Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Just found new regression in Maple 2025. This internal error can not be cought and was not there in Maple 2024.2. This is new from the ones reprted earlier in Collection-Of-Problems-In-Maple-2025 

Here it is , using latest SupportTools

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862 and is the same as the version installed in this computer, created 2025, April 25, 10:33 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 13 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

restart;

#17593
eq:=2*A[6]*exp(-2*t)*cos(t)+2*A[3]*exp(-2*t)*sin(t)-2*A[4]*exp(-2*t)*cos(t)-4*A[7]*exp(-t)*sin(2*t)+4*A[8]*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*sin(t)+4*A[2]*exp(-t)+4*A[1]*t*exp(-t)+4*A[3]*exp(-2*t)*cos(t)+4*A[4]*exp(-2*t)*sin(t)+2*A[9]*exp(-t)*cos(2*t)-8*A[9]*t*exp(-t)*sin(2*t)+2*A[10]*exp(-t)*sin(2*t)+8*A[10]*t*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*cos(t)+2*A[5]*t*exp(-2*t)*sin(t)-2*A[6]*exp(-2*t)*sin(t)-2*A[6]*t*exp(-2*t)*cos(t)+4*A[5]*t*exp(-2*t)*cos(t)+4*A[6]*t*exp(-2*t)*sin(t) = 3*t*exp(-t)*cos(2*t)-2*t*exp(-2*t)*cos(t):


trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9], A[10]]:

try
     timelimit(30,[solve(identity(eq,t),trial_solution_constants) ]);
catch:
     print("OK cought error");
end try;

Error, (in type/trig) too many levels of recursion

 

 

Download regression_maple_2025_april_26_2025.mw

Here is the same code in Maple 2024.2 but using windows. No internal error and timeout was cought as expected.

restart;
interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1862. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

#17593
eq:=2*A[6]*exp(-2*t)*cos(t)+2*A[3]*exp(-2*t)*sin(t)-2*A[4]*exp(-2*t)*cos(t)-4*A[7]*exp(-t)*sin(2*t)+4*A[8]*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*sin(t)+4*A[2]*exp(-t)+4*A[1]*t*exp(-t)+4*A[3]*exp(-2*t)*cos(t)+4*A[4]*exp(-2*t)*sin(t)+2*A[9]*exp(-t)*cos(2*t)-8*A[9]*t*exp(-t)*sin(2*t)+2*A[10]*exp(-t)*sin(2*t)+8*A[10]*t*exp(-t)*cos(2*t)-2*A[5]*exp(-2*t)*cos(t)+2*A[5]*t*exp(-2*t)*sin(t)-2*A[6]*exp(-2*t)*sin(t)-2*A[6]*t*exp(-2*t)*cos(t)+4*A[5]*t*exp(-2*t)*cos(t)+4*A[6]*t*exp(-2*t)*sin(t) = 3*t*exp(-t)*cos(2*t)-2*t*exp(-2*t)*cos(t):


trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9], A[10]]:

 

try
     timelimit(30,[solve(identity(eq,t),trial_solution_constants) ]);
catch:
     print("OK cought error");
end try;


Download no_problem_in_maple_2024_april_26_2025.mw

Today I was working on some plots involving pH, which is defined as -log_10 ([hydronium]), that is, the negative of the base 10 logarithm of the concentration of hydronium in a solution.

I reached an expression for a variable x that is a function of an initial concentration C_i.

I wanted to plot the pH given by -log_10 (0.0001+x).

Note that x(0)=0, and so for this latter plot we should have the point (0, 4).

I am not able to see any part of the plot near (0,4), as can be seen below.

plot(-log[10](0.1e-3+x))

 

x := -0.2550000000e-2+0.5000000000e-4*sqrt(2601.+(2.000000000*10^6)*C__i)

-0.2550000000e-2+0.5000000000e-4*(2601.+2000000.000*C__i)^(1/2)

(1)

plot(-log[10](0.1e-3+x))

 

I want to see the plot being 4 at C__i = 0.

