Maple Questions and Posts

These are Posts and Questions associated with the product, Maple


 

restart

`odeλ` := diff(lambda(tau), tau, tau)+2*a*Ep(tau)*(diff(lambda(tau), tau))/(Xi(tau)*a+1) = 0:

th := algsubs((diff(lambda(tau), tau))^2 = (-1-(diff(xi(tau), tau))^2)/(-(xi(tau)*a+1)^2), `odeξ`):

a*(diff(xi(tau), tau))^2/(xi(tau)*a+1)+diff(diff(xi(tau), tau), tau)+a/(xi(tau)*a+1) = 0

 

a*(diff(xi(tau), tau))^2/(xi(tau)*a+1)+diff(diff(xi(tau), tau), tau)-a/(xi(tau)*a+1) = 0

(1)

ds2 := -(xi(tau)*a+1)^2*(diff(lambda(tau), tau))^2+(diff(xi(tau), tau))^2:

`λp1` := 1:

`icsλ1` := lambda(0) = 0, (D(lambda))(0) = `λp1`:

xi(0) = (-1+2^(1/2))/a, (D(xi))(0) = 1

 

xi(0) = 1/a, (D(xi))(0) = 2

(2)

`lpξ1` := dsolve([`odeξ1`, `icsξ1`], numeric, output = listprocedure, range = teu .. te, events = event1); Xi := eval(xi(tau), `lpξ1`); `Ξp` := eval(diff(xi(tau), tau), `lpξ1`); `odeλ`; `lpλ1` := dsolve([`odeλ`, `icsλ1`], numeric, output = listprocedure, range = teu .. te, events = event1)

diff(diff(lambda(tau), tau), tau)+.6*Ep(tau)*(diff(lambda(tau), tau))/(.3*Xi(tau)+1) = 0

 

Error, (in dsolve/numeric/DAE/make_proc) number of unknown functions and equations must match, got 3 functions {Ep, Xi, lambda}, and 1 equations

 

`lpξ1`(1)

[tau(1) = 1., (xi(tau))(1) = 2.20293901854199481, (diff(xi(tau), tau))(1) = .670856526448510904]

(3)

`λep1` := eval(diff(lambda(tau), tau), lp1); `ξep1` := eval(diff(xi(tau), tau), lp1); `λe1` := eval(lambda(tau), lp1); `ξe1` := eval(xi(tau), lp1)

proc (tau) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](tau) else _xout := evalf(tau) end if; _dat := eval(`dsolve/numeric/data/modules`[1]); _solnproc := _dat:-Get("soln_procedure"); _pars := map(rhs, _dat:-Get("params")); if not type(_xout, 'numeric') then if member(tau, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(tau, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(tau, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(tau, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(tau, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(tau, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(tau), 'string') = rhs(tau); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(tau), 'string') = rhs(tau)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat:-Get("sysvars") end if; if procname <> unknown then return ('procname')(tau) else _ndsol := `tools/gensym`("xi(tau)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat:-Get("soln_procedures")[4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(tau)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc

(4)

`&lambda;ep2` := eval(diff(lambda(tau), tau), lp2); `&xi;ep2` := eval(diff(xi(tau), tau), lp2); `&lambda;e2` := eval(lambda(tau), lp2); `&xi;e2` := eval(xi(tau), lp2)

proc (tau) local _res, _dat, _solnproc, _xout, _ndsol, _pars, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](tau) else _xout := evalf(tau) end if; _dat := eval(`dsolve/numeric/data/modules`[2]); _solnproc := _dat:-Get("soln_procedure"); _pars := map(rhs, _dat:-Get("params")); if not type(_xout, 'numeric') then if member(tau, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(tau, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(tau, ["last", 'last', "initial", 'initial', NULL]) then _res := _solnproc(convert(tau, 'string')); if type(_res, 'list') then return _res[4] else return NULL end if elif member(tau, ["parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(tau, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(tau), 'string') = rhs(tau); if lhs(_xout) = "initial" then if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else _res := _solnproc("initial" = ["single", 4, rhs(_xout)]) end if elif not type(rhs(_xout), 'list') then error "initial and/or parameter values must be specified in a list" elif lhs(_xout) = "initial_and_parameters" and nops(rhs(_xout)) = nops(_pars)+1 then _res := _solnproc(lhs(_xout) = ["single", 4, op(rhs(_xout))]) else _res := _solnproc(_xout) end if; if lhs(_xout) = "initial" then return _res[4] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [_res[4], seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(tau), 'string') = rhs(tau)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _dat:-Get("sysvars") end if; if procname <> unknown then return ('procname')(tau) else _ndsol := `tools/gensym`("xi(tau)"); eval(FromInert(_Inert_FUNCTION(_Inert_NAME("assign"), _Inert_EXPSEQ(ToInert(_ndsol), _Inert_VERBATIM(pointto(_dat:-Get("soln_procedures")[4])))))); return FromInert(_Inert_FUNCTION(ToInert(_ndsol), _Inert_EXPSEQ(ToInert(tau)))) end if end if; try _res := _solnproc(_xout); _res[4] catch: error  end try end proc

