Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi! I have been trying to calculate the value of theClenshaw derivative. I can get the regular clenshaw to work but not the derivative. I'm going off of the thread (https://scicomp.stackexchange.com/questions/27865/clenshaw-type-recurrence-for-derivative-of-chebyshev-series). (P.s notice I have halfed the A[z+1] term. I have tried both ways but the overall result is wrong so I am guessing something more important is wrong).

This is my code so far

Clenshaw_Dx_1D:=proc(z,C,Nm,s)
local i,k,A,B: global Clen1D_Dx: 

A := Vector(z..Nm+1+z);
B := Vector(z..Nm+1+z);

for k from Nm-1+z by -1 to 1+z do
A[k] := C[k] + 2*s*A[k+1] - A[k+2]:
od:

for k from Nm-1+z by -1 to 1+z do
B[k] := 2*A[k+1] + 2*s*B[k+1] - B[k+2]:
od:
Clen1D_Dx :=  A[z+1]/2 + s*B[1+z] - B[2+z]:

end:

Where z could be 0 or 1 depending on what index your C array starts at. C is the array of chebyshev coefficients of a Chebyshev series appromating u(x) for example. The Chebycoeff1D procedure calculates the Chebyshev coefficients  and the code below calls the procedure for a specific function. Try it with some values of xM, for example 4-10.
 

Chebycoeff1D:=proc(express,Nn,C2,A,B)
local Cfac,fac1x,fac2x,k,K;

fac1x:=Pi/Nn;
  for k from 1 to Nn do 
  Cfac(k):=eval(subs(x=evalf(cos(fac1x*(k-0.5)))*A+B,evalf(express))); 
  od; unassign('k'):                    
  for K from 1 to Nn do
    fac2x:=Pi*(K-1)/Nn;
    C2[K-1]:=(2/Nn)*add(Cfac(k)*evalf(cos(fac2x*(k-0.5))),k=1..Nn);
  od:
end:
nn := 1.0:
Lc := 0.0: Rc := 1.0:
func:=nn*sin(2*Pi*x)+0.5*nn*sin(Pi*x):
Chebycoeff1D(func,xM+1,C,0.5*(Rc-Lc),0.5*(Rc+Lc)):

Once you have the C array call Clenshaw_Dx_1D. For example
 

Clenshaw_Dx_1D(0,C,xM+1,0.0);  # Evalutes f'(x) in the middle of the domain.

Check with

subs(x=0.5, diff(func,x));

The overall "pattern/shape" of the derivative values is correct, just not the amplitude/values. Any help here? Where is the Clenshaw derivative procedure going wrong.

I have a region that can be graphed by A := plots:-inequal([evalc(abs(z)) < 3, evalc(1 < abs(z - 1))], x = -5 .. 5, y = -5 .. 5)

From there, I need to use the transformation 

M := (3 + sqrt(5))/2*(z - x1)/(z - x2) where x1 := (9 - sqrt(45))/2 and x2 := (9 + sqrt(45))/2 

 

How do I do this? Do I need to extract data points from the first graph? Is there an easier way to do this? 

I would like to plot a hyperbola using the polarplot command, such as the following:

polarplot(3/(1-1.5*sin(theta)), coordinateview = [0 .. 10, 0 .. 2*Pi])

But the graph includes the asymptotes, which I would not like to be included. I have tried the discont=true command, but it completely changes the shape of the graph and no longer looks like a hyperbola:

polarplot(3/(1-1.5*sin(theta)), coordinateview = [0 .. 10, 0 .. 2*Pi], discont = true)

 How would I get the hyperbola above to display with no asymptotes?

Thanks

The Library:-RedefineTensorComponent in the physics package has got some serious problems, I guess in the update. It is not assigning the components at the right location for a tensor of rank 4 and above. It is working for tensors of rank 1, 2 and 3. Can someone please look into the issue and help out?

I am attaching the code with an example to indiacate the problem. Redefine.mw

Hi,

Defining variables named H2 or O2 doesn't pose any problem (H__2 for instance), but could it be possible in Maple 2019 to define a variable named H2O2 ?

Thanks in advance

Hello,

I have a question regarding the dsolve function in Maple. I am trying to solve a system of 5 first order ODE's. First I solve the differential equations to arrive at the general solution using the dsolve command. Here Maple already produces very large and slow output while I would actually expect a much more compact output. 