 

Note that subs({C__i = 0}, x) = 0. and evalf(subs({C__i = 0}, -log[10](0.1e-3+x))) = 4.000000000 

NULL

plot(-log[10](0.1e-3+x), C__i = 0 .. 1)

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. 1, 1 .. 4])

 

plot(-log[10](0.1e-3+x), C__i = 0 .. 1, view = [0 .. .1, 1 .. 4])

 

NULL

Download plotatzero.mw

I try to construct a system of coefficient but  i don't know why distribute of them is not working, beside this there is any other way for build this kind of systems 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

H1 := int(pde_linear, x)

(diff(u(x, y, z, t), z))*delta+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))-5*(int(diff(diff(u(x, y, z, t), y), y), x))+9*(diff(u(x, y, z, t), t))+diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x)-5*(diff(diff(diff(u(x, y, z, t), x), x), y))

(7)

L := eval(H1, H) = 0

-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t) = 0

(8)

numer(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0)) = numer(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))

2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(9)

simplify(2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3 = 0)

2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+10*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+2*(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+2*(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-240*(diff(f(x, y, z, t), x))^6+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-2*f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(10)

F1 := %*(1/2)

(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+15*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+5*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+9*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-5*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-120*(diff(f(x, y, z, t), x))^6+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(11)

collect(F1, {alpha, beta, f(x, y, z, t)})

(-f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x)))*alpha+(-(diff(f(x, y, z, t), y))*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y)))*beta+((diff(diff(f(x, y, z, t), x), z))*delta+diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))+9*(diff(diff(f(x, y, z, t), t), x))-5*(diff(diff(f(x, y, z, t), y), y)))*f(x, y, z, t)^5+(-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))-15*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2+5*(diff(f(x, y, z, t), y))*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))+15*(diff(diff(f(x, y, z, t), x), y))*(diff(diff(f(x, y, z, t), x), x))-((diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2)*f(x, y, z, t)^4+(30*(diff(f(x, y, z, t), x))^2*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-30*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))+120*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))-30*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*(diff(diff(f(x, y, z, t), x), x))+30*(diff(diff(f(x, y, z, t), x), x))^3)*f(x, y, z, t)^3+(-120*(diff(f(x, y, z, t), x))^3*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2)*f(x, y, z, t)^2+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-120*(diff(f(x, y, z, t), x))^6 = 0

(12)

NULL

T := f(x, y, z, t) = g(x, y, z, t)^2+h(x, y, z, t)^2+a[11]

T1 := g(x, y, z, t) = t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5]

T2 := h(x, y, z, t) = t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10]

L2 := subs({T1, T2}, T)

f(x, y, z, t) = (t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11]

(13)

L3 := eval(F1, L2)

30*(2*a[1]^2+2*a[6]^2)^3*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3-270*(2*a[1]^2+2*a[6]^2)^2*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2+(alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+360*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^4*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+15*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(2*a[1]*a[2]+2*a[6]*a[7]))*(2*a[1]^2+2*a[6]^2)+(beta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3)*(2*a[1]*a[2]+2*a[6]*a[7])+9*(2*a[1]*a[4]+2*a[6]*a[9])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+(2*a[1]*a[3]+2*a[6]*a[8])*delta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-5*(2*a[2]^2+2*a[7]^2)*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-120*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^6+30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2-(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4-((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(beta*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])+(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[3]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[8])*delta+18*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[4]+18*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[9])*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+5*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4 = 0

(14)

L4 := collect(L3, [x, y, z, t], 'distributed')

Warning,  computation interrupted

 

` `

(15)

Download systems.mw

This never happened to me before.

Without any changes made in the worksheet, and just executing it again, suddenly Maple 24 gives me all output that starts with

typesetting:-mprintslash

etc

What the heck is this ? and where has the normal output suddenly gone to ?

Before this change Maple did not want to stop an execution on a limit. I had to kill the mserver which then allowed me to save the docuemnt. After that the document has all this unusable typeset nonsense as output.

I opened a new page and pasted the commands into that document. Problem remains the same, so it seems to be something in the system wide config that was changed.

Here is what is causing the problem:

What I noticed  is that my output is now "Line Printer" as default. How did that happen ? I never did that. It must be a consequence of the infinite limit calculation that could not be interrupted (whish Maple will fix their break and interrupt commands).

So how do I set all output to Maple Output. I see no such ability in config. It states there that "Output Display" is set to "Maple Output" , but every new document has line printer as output !!!

Totally unusable now.

everytime I run mint I get hundreds of messages coming from child modules, saying

           These names were used as global names but were not declared:  A

Where A above is the name of the top level module.

This only shows from commnd line mint, and not from maplemint used in the GUI.