(5)

ds2h1 := subs([lambda(tau) = `&lambda;e1`(tau), xi(tau) = `&xi;e1`(tau), diff(lambda(tau), tau) = `&lambda;ep1`(tau), diff(xi(tau), tau) = `&xi;ep1`(tau)], ds2); dse1 := unapply(ds2h1, tau); ds2h2 := subs([lambda(tau) = `&lambda;e2`(tau), xi(tau) = `&xi;e2`(tau), diff(lambda(tau), tau) = `&lambda;ep2`(tau), diff(xi(tau), tau) = `&xi;ep2`(tau)], ds2); dse2 := unapply(ds2h2, tau)

dse1(0); dse2(0)

-.999999999

 

1.000000000

(6)

``

t := proc (xi, lambda) options operator, arrow; (xi+1/a)*sinh(a*lambda) end proc; x := proc (xi, lambda) options operator, arrow; (xi+1/a)*cosh(a*lambda) end proc; xi0 := 1; teg := 7

1

 

7

(7)

p1 := plot([[x(xi0, `&lambda;e1`(tau)), t(xi0, `&lambda;e1`(tau)), tau = teu .. te]], legend = ['ds' = -1], color = ["red"]); p2 := plot([[t(xi0, `&lambda;e2`(tau)), x(xi0, `&lambda;e2`(tau)), tau = teu .. te]], legend = ['ds' = 1], color = ["blue"]); p3 := plot([[tau, tau, tau = -teg .. teg], [tau, -tau, tau = -teg .. teg]], color = ["black", "black"], legend = ['ds' = 0, 'ds' = 0])

with(plots); display([p1, p2, p3])

 

NULL

``


 

Download Rindler_simulation_v2.mw

Hello!
I'm a beginner in Maple. My question is: is it possible to trim the surface along the intersection line in Maple? There is a problem - inclined surfaces are constructed along the contour of the triangle, they intersect. Is it possible to get a pyramid along the intersection lines?
Thank you!trimming_surfaces.mwtrimming_surfaces.mw
 

NULL

restart; with(plots), with(plottools); with(linalg)

Q1p := 45; Q1po := 75

Q2p := 110; Q2po := 84

Q3p := 63; Q3po := 120

NULL

NULL

NULL

XP := KTX1+(KTX2-KTX1)*t1

YP := KTY1+(KTY2-KTY1)*t1

NULL

NULL

x1 := subs({KTX1 = Q1p, KTX2 = Q2p, t1 = t1}, XP)

y1 := subs({KTY1 = Q1po, KTY2 = Q2po, t1 = t1}, YP)

NULL

x2 := subs({KTX1 = Q2p, KTX2 = Q3p, t1 = t2}, XP)

y2 := subs({KTY1 = Q2po, KTY2 = Q3po, t1 = t2}, YP)

``

NULL

x3 := subs({KTX1 = Q3p, KTX2 = Q1p, t1 = t3}, XP)

y3 := subs({KTY1 = Q3po, KTY2 = Q1po, t1 = t3}, YP)

NULL

za := 0

``

Kriv1 := spacecurve([x1, y1, za, t1 = 0 .. 1], color = brown, scaling = constrained, thickness = 4)

Kriv2 := spacecurve([x2, y2, za, t2 = 0 .. 1], color = green, scaling = constrained, thickness = 4)

Kriv3 := spacecurve([x3, y3, za, t3 = 0 .. 1], color = blue, scaling = constrained, thickness = 4)

NULL

display(Kriv1, Kriv2, Kriv3)