Then I want to evaluate the final solution by using the initial conditons. At this point Maple keeps 'evaluating..' and does not come up with a solution. Only when I fill in all the parameters Maple finds a solution ( still very slow ). However as I want to be able to play with the input parameters after evaluation I want a solution without having to fill in the parameters prior to solving the system.

My question is whether I am presenting the system of ODE's in the right way to Maple. Should I rewrite the system for Maple to be able to produce a more dense solution? Or should I for instance use Laplace Transform to simplify the equations prior to solving?

Please help!

Joa

 

restart;

eq1 := sig_total-sig2(t)-sig3(t)-sig4(t)-sig5(t)+T1*(-(diff(sig2(t), t))-(diff(sig3(t), t))-(diff(sig4(t), t))-(diff(sig5(t), t))) = u1*(diff(eps(t), t));
eq2 := sig2(t)+T2*(diff(sig2(t), t)) = u2*(diff(eps(t), t));
eq3 := sig3(t)+T3*(diff(sig3(t), t)) = u3*(diff(eps(t), t));
eq4 := sig4(t)+T4*(diff(sig4(t), t)) = u4*(diff(eps(t), t));
eq5 := sig5(t)+T5*(diff(sig5(t), t)) = u5*(diff(eps(t), t));

dsolve({eq1, eq2, eq3, eq4, eq5}, {eps(t), sig2(t), sig3(t), sig4(t), sig5(t)});
sig_total := sig_0;
desys := {eq1, eq2, eq3, eq4, eq5}; ic := {eps(0) = sig_0/(E1+E2+E3+E4+E5), sig2(0) = sig_0/(1+(E1+E3+E4+E5)/E2), sig3(0) = sig_0/(1+(E1+E2+E4+E5)/E3), sig4(0) = sig_0/(1+(E1+E3+E2+E5)/E4), sig5(0) = sig_0/(1+(E1+E3+E4+E2)/E5)};

solution := combine(dsolve(desys union ic, {eps(t), sig2(t), sig3(t), sig4(t), sig5(t)})); assign(solution);


E_total := 33112; a := .1; b := .2; c := .15; d := .2; e := .35;


E1 := a*E_total; E2 := b*E_total; E3 := c*E_total; E4 := d*E_total; E5 := e*E_total; T1 := 1; T2 := 10; T3 := 100; T4 := 1000; T5 := 10000; u1 := T1*E1; u2 := T2*E2; u3 := T3*E3; u4 := T4*E4; u5 := T5*E5; sig_0 := 2;


plot(eps(t), t = 0 .. 672, y = 0 .. 0.12e-3);
y := eval(eps(t), t = 672);
evalf(y);
 

Download Maxwell_solve_new_method_5_units.mwMaxwell_solve_new_method_5_units.mw

How do I extract the real solutions of a polynomial that has solutions both in real and complex domains?

How do I work with polynomials over finite fields?  not just the integers mod p but over  https://www.maplesoft.com/support/help/Maple/view.aspx?path=GF

So what is the Maple equivalent of  functions/scripts?   and how do I call them?   like I have define the function f in the worksheet (in a code edit region) , but f(2)  just returns f(2)  no function evaluation.  

p.s. can someone recommend a guide on programming in maple?  Like writing and calling functions not   their standard programming guide which is long winded and not helpful.

 

Hi there!

Sorry to ask, but I don't know how I can solve it in a smart way. I want to take the covariant derivative of a specific vector, whose components are specifically defined, which can be constant or some functions of the coordinates. But, as soon as I define that specific vector, the covariant derivative fails to compute, saying there are "too many levels of recursion". Let me show what I mean.

I have these two attempts to get this:

 

First attempt

 

restart

with(Physics)

Setup(mathematicalnotation = true)

Coordinates(X = spherical)

{X}

(1.1)

Parameters(k)

{k}

(1.2)

Setup(metric = {(1, 1) = a(t)^2/(-k*r^2+1), (2, 2) = (a(t)*r)^2, (3, 3) = (a(t)*r*sin(theta))^2, (4, 4) = -1})

[metric = {(1, 1) = a(t)^2/(-k*r^2+1), (2, 2) = a(t)^2*r^2, (3, 3) = a(t)^2*r^2*sin(theta)^2, (4, 4) = -1}]

(1.3)