The set I have is 

A:=module()
    export module foo_type()
       option object;
       ....
    end module;

     export B := module()  #child module
       .....
     end module;
end module;

  In the child module B above, whever I do 

                 o:=Object(A:-foo_type);

mint gives the above warning.

It is clear the name A should not be declared, as the module B is child to it so it can see it.

The workaround is to add  global A inside each child module to remove this warning. 

But why is this needed?

Here is a worksheet showing maplemint does not show this warning, and below example using command line mint on same exact code, which does

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

A:=module()

    export module foo_type()
       option object;
       export name::string:="";
    end module;

    export B := module()
       export step := proc()::A:-foo_type;                 
       local o::A:-foo_type;   
          o:=Object(A:-foo_type);
          o:-name:="x";
          return o;
       end proc;

    end module;

end module;

_m128759219362528

maplemint(A)

Nested Module foo_type() on lines 1 to 2
  These exported variables were never used:  name::string

 

 

Download mint_isse_april_25_2025.mw

Here is A.mpl 

A:=module()

    export module foo_type()
       option object;
       export name::string:="";
    end module;

    export B := module()    
       #global A;     why is this needed for mint??
       export step := proc()::A:-foo_type;                 
       local o::A:-foo_type;   
          o:=Object(A:-foo_type);
          o:-name:="x";
          return o;
       end proc;

    end module;
end module;

And now the command

>/home/me/maple2025/bin.X86_64_LINUX/mint A.mpl
    |\^/|      Maple 2025 Diagnostic Program
._|\|   |/|_.  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2025
 \  MINT   /   All rights reserved. Maple is a trademark of
 <____ ____>   Waterloo Maple Inc.
      |        
Nested Procedure step() on lines 10 to 15
  These names were used as global names but were not declared:  A
Module A() on lines 1 to 18
  These exported variables were never used:  foo_type
>

You see the difference. mint complains that A is not declared.

Is this a bug in mint?

I tried loading the last latest update of the physics package for Maple 2022 version 1409

It seems all the versions of the physics updates from version 1340 to 1409 are missing?  I can download 1339 and 1410 but all the versions in between are missing. 

MapleCloud opend from Maple2025 and 2024.

Has this extended scrollbar always been like this?
Maybe it is a browser thing.
Which browser is Maple using?
Are there any settings I could adjust?

I aim to conduct a numerical frequency sweep analysis on a nonlinear, coupled two-degree-of-freedom vibration model and compare the results with the analytical solution. However, I am currently facing two main difficulties:

  1. I am unsure how to determine whether the computed response has reached a steady state. If I simply use the maximum value to represent the steady-state amplitude, it can be misleading—since transient responses prior to reaching steady state may yield a higher peak, as seen in the uploaded code.

  2. I do not know how to properly select the steady-state result from the previous frequency as the initial condition for the next frequency step.
    2.mw

Maplesoft now has a new approach to providing customer support for Maple users! The Maple Customer Support Updates allows Maplesoft to provide important updates to our customers as fast as possible. These updates contain a series of improvements and fixes to any area of the Maple library, enabling a rapid response for customer reports and requests. When a Maple user reports a bug or weakness, or requests some missing functionality that can be addressed with an update to the Maple library, such an update can now be provided immediately after the fix or improvement is developed. Furthermore, the update will not just be available to that customer who reported it, but also to any other Maple users who wishes to use them. Of course, not all reports will be able to be addressed quickly, and for those that are, it will be up to the developer's discretion whether to make the fix or improvement available via these new Maple Customer Support Updates. Please note that these Updates may contain experimental elements that could change in subsequent official releases.

The updates are available as a workbook containing a Maple library file that can be downloaded and installed from the Maple Cloud. To install the Maple Customer Support Updates from the Maple Cloud,

  • Click the MapleCloud icon in the upper-right corner of the Maple GUI window and select Packages.
  • Find the Maple Customer Support Updates package and click the Install button, the last one under Actions.
  • To check for new versions of Maple Customer Support Updates, click the MapleCloud icon and select Updates. If the cloud icon in the Actions column of Maple Customer Support Updates has the word Update beside it, then you can click on it to download a new update.

To make the process of installing and maintaining the Maple Customer Support Updates as smooth as possible, we've also introduced a new Maple library package, SupportTools, with 3 commands, Update, Version, and RemoveUpdates.