NULL

NULL

xE1 := x1-30*(diff(y1, t1))/sqrt((diff(x1, t1))^2+(diff(y1, t1))^2)

yE1 := y1+30*(diff(x1, t1))/sqrt((diff(x1, t1))^2+(diff(y1, t1))^2)

zE1 := 30

KrivE1 := spacecurve([xE1, yE1, zE1, t1 = 0 .. 1], color = blue, scaling = constrained, thickness = 4)

NULL

xP1 := simplify(xE1+l1*(x1-xE1))

yP1 := simplify(yE1+l1*(y1-yE1))

zP1 := simplify(zE1*(1-l1))

P1 := plot3d([xP1, yP1, zP1], t1 = 0 .. 1, l1 = 0 .. 1, transparency = 0)

display(KrivE1, Kriv1, P1, Kriv2, Kriv3)

``

NULL

xE2 := x2-30*(diff(y2, t2))/sqrt((diff(x2, t2))^2+(diff(y2, t2))^2)

yE2 := y2+30*(diff(x2, t2))/sqrt((diff(x2, t2))^2+(diff(y2, t2))^2)

zE2 := 30

KrivE2 := spacecurve([xE2, yE2, zE2, t2 = 0 .. 1], color = blue, scaling = constrained, thickness = 4)

NULL

xP2 := simplify(xE2+l2*(x2-xE2))

yP2 := simplify(yE2+l2*(y2-yE2))

zP2 := simplify(zE2*(1-l2))

P2 := plot3d([xP2, yP2, zP2], t2 = 0 .. 1, l2 = 0 .. 1, transparency = 0)

display(KrivE2, Kriv2, P2)

NULL

NULL

NULL

xE3 := x3-30*(diff(y3, t3))/sqrt((diff(x3, t3))^2+(diff(y3, t3))^2)

yE3 := y3+30*(diff(x3, t3))/sqrt((diff(x3, t3))^2+(diff(y3, t3))^2)

zE3 := 30

KrivE3 := spacecurve([xE3, yE3, zE3, t3 = 0 .. 1], color = blue, scaling = constrained, thickness = 4)

NULL

xP3 := simplify(xE3+l3*(x3-xE3))

yP3 := simplify(yE3+l3*(y3-yE3))

zP3 := simplify(zE3*(1-l3))

P3 := plot3d([xP3, yP3, zP3], t3 = 0 .. 1, l3 = 0 .. 1, transparency = 0)

display(KrivE3, Kriv3, P3)

NULL

NULL

NULL

L22 := solve(zP2 = zP1, l2)

L111 := solve(subs(l2 = L22, yP2 = yP1), l1)

L222 := subs(l1 = L111, L22)

T11 := solve(subs(l2 = L222, l1 = L111, xP2 = xP1), t1)

L2T := subs(t1 = T11, L222)

L1T := subs(t1 = T11, L111)

LP12 := spacecurve([XT12, YT12, ZT12, t2 = 0 .. 1], color = red, scaling = constrained, thickness = 1)

PLOT3D(CURVES([[110., 84., 0.], [108.7339864, 84.33411040, .5045906412], [107.4679728, 84.66822079, 1.009181282], [106.2019593, 85.00233119, 1.513771924], [104.9359457, 85.33644158, 2.018362565], [103.6699321, 85.67055198, 2.522953207], [102.4039185, 86.00466237, 3.027543849], [101.1379050, 86.33877277, 3.532134491], [99.87189139, 86.67288316, 4.036725133], [98.60587781, 87.00699356, 4.541315775], [97.33986423, 87.34110395, 5.045906417], [96.07385066, 87.67521435, 5.550497059], [94.80783708, 88.00932474, 6.055087701], [93.54182350, 88.34343514, 6.559678343], [92.27580993, 88.67754554, 7.064268985], [91.00979635, 89.01165593, 7.568859626], [89.74378277, 89.34576633, 8.073450268], [88.47776919, 89.67987672, 8.578040910], [87.21175562, 90.01398712, 9.082631552], [85.94574204, 90.34809751, 9.587222194], [84.67972846, 90.68220791, 10.09181284], [83.41371488, 91.01631830, 10.59640348], [82.14770131, 91.35042870, 11.10099412], [80.88168773, 91.68453909, 11.60558476], [79.61567415, 92.01864949, 12.11017540], [78.34966058, 92.35275989, 12.61476605], [77.08364700, 92.68687028, 13.11935669], [75.81763342, 93.02098068, 13.62394733], [74.55161984, 93.35509107, 14.12853797], [73.28560627, 93.68920147, 14.63312861], [72.01959269, 94.02331186, 15.13771926], [70.75357911, 94.35742226, 15.64230990], [69.48756554, 94.69153265, 16.14690054], [68.22155196, 95.02564305, 16.65149118], [66.95553838, 95.35975345, 17.15608182], [65.68952480, 95.69386384, 17.66067247], [64.42351123, 96.02797424, 18.16526311], [63.15749765, 96.36208463, 18.66985375], [61.89148407, 96.69619503, 19.17444439], [60.62547050, 97.03030542, 19.67903503], [59.35945692, 97.36441582, 20.18362567], [58.09344334, 97.69852621, 20.68821632], [56.82742976, 98.03263661, 21.19280696], [55.56141619, 98.36674700, 21.69739760], [54.29540261, 98.70085740, 22.20198824], [53.02938903, 99.03496780, 22.70657888], [51.76337545, 99.36907819, 23.21116953], [50.49736188, 99.70318859, 23.71576017], [49.23134830, 100.0372990, 24.22035081], [47.96533470, 100.3714094, 24.72494146]], COLOUR(RGB, 1.00000000, 0., 0.)), THICKNESS(1), SCALING(CONSTRAINED))