Define(b[mu])

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(1.4)

NULL

Define(Db[nu, mu] = D_[nu](b[mu](X)))NULL

{Physics:-D_[mu], Db[nu, mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(1.5)

Define(b[mu] = [0, 0, 0, beta], redo)

{Physics:-D_[mu], Db[nu, mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(1.6)

Db[]

Db[mu, nu] = Matrix(%id = 18446746372997772822)

(1.7)

beta := proc (X) options operator, arrow; b0 end proc``

proc (X) options operator, arrow; b0 end proc

(1.8)

Define(b[mu] = [0, 0, 0, beta], redo)

{Physics:-D_[mu], Db[nu, mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(1.9)

Db[]

Error, (in index/PhysicsTensor) too many levels of recursion

 

````

Second attempt

 

restart

with(Physics)

Setup(mathematicalnotation = true)

Coordinates(X = spherical)

{X}

(2.1)

Parameters(beta, k)

{beta, k}

(2.2)

Setup(metric = {(1, 1) = a(t)^2/(-k*r^2+1), (2, 2) = (a(t)*r)^2, (3, 3) = (a(t)*r*sin(theta))^2, (4, 4) = -1})

[metric = {(1, 1) = a(t)^2/(-k*r^2+1), (2, 2) = a(t)^2*r^2, (3, 3) = a(t)^2*r^2*sin(theta)^2, (4, 4) = -1}]

(2.3)

Define(b[mu])

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2.4)

``

Define(Db[nu, mu] = D_[nu](b[mu](X)))``

{Physics:-D_[mu], Db[nu, mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2.5)

Define(b[mu] = [0, 0, 0, beta], redo)

{Physics:-D_[mu], Db[nu, mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], b[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2.6)

Db[]

Error, (in index/PhysicsTensor) too many levels of recursion

 

````

``

On my first attempt, expression (1.7) is almost fine, but β is supposed to be constant (and a function of "t" in the future), so I set it as a constant function. But then it causes that problem. Therefore, on my second attempt, I tried to set β as a parameter since the beginning, but it was no good either.


If I were to take the covariant derivative as "D_[nu](b[mu])" (without the "(X)"), it would not have that specific problem, but would not be a good solution, since the covariant derivative would discard the partial derivative of b[mu] and, if it would have some dependence on the coordinates, it would give a wrong result.


The only way it seems to work is by defining the tensor "Db[mu,nu]" explicitly as "d_[mu](b[nu](X)) - Christoffel[~alpha, mu, nu]*b[alpha]". (It seems that the problem comes from that "(X)" next to "b[alpha]" in the connection term.) But that would be an awful way to circumvent the problem. Isn't there any better way to get this?


Can someone help me with this, please?


Thanks for any help!

 

Download Cov._derivative_of_a_specific_vector.mw

 

We recently had a question about using some of the plotting commands in Maple to draw things. We were feeling creative and thought why not take it a step further and draw something in 3D.

Using the geom3d, plottools, and plots packages we decided to make a gingerbread house.

To make the base of the house we decided to use 2 cubes, as these would give us additional lines and segments for the icing on the house.

point(p__1,[2,3,2]):
point(p__2,[3,3,2]):
cube(c1,p__1,2):
cube(c2,p__2,2):
base:=draw([c1,c2],color=tan);

Using the same cubes but changing the style to be wireframe and point we made some icing lines and decorations for the gingerbread house.

base_decor1:=draw([c1,c2],style=wireframe,thickness=3,color=red,transparency=0.2):
base_decor2:=draw([c1,c2],style=wireframe,thickness=10,color=green,linestyle=dot):
base_decor3:=draw([c1,c2],style=point,thickness=2,color="Silver",symbol=sphere):
base_decor:=display(base_decor1,base_decor2,base_decor3);

To create the roof we found the vertices of the cubes and used those to find the top corners of the base.

v1:=vertices(c1):
v2:=vertices(c2):
pc1:=seq(point(pc1||i,v1[i]),i=1..nops(v1)):
pc2:=seq(point(pc2||i,v2[i]),i=1..nops(v2)):
topCorners:=[pc1[5],pc1[6],pc2[1],pc2[2]]:
d1:=draw(topCorners):

Using these top corners we found the midpoints (where the peak of the roof would be) and added the roof height to the coordinates.