Load the SupportTools package:
with(SupportTools)

[RemoveUpdates, Update, Version]

(1)

Check which version is currently installed:
Version()

`The Customer Support Updates version in the MapleCloud is 10. The version installed in this computer is 9 created April 22, 2025, 15:14 hours Eastern Time, found in the directory C:\Users\Austin\Maple\toolbox\2025\Maple Customer Support Updates\lib\Maple`

(2)


Update to the latest version (you could also call Update(latest)):

Update()

Warning, You have just upgraded from version 9 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 


Check the version again:

Version()

`The Customer Support Updates version in the MapleCloud is 10 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

(3)


Remove all updates for this release of Maple (except for those installing the SupportTools package itself):

RemoveUpdates()RemoveUpdates()

Warning, You have just reverted to version 4 of the Customer Support Updates. This version contains no actual updates other than the SupportTools package itself. In order to verify this, please close Maple entirely, then open Maple and enter SupportTools:-Version() to verify that the version number is 4.

 


Note: You can also specify which version to install by supplying the version number as the argument to the Update command:

Update(10)

Warning, You have just upgraded from version 4 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 

Download SupportTools.mw

In Maple 2025.0, the SupportTools package is not installed by default. For the first installation, you can also run the command
PackageTools:-Install(4797495082876928); instead of installing it from the Maple Cloud.

The Maple Customer Support Updates were inspired by and modelled after the existing Physics Updates which many Maple users may be famiilar with already. Going forward, Physics Updates will only contain changes to the Physics package itself. All other library updates will be available via the Maple Customer Support Updates. For compatibility with the pre-existing Physics:-Version command, calling SupportTools:-Version(n) is equivalent to calling SupportTools:-Update(n), and similarly SupportTools:-Version(latest) and SupportTools:-Update(latest) are both equivalent to the single call SupportTools:-Update().

The Maple 2024 default Document is largely unreadable to me. the multiplication sign is a minute dot that I miss most of the time on very high resolution monitors.

What really works well for me is Maple Input as was used in Maple 9.5. A Pleasure to work with. Using Maple 2024 it is a real pain to "go figure" all the time.

I tried the Global Config, but there is no way to set the default font and the defualt color so I can get the exact same text and color as Maple 9.5.
After I set the colors to bright red, and change to Monospace 12 font and use mapleinput, all is well.
However there is no way to save this setup as the configuration has no way to set font and color. It does set mapleinput at least.

So how do I fix this GLOBALLY so I dont have to run into Maple2024's microscopic math.

I am trying to create a diagram in Maple using its plotting tools and simulate a simply connected domain and multiple paths between two points.

My first try is the following

with(plots); with(plottools)

 

 

curveDomainPts := [[-1, 0], [-.7, 1.2], [0, 1.5], [.7, 1.2], [1.2, 0], [.7, -1.2], [0, -1.4], [-.7, -1.2], [-1, 0]]; domain := polygon(curveDomainPts, color = "LightBlue", transparency = .4); z0 := [-.8, .6]; z := [.9, -.4]; curve1_pts := [[-.8, .6], [-.3, 1.0], [.4, .5], [.9, -.4]]; curve2_pts := [[-.8, .6], [-.7, 0.], [.2, -.6], [.9, -.4]]; curve1 := pointplot(curve1_pts, color = red, linestyle = dot, thickness = 2, connect = true); curve2 := pointplot(curve2_pts, color = green, linestyle = dot, thickness = 2, connect = true); pt1 := pointplot([z0], symbol = solidcircle, symbolsize = 15, color = black); pt2 := pointplot([z], symbol = solidcircle, symbolsize = 15, color = black); label1 := textplot([z0[1], z0[2]-.1, z__0], font = [Helvetica, Bold, 14]); label2 := textplot([z[1], z[2]-.1, "z"], font = [Helvetica, Bold, 14]); display(domain, curve1, curve2, pt1, pt2, label1, label2, scaling = constrained, axes = none, title = "Curved Domain with Arbitrary Paths")

 
 

NULL

I would like to ask if I could create something like that in Maple or should I use another software to draw it?

Download curved_domain.mw

Dear all
How can I compute the integral from a to b of   y^2 cot(y)

Thank you

I use  Maple 2015 and I try to understand how the simplification rules apply in the case of the expression 

f := n -> (ln(x)^n)^(1/n)

Here n is assumed to be a strictly positive and I consider only the cases "n is an integer" or "1/n is an integer".

