Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Plot the first 20 Fibonacci numbers.

I have this so far..

restart;

nums := [seq(i, i = 1 .. 20)]*with(combinat, fibonacci);

fibnums;

 

  here my loop; after  8 iteration maple couldnt solve the equations and give me this error .
Is there any method to garentee that fsolve could work intire the 1000 iteration 
 

 
 
 

Download exp_new_for_alpha_more_than_22.mw
 

with(LinearAlgebra):

f[1] := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(n, 1/R), sum(x[i], i = 1 .. n)), VectorCalculus:-`-`(sum(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`+`(2, a[i]), x[i]), exp(VectorCalculus:-`*`(R, x[