midpoint(lc1,topCorners[1],topCorners[2]):
detail(lc1);

point(cc1,[-(2*sqrt(3))/3 + 2, (2*sqrt(3))/3 + 3+1, 2]):
d3:=draw(cc1):

midpoint(lc2,topCorners[3],topCorners[4]):
detail(lc2);

point(cc2,[(2*sqrt(3))/3 + 3, (2*sqrt(3))/3 + 3+1, 2]):
d4:=draw(cc2):

With the midpoints and vertices at the front and rear of the house we made two triangles for the attic of the gingerbread house.

triangle(tf,[topCorners[1],topCorners[2],cc1]):
front:=draw(tf,color=brown):

triangle(tb,[topCorners[3],topCorners[4],cc2]):
back:=draw(tb,color=tan):

Using these same points again we made more triangles to be the roof.

triangle(trl,[cc1,cc2,pc1[5]]):
triangle(trh,[pc2[2],pc1[6],cc1]):
triangle(tll,[cc1,cc2,pc2[2]]):
triangle(tlh,[pc2[1],pc1[5],cc2]):
roof:=draw([trl,trh,tll,tlh],color="Chocolate");

Our gingerbread house now had four walls, a roof, and icing, but no door. Creating the door was as easy as making a parallelepiped, but what is a door without more icing?

door:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="DarkRed"):
door_decor1:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Gold",style=line):
door_decor2:=display(plottools:-parallelepiped([1,0,0],[0,1.2,0],[0,0,0.8],[0.8,1.9,1.6]),color="Silver", style=line,linestyle=dot,thickness=5):
door_decor:=display(door_decor1,door_decor2):

Now having a door we could have left it like this, but what better way to decorate a gingerbread house than with candy canes? Naturally, if we were going to have one candy cane we were going to have lots of candy canes. To facilitate this we made a candy cane procedure.

candy_pole:=proc(c:=[0,0,0], {segR:=0.1}, {segH:=0.1}, {segn:=7}, {tilt_theta:=0}, {theta:=0}, {arch:=true}, {flip:=false})
local cane1,cane2,cane_s,cane_c,cane0,cane,i,cl,cd,ch, cane_a,tmp,cane_ac,cane_a1,cane00,cane01,cane02,cane_a1s,tmp2,cane_a2s:
uses plots,geom3d:
cl:=c[1]:
cd:=c[2]:
ch:=c[3]:
cane1:=plottools:-cylinder([cd, ch, cl], segR, segH,style=surface):

cane2:=display(plottools:-rotate(cane1,Pi/2,[[cd,ch,cl],[cd+1,ch,cl]])):
cane_s:=[cane2,seq(display(plottools:-translate(cane2,0,segH*i,0)),i=1..segn-1)]:
cane_c:=seq(ifelse(type(i,odd),red,white),i=1..segn):

cane0:=display(cane_s,color=[cane_c]):

if arch then

cane_a:=plottools:-translate(cane2,0,segH*segn-segH/2,0):
tmp:=i->plottools:-rotate(cane_a,i*Pi/24, [ [cd,ch+segH*segn-segH/2,cl+segR*2] , [cd+1,ch+segH*segn-segH/2,cl+segR*2] ] ):

cane_ac:=seq(ifelse(type(i,odd),red,white),i=1..24):

                cane_a1s:=seq(plottools:-translate(tmp(i),0,segH*i/12,segR*i/4),i=1..12):

tmp2:=i->plottools:-rotate(cane_a1s[12],i*Pi/24,[[cd,ch+segH*segn-0.05,cl+segR*2],[cd+1,ch+segH*segn-0.05,cl+segR*2]]):

cane_a2s:=seq(plottools:-translate(tmp2(i),0,-segH*i/500,segR*i/4),i=1..12):
cane_a1:=display(cane_a1s,cane_a2s,color=[cane_ac]):
cane00:=display(cane0,cane_a1);

                if flip then

cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane02:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):
cane:=plottools:-reflect(cane01,[[cd,ch,cl],[cd,ch+1,cl]]):

                else

cane01:=plottools:-rotate(cane00,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):
cane:=plottools:-rotate(cane01,theta,[[cd,ch,cl],[cd,ch+1,cl]]):

                end if:

                return cane:

else

                cane:=plottools:-rotate(cane0,tilt_theta,[[cd,ch,cl],[cd+1,ch,cl]]):

                return cane:

end if:

end proc:

With this procedure we decided to add candy canes to the front, back, and sides of the gingerbread house. In addition we added two candy poles.