(1)

``

NULL

NULL``

L22 := solve(zP2 = zP3, l2)

L333 := solve(subs(l2 = L22, yP2 = yP3), l3)

L222 := subs(l3 = L333, L22)

T33 := solve(subs(l2 = L222, l3 = L333, xP2 = xP3), t3)

L2T := subs(t3 = T33, L222)

L3T := subs(t3 = T33, L333)

LP32 := spacecurve([XT32, YT32, ZT32, t2 = 0 .. 1], color = red, scaling = constrained, thickness = 3)

PLOT3D(CURVES([[82.69885121, 48.35683352, 44.89752824], [82.29683384, 49.81893896, 43.98125215], [81.89481646, 51.28104440, 43.06497607], [81.49279909, 52.74314984, 42.14869998], [81.09078172, 54.20525528, 41.23242389], [80.68876435, 55.66736072, 40.31614780], [80.28674698, 57.12946616, 39.39987171], [79.88472960, 58.59157160, 38.48359563], [79.48271223, 60.05367704, 37.56731954], [79.08069486, 61.51578248, 36.65104345], [78.67867749, 62.97788792, 35.73476736], [78.27666012, 64.43999336, 34.81849127], [77.87464274, 65.90209880, 33.90221519], [77.47262537, 67.36420425, 32.98593910], [77.07060800, 68.82630969, 32.06966301], [76.66859063, 70.28841513, 31.15338692], [76.26657325, 71.75052057, 30.23711083], [75.86455588, 73.21262601, 29.32083475], [75.46253851, 74.67473145, 28.40455866], [75.06052114, 76.13683689, 27.48828257], [74.65850376, 77.59894233, 26.57200648], [74.25648639, 79.06104777, 25.65573039], [73.85446902, 80.52315321, 24.73945431], [73.45245165, 81.98525865, 23.82317822], [73.05043428, 83.44736409, 22.90690213], [72.64841690, 84.90946954, 21.99062604], [72.24639953, 86.37157498, 21.07434995], [71.84438216, 87.83368042, 20.15807387], [71.44236479, 89.29578586, 19.24179778], [71.04034741, 90.75789130, 18.32552169], [70.63833004, 92.21999674, 17.40924560], [70.23631267, 93.68210218, 16.49296951], [69.83429530, 95.14420762, 15.57669343], [69.43227792, 96.60631306, 14.66041734], [69.03026055, 98.06841850, 13.74414125], [68.62824318, 99.53052394, 12.82786516], [68.22622581, 100.9926294, 11.91158907], [67.82420844, 102.4547348, 10.99531298], [67.42219106, 103.9168403, 10.07903690], [67.02017369, 105.3789457, 9.162760809], [66.61815632, 106.8410511, 8.246484721], [66.21613895, 108.3031566, 7.330208633], [65.81412157, 109.7652620, 6.413932545], [65.41210420, 111.2273675, 5.497656457], [65.01008683, 112.6894729, 4.581380368], [64.60806946, 114.1515784, 3.665104280], [64.20605209, 115.6136838, 2.748828192], [63.80403471, 117.0757892, 1.832552104], [63.40201734, 118.5378947, .9162760162], [62.99999996, 120.0000001, -0.8979507982e-7]], COLOUR(RGB, 1.00000000, 0., 0.)), THICKNESS(3), SCALING(CONSTRAINED))