All the questions are orange written in the attached file and resumed below:

  1. Why simplify(f(2)) simplifies f(2) whereas simplify(f(n)) doesn't simplifies f(n) for any integer n > 2?
     
  2. Why simplify(f(1/n)) simplifies f(1/n)?
     
  3. Why simplify(f(3)) with adhoc assumptions returns a simplified expression of some form whereas, for any integer n > 3,  simplify(f(n)) with (the same corresponding) adhoc assumptions returns a simplified expression of a complete different form than with n=3?

Can you please have a look to it and give me some clarifications?
Simplification_rules.mw

Thanks in advance

When using FunctionAdvisor(branch_cuts, f(x), plot="2D"); how do I enforce discontinuous lines be presented with option discont=true?

To save space, I've decided to show problems found so far in Maple 2025 in one worksheet.

Hoping someone will figure the cause. The big problem is that these internal errors can not be cought using try/catch. Which means there is no user workaround. If they can be cought, then it is not a big problem.

Some from odetest, some from int and some from simplify and some from symgen.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1861 and is the same as the version installed in this computer, created 2025, April 10, 15:58 hours Pacific Time.`

restart;

#18573
e:=(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)-1/2*(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)^2/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2-16)^(1/2))*x:

try
    timelimit(60,simplify(e));
catch:
    print("OK, cought error");
end try;

 

Error, (in anonymous procedure called from depends) too many levels of recursion

restart;

#12178
ode:=diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arctan(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12181
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arctan(x(y))^m*a*y^2+x(y)^n*arctan(x(y))^m*b*y+arctan(x(y))^m*c-n*y):
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12187
ode:=diff(y(x),x)=lambda*arccot(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arccot(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#12190
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arccot(x(y))^m*a*y^2+x(y)^n*arccot(x(y))^m*b*y+arccot(x(y))^m*c-n*y):
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/exp/exp) too many levels of recursion

restart;

#10708
e:=2/(ln(x)-exp(1/x))*x*diff(diff(u(x),x),x)-(-2/(ln(x)-exp(1/x))^2*x*(1/x+1/x^2*exp(1/x))+2/(ln(x)-exp(1/x))+8*x^3/(ln(x)-exp(1/x))^2)*diff(u(x),x)-4/(ln(x)-exp(1/x))^3*x^2*(-2*x^3+ln(x)-exp(1/x)-2*x)*u(x):
e:=evala(e):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

Error, (in anonymous procedure called from property/ConvertRelation) too many levels of recursion

restart;

#6764
e:=1/2/x^(7/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x)*(1+x):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

Error, (in simplify/common_factors/do) too many levels of recursion

restart;

#19337

sol:=-y+Intat((_a*((_a^2+1)/_a^2)^(1/2)+_a^2+1)*exp(-1/2*(arctanh(1/(_a^2+1)^(1/2))*((_a^2+1)/_a^2)^(1/2)*_a^3+2*_C3*(_a^2+1)^(1/2)*_a^2+(_a^2+1)^(1/2)*((_a^2+1)/_a^2)^(1/2)*_a+(_a^2+1)^(1/2))/(_a^2+1)^(1/2)/_a^2)/((_a^2+1)/_a^2)^(1/2)/_a^5,_a = RootOf(x(y)-exp(-1/2*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*_C3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/(_Z^2+1)^(1/2)/_Z^2)))+_C4 = 0:
ode:=-1/2/(diff(x(y),y)^2+1)^(1/2)*(diff(x(y),y)*(arctanh(1/(diff(x(y),y)^2+1)^(1/2))*diff(x(y),y)^2+(diff(x(y),y)^2+1)^(1/2))*((diff(x(y),y)^2+1)/diff(x(y),y)^2)^(1/2)+(diff(x(y),y)^2+1)^(1/2))/diff(x(y),y)^2 = ln(x(y))+_C3:
try
    timelimit(60,odetest(sol,ode));
catch:
    print("OK, cought error");
end try;
 

Error, (in unknown) too many levels of recursion

 

 

Download collection_of_problems_maple_2025.mw

Below is worksheet showing output in Maple 2024.2. It shows NO internal error is generated in any one. Either a result is returned, or it timedout as expected.