Candy Canes in front of the house:

cane1:=candy_pole([1.2,0,2],segn=9,arch=false):
cane2:=candy_pole([2.8,0,2],segn=9,arch=false):
cane3:=candy_pole([2.7,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7):
cane4:=candy_pole([1.3,0.8,3.3],segn=9,segR=0.05,tilt_theta=-Pi/7,flip=true):
front_canes:=display(cane1,cane2,cane3,cane4):

Candy Canes at the back of the house:

caneb3:=candy_pole([1.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3,flip=true):
caneb4:=candy_pole([2.5,4.2,2.5],segn=15,segR=0.05,tilt_theta=-Pi/3):}
back_canes:=display(caneb3,caneb4):

Candy Canes at the left of the house:

canel1:=candy_pole([0.8,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel2:=candy_pole([0.8,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
canel3:=candy_pole([0.8,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
left_canes:=display(canel1,canel2,canel3):

Candy Canes at the right of the house:

caner1:=candy_pole([3.2,1.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner2:=candy_pole([3.2,2.5,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
caner3:=candy_pole([3.2,4,2.5],segn=15,segR=0.05,tilt_theta=-Pi/7,theta=Pi/2):
right_canes:=display(caner1,caner2,caner3):

canes:=display(front_canes,back_canes,right_canes,left_canes):

With these canes in place all that was left was to create the ground and display our Gingerbread House.

ground:=display(plottools:-parallelepiped([5,0,0],[0,0.5,0],[0,0,4],[0,1.35,0]),color="DarkGreen"):

display([door,door_decor,d1,base,base_decor,d3,d4,front,back,roof,ground,canes],orientation=[-100,0,95]);

You can download the full worksheet creating the gingerbread house below:

Geometry_Gingerbread.mw

I rename text file as mws when I click it , it show a few button and then need to extra click maple input and then need to click enter in order to run.

 

how to run directly when I open it with maple?

For a spring hanging vertically from a fixed point, suppose the spring constant, k, is a function of the distance from the fixed point to the other (lowest) end of the spring (for example; the diameter of the spring's coils changes along the length of the spring) .

What ODE reflecting this situation will yield solutions for the harmonic motion of the spring after it is stretched from its equilibrium position?

In Maple 2019, I'm using the "applyrule" function to write a simple routine for contracting vector indices, following the Einstein summation convention (repeated indices are summed).

Input:

applyrule(
  vec(a::symbol, i::symbol) * vec(b::symbol, i::symbol) = dotproduct(a,b),
  vec(a,k) * vec(b,k)
);

Output:

dotproduct(a, b)

So far it works as expected. Now I add an "uncontracted" vector, and the code seems to become unpredictable. First, let me show a case in which the code still works:

Input:

applyrule(
  vec(a::symbol, i::symbol) * vec(b::symbol, i::symbol) = dotproduct(a,b),
  vec(u,k) * vec(u,i) * vec(c,k)
);

Output:

dotproduct(c, u)*vec(u, i)

As expected, contraction has been done on the repeated index "k", but vec(u,i) was left alone. However, the above code fails if I simply change the variable name "u" to "a":

Input:

applyrule(
  vec(a::symbol, i::symbol) * vec(b::symbol, i::symbol) = dotproduct(a,b),
  vec(a,k) * vec(a,i) * vec(c,k)
);

Output:

vec(a, k)*vec(a, i)*vec(c, k)

Apparently, the rule was not applied because I used "a:symbol" in the transformation rule. But I thought "a::symbol" should be considered a wildcard that represents any symbol, including "a" itself?

Depending on the exact input, this bug sometimes shows up, sometimes not, but the above examples are verified to be reproducible. A simple workaround is always avoiding the use of the same variable, but this seems to be hack. Is there a proper solution?

How can add a PNG within a text section of a Maple Worksheet without having the image appear with a black background?

Does Maple have an alpha channel or transparency setting that must be toggled for this to work?

Maple 2019
macOS 10.14.6

I am added pictures from the clipboard via drag+drop.

(Yes, I know that I can use JPEG without this problem and that is NOT my question).

--
JJW

1 2 3 4 5 6 7 Last Page 3 of 1616