(2)

NULL``

L33 := solve(zP3 = zP1, l3)

L111 := solve(subs(l3 = L33, yP3 = yP1), l1)

L333 := subs(l1 = L111, L33)

T11 := solve(subs(l3 = L333, l1 = L111, xP3 = xP1), t1)

L3T := subs(t1 = T11, L333)

L1T := subs(t1 = T11, L111)

LP13 := spacecurve([XT13, YT13, ZT13, t3 = 0 .. 1], color = red, scaling = constrained, thickness = 1)

PLOT3D(CURVES([[89.14619532, 109.5415219, 28.16031418], [88.24525256, 108.8365929, 27.58561389], [87.34430980, 108.1316638, 27.01091360], [86.44336704, 107.4267348, 26.43621331], [85.54242428, 106.7218058, 25.86151302], [84.64148151, 106.0168768, 25.28681273], [83.74053875, 105.3119478, 24.71211244], [82.83959598, 104.6070187, 24.13741215], [81.93865322, 103.9020897, 23.56271186], [81.03771046, 103.1971607, 22.98801157], [80.13676769, 102.4922317, 22.41331128], [79.23582493, 101.7873027, 21.83861099], [78.33488217, 101.0823736, 21.26391070], [77.43393941, 100.3774446, 20.68921041], [76.53299664, 99.67251561, 20.11451012], [75.63205388, 98.96758659, 19.53980983], [74.73111112, 98.26265757, 18.96510954], [73.83016835, 97.55772855, 18.39040925], [72.92922559, 96.85279953, 17.81570896], [72.02828283, 96.14787051, 17.24100866], [71.12734006, 95.44294149, 16.66630837], [70.22639730, 94.73801248, 16.09160808], [69.32545454, 94.03308346, 15.51690779], [68.42451177, 93.32815444, 14.94220750], [67.52356901, 92.62322542, 14.36750721], [66.62262625, 91.91829640, 13.79280692], [65.72168348, 91.21336738, 13.21810663], [64.82074072, 90.50843836, 12.64340634], [63.91979796, 89.80350934, 12.06870605], [63.01885519, 89.09858032, 11.49400576], [62.11791243, 88.39365131, 10.91930547], [61.21696967, 87.68872229, 10.34460518], [60.31602690, 86.98379327, 9.769904891], [59.41508414, 86.27886425, 9.195204600], [58.51414138, 85.57393523, 8.620504310], [57.61319861, 84.86900621, 8.045804020], [56.71225585, 84.16407719, 7.471103729], [55.81131309, 83.45914817, 6.896403439], [54.91037032, 82.75421915, 6.321703149], [54.00942756, 82.04929013, 5.747002858], [53.10848480, 81.34436112, 5.172302568], [52.20754204, 80.63943210, 4.597602278], [51.30659927, 79.93450308, 4.022901987], [50.40565651, 79.22957406, 3.448201697], [49.50471375, 78.52464504, 2.873501407], [48.60377098, 77.81971602, 2.298801116], [47.70282822, 77.11478700, 1.724100826], [46.80188546, 76.40985798, 1.149400536], [45.90094269, 75.70492896, .5747002453], [44.99999991, 74.99999993, -0.5632062994e-7]], COLOUR(RGB, 1.00000000, 0., 0.)), THICKNESS(1), SCALING(CONSTRAINED))

(3)

NULL

``

display(LP12, LP13, LP32, P1, P2, P3, Kriv1, Kriv2, Kriv3)

 

``

``

``

``

 

Download trimming_surfaces.mw

I want to know about some algorithms used by Maple, if there is a way to dig through the code.


 

``

x1 := 0; -1; x2 := 0; -1; J2 := J1

J1

(1)

NULL

ec1 := (1/J3-1/J2)*M2*M3+m*g*(g2*x3-g3*x2) = 0;

(1/J3-1/J1)*M2*M3+m*g*x3*g2 = 0

(2)

ec2 := (1/J1-1/J3)*M1*M3+m*g*(-g1*x3+g3*x1) = 0;

(1/J1-1/J3)*M1*M3-m*g*x3*g1 = 0

(3)

ec3 := (1/J2-1/J1)*M1*M2+m*g*(g1*x2-g2*x1) = 0;