This shows all the above cases are regressions in Maple 2025.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1861. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

#18573
e:=(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)-1/2*(1/4*(RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2+16)^2/RootOf(-100*_Z^4*exp(arctanh(1/3*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh(1/3*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(_C11)^16-68*x^(16/5)*_Z^2*exp(_C11)^16+256*x^(16/5)*exp(_C11)^16)^2-16)^(1/2))*x:

try
    timelimit(60,simplify(e));
catch:
    print("OK, cought error");
end try;

 

(1/4)*(RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2-((RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2-16)^2/RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))^2)^(1/2)*RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))+16)*x/RootOf(-100*_Z^4*exp(arctanh((1/3)*(5*_Z^2-32*_Z+80)/(_Z^2-16))+arctanh((1/3)*(5*_Z^2+32*_Z+80)/(_Z^2-16)))+x^(16/5)*_Z^4*exp(16*_C11)-68*x^(16/5)*_Z^2*exp(16*_C11)+256*x^(16/5)*exp(16*_C11))

restart;

#12178
ode:=diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arctan(x)^n:
try
    timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#12181
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arctan(x(y))^m*a*y^2+x(y)^n*arctan(x(y))^m*b*y+arctan(x(y))^m*c-n*y):
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

restart;

#12187
ode:=diff(y(x),x)=lambda*arccot(x)^n*y(x)^2+beta*m*x^(m-1)-lambda*beta^2*x^(2*m)*arccot(x)^n:
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#12190
ode:=diff(x(y),y) = x(y)/(x(y)^(2*m)*arccot(x(y))^m*a*y^2+x(y)^n*arccot(x(y))^m*b*y+arccot(x(y))^m*c-n*y):
try
    r:=timelimit(60,DEtools:-symgen(ode));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#10708
e:=2/(ln(x)-exp(1/x))*x*diff(diff(u(x),x),x)-(-2/(ln(x)-exp(1/x))^2*x*(1/x+1/x^2*exp(1/x))+2/(ln(x)-exp(1/x))+8*x^3/(ln(x)-exp(1/x))^2)*diff(u(x),x)-4/(ln(x)-exp(1/x))^3*x^2*(-2*x^3+ln(x)-exp(1/x)-2*x)*u(x):
e:=evala(e):
try
    timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#6764
e:=1/2/x^(7/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x)*(1+x):
try
    r:=timelimit(60,int(e,x));
catch:
    print("OK, cought error");
end try;

"OK, cought error"

restart;

#19337

sol:=-y+Intat((_a*((_a^2+1)/_a^2)^(1/2)+_a^2+1)*exp(-1/2*(arctanh(1/(_a^2+1)^(1/2))*((_a^2+1)/_a^2)^(1/2)*_a^3+2*_C3*(_a^2+1)^(1/2)*_a^2+(_a^2+1)^(1/2)*((_a^2+1)/_a^2)^(1/2)*_a+(_a^2+1)^(1/2))/(_a^2+1)^(1/2)/_a^2)/((_a^2+1)/_a^2)^(1/2)/_a^5,_a = RootOf(x(y)-exp(-1/2*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*_C3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/(_Z^2+1)^(1/2)/_Z^2)))+_C4 = 0:
ode:=-1/2/(diff(x(y),y)^2+1)^(1/2)*(diff(x(y),y)*(arctanh(1/(diff(x(y),y)^2+1)^(1/2))*diff(x(y),y)^2+(diff(x(y),y)^2+1)^(1/2))*((diff(x(y),y)^2+1)/diff(x(y),y)^2)^(1/2)+(diff(x(y),y)^2+1)^(1/2))/diff(x(y),y)^2 = ln(x(y))+_C3:
try
    r:=timelimit(60,odetest(sol,ode));
catch:
    print("OK, cought error");
end try;
 

-(1/2)*RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))*arctanh(1/(RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2+1)^(1/2))*(1+1/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2)^(1/2)/(RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2+1)^(1/2)-ln(x(y))-c__3-(1/2)*(1+1/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2)^(1/2)/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))-(1/2)/RootOf(x(y)-exp(-(1/2)*(arctanh(1/(_Z^2+1)^(1/2))*((_Z^2+1)/_Z^2)^(1/2)*_Z^3+2*c__3*(_Z^2+1)^(1/2)*_Z^2+(_Z^2+1)^(1/2)*((_Z^2+1)/_Z^2)^(1/2)*_Z+(_Z^2+1)^(1/2))/((_Z^2+1)^(1/2)*_Z^2)))^2

Download collection_of_problems_maple_2024_version.mw

3 4 5 6 7 8 9 Last Page 5 of 2203