

using PDEtools:-Solve (now it verifies) with no extra effort

 

restart;

27860

ode:=x-ln(diff(y(x),x))-sin(diff(y(x),x))=0;
RHS:=PDEtools:-Solve(ode,diff(y(x),x)):
RHS:=rhs(%);

x-ln(diff(y(x), x))-sin(diff(y(x), x)) = 0

RootOf(-x+ln(_Z)+sin(_Z))

mysol:= y(x) = Int(RHS,x)+c__1;

y(x) = Int(RootOf(-x+ln(_Z)+sin(_Z)), x)+c__1

odetest(mysol,ode);

0

 

 

Download PDEtools_Solve_vs_solve_june_8_2024.mw

 

Update

Here is a counter example. Where now it is the other way around.

Using solve makes odetest happy, but when using PDEtools:-Solve odetest does not verify the solution.  Same exact ODE.   


 

28652

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1757 and is the same as the version installed in this computer, created 2024, June 6, 14:53 hours Pacific Time.`

Example, using solve works

 

ode:=exp(diff(y(x), x) - y(x)) - diff(y(x), x)^2 + 1 = 0;
RHS:=solve(ode,diff(y(x),x));
RHS:=eval(RHS,y(x)=y);
mysol:=Intat(eval(1/RHS,y=_a),_a=y(x))=x+c__1;
odetest(mysol,ode);

exp(diff(y(x), x)-y(x))-(diff(y(x), x))^2+1 = 0

Warning, solutions may have been lost

RootOf(-exp(_Z-y(x))+_Z^2-1)

RootOf(-exp(_Z-y)+_Z^2-1)

Intat(1/RootOf(-exp(_Z-_a)+_Z^2-1), _a = y(x)) = x+c__1

0

Example, using PDEtools:-Solve fails

 

ode:=exp(diff(y(x), x) - y(x)) - diff(y(x), x)^2 + 1 = 0;
RHS:=rhs(PDEtools:-Solve(ode,diff(y(x),x)));
RHS:=eval(RHS,y(x)=y);
mysol:=Intat(eval(1/RHS,y=_a),_a=y(x))=x+c__1;
odetest(mysol,ode);

exp(diff(y(x), x)-y(x))-(diff(y(x), x))^2+1 = 0

RootOf(_Z^2*exp(y(x))-exp(_Z)-exp(y(x)))

RootOf(_Z^2*exp(y)-exp(_Z)-exp(y))

Intat(1/RootOf(_Z^2*exp(_a)-exp(_Z)-exp(_a)), _a = y(x)) = x+c__1

exp(RootOf(_Z^2*exp(y(x))-exp(_Z)-exp(y(x)))-y(x))-RootOf(_Z^2*exp(y(x))-exp(_Z)-exp(y(x)))^2+1

 


 

Download PDEtools_Solve_vs_solve_june_9_2024.mw

So now I have no idea which to use. Sometimes solve works and sometimes Solve works. I  guess I have to now solve the ode both ways each time and see which works.

 

Should not  print("my matrix is ",A) at least print "my matrix is " even if A is not correctly filled/setup?

Notice that nothing shows on screen when using print (but lprint does)

Is this expected? If it makes any difference, I am using worksheet and this is my display options