0 = 0

(4)

ec4 := g2*M3/J3-g3*M2/J2 = 0;

g2*M3/J3-g3*M2/J1 = 0

(5)

ec5 := g3*M1/J1-g1*M3/J3 = 0;

g3*M1/J1-g1*M3/J3 = 0

(6)

ec6 := g1*M2/J2-g2*M1/J1 = 0;

g1*M2/J1-g2*M1/J1 = 0

(7)

F1 := (1/J3-1/J2)*M2*M3+m*g*(g2*x3-g3*x2);

(1/J3-1/J1)*M2*M3+m*g*x3*g2

(8)

F2 := (1/J1-1/J3)*M1*M3+m*g*(-g1*x3+g3*x1);

(1/J1-1/J3)*M1*M3-m*g*x3*g1

(9)

F3 := (1/J2-1/J1)*M1*M2+m*g*(g1*x2-g2*x1);

0

(10)

F4 := g2*M3/J3-g3*M2/J2;

g2*M3/J3-g3*M2/J1

(11)

F5 := g3*M1/J1-g1*M3/J3;

g3*M1/J1-g1*M3/J3

(12)

F6 := g1*M2/J2-g2*M1/J1;

g1*M2/J1-g2*M1/J1

(13)

with(Groebner)

[Basis, FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm, InterReduce, IsBasis, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial, LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix, MultivariateCyclicVector, NormalForm, NormalSet, RationalUnivariateRepresentation, Reduce, RememberBasis, SPolynomial, Solve, SuggestVariableOrder, Support, TestOrder, ToricIdealBasis, TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree]

(14)

G := {F1, F2, F3, F4, F5, F6};

{0, g1*M2/J1-g2*M1/J1, g2*M3/J3-g3*M2/J1, g3*M1/J1-g1*M3/J3, (1/J1-1/J3)*M1*M3-m*g*x3*g1, (1/J3-1/J1)*M2*M3+m*g*x3*g2}

(15)

B := Basis(G, tdeg(M1, M2, M3, g1, g2, g3))

Error, (in gcd/Freeze) arguments should be polynomials

 

IsBasis(B, tdeg(M1, M2, M3, g1, g2, g3))

Error, invalid input: Groebner:-IsBasis expects its 1st argument, G1, to be of type {list, set}, but received B

 

``

NULL


 

Download 418.mw

Can someone help with the simplification of the result of this code? I am sure the "qs" in the final result should not appear.

Thanking you in anticipation of your positive responses

#k=1
restart:
P:=sum(a[k]*x^k, k=0..2):
assume(alpha>0,alpha <= 1):
Q:=fracdiff(P,x,alpha);
e1:=simplify(eval(P, x=q))=y[n]:
e2:=simplify(eval(Q,x=q))=f[n]:
e3:=simplify(eval(Q,x=q+h^alpha))=f[n+1]:
var:=seq(a[i], i=0..2):
M:=e||(1..3):

Cc:=eval(<var>, solve(eval({M}),{var}) ):
for i from 1 to 3 do
	a[i-1]:=Cc[i]:
end do:
Cf:=P:
E:=collect(Cf, [y[n], f[n], f[n+1]], recursive):
print():
#y[n+1]=collect(simplify(simplify(expand(eval(Cf,x=q+h^alpha)),size)), [y[n],f[n],f[n+1]], factor);
y[n+1]=simplify(eval(Cf, x=q+h^alpha)):
collect(%, [y[n], f[n], f[n+1]], recursive);

 

Let be given tetrahedron ABCD, where AB = BC = AC = a, AD = d, AD = e, CD = f. I know that, If the measure of angle of AB and CD equal to Pi/3, then we have d^2 - e^2 - a*f = 0. I tried:
ListTools[Categorize];
L := []; 
for a to 30 do for d to 30 do
for e to 30 do for f to 30 do
if abs(d-e) < a and a < d+e and abs(a-e) < d and d < a+e and abs(d-a) < e and e < d+a and abs(d-f) < a and a < d+f and abs(a-f) < d and d < a+f and abs(d-a) < f and f < d+a and abs(e-f) < a and a < e+f and abs(a-f) < e and e < a+f and abs(a-e) < a and a < a+e and -a*f+d^2-e^2 = 0 and igcd(a, d, e, f) = 1 and nops({a, d, e, f}) = 4
then L := [op(L), [a, d, e, f]] end if end do end do end do end do; 
nops(L); 
L;


Another way to find the length of edges of a tetrahedron knowing that the mesure angle of two opposite?

Hello Friends

I have a critical problem that I wish to solve it with maple

suppose we have a list like following: y_obs=(2,4,8,7,9,52,35,478,52) and corresponding variance σy=(.2,.3,.5,.87,.1.2,.22,.78,.99,1.5)
we know y as the function of x described such as y_theoric=x+p and minimizing X is

X=Sigma [(y_theoric-y_obs)^2]/σy which includes the sum of nine numbers...

the question is:

How we can find p from likelihood function and plot general behavior of y versus of x through two above series?

for example this solution used in article under the names Hubble parameter data constraints on dark energy by Yun Chen and Bhatra Ratra (Physics Letters B)

Thank you

 

Hello,

      I was trying to apply some assumptions to a pdsolve command and noticed a strange error. Here's a minimal working example.

restart():

pdsolve(diff(f(t,x),t) = 0, {f(t,x)}, ivars = {x, t}) assuming x::real:

returns

Error, (in simpl/relopsum) invalid terms in sum: diff(f(t,x),t) = 0

Is this indeed a bug, or is it expected behavior?

 

Hello

 

 

I have a problem with "Infinitesimals" for the system of equations. 

"Infinitesimals" Counts the system for (x, t) but shows an empty string for (x, y, z, t).

 

When I add to the equation (img 2) u [y, y], u [z, z] or simply y ^ 2, z ^ 2, Maple shows an empty string in Infinitesimal.

 

Thank you in advance.

Hello everybody,

I am quiet new to Maple and just have to program a small tool.

I need to show a conculison in a pop-up Window which should contain a matrix and a plot.

I tried different ways but they didn't work.

Thanks in advance

Hello,

I have a very simple problem. When Maple displays long outputs I can only see a part of them. Here there is an example

https://www.dropbox.com/s/ymp1vdsg80ewu1s/Untitled.jpeg?dl=0

On my previous versions of Maple I had a slider on the bottom of the page. How can I activate it in Maple 2016?

Thanks, Nicola

When I finished the following code, I can not export the .eps file for the densityplot

 

 

restart; t := 1; a[1] := 0; a[2] := 2; a[4] := 0; a[5] := 1; a[6] := -1; a[8] := 0; g := t*a[3]+x*a[1]+y*a[2]+a[4]; h := t*a[7]+x*a[5]+y*a[6]+a[8]; f := g^2+h^2+a[9]; a[3] := -(3*a[1]^3+a[1]*a[2]^2+3*a[1]*a[5]^2-a[1]*a[6]^2+2*a[2]*a[5]*a[6])/(3*(a[1]^2+a[5]^2)); a[7] := -(3*a[1]^2*a[5]+2*a[1]*a[2]*a[6]-a[2]^2*a[5]+3*a[5]^3+a[5]*a[6]^2)/(3*(a[1]^2+a[5]^2)); a[9] := (3*(a[1]^6+3*a[1]^4*a[5]^2+3*a[1]^2*a[5]^4+a[5]^6))/(a[1]*a[6]-a[2]*a[5])^2; u := (4*(2*a[1]^2+a[5]^2))/f-8*(g*a[1]+h*a[5])^2/f^2; with(plots); plot3d(u, x = -20 .. 20, y = -20 .. 20, axes = frame, labels = ["x", "y", "z"], labeldirections = ["horizontal", "horizontal", "horizontal"], labelfont = ["TIMES", 16], style = patchnogrid); densityplot(u, x = -10 .. 10, y = -10 .. 10, axes = frame, labels = ["x", "y"], labeldirections = ["horizontal", "horizontal"], labelfont = ["TIMES", 16], colorstyle = HUE, style = patchnogrid); contourplot(u, x = -5 .. 5, y = -5 .. 5, labels = ["x", "y"], labeldirections = ["horizontal", "horizontal"], labelfont = ["TIMES", 16])

Why does

MultiSeries:-series(LegendreQ(-1/2,x),x=-1))

not work?

series(LegendreQ(-1/2,x),x=-1))

seems to work, but does it give the correct result?

I actually thought there was a pole at -1.

Thx

PS: or is the cut between -1 and 1 with both logarithmic singularities?

I'm still wondering about the behaviour of MultiSeries

Hi I was hoping if someone could mark this proof for a lemma regarding the Euler totient functin for me.

 

Thanks in advance.

 

totient_lemma_proof.mw

First 123 124 125 126 127 128 129 Last Page 125 of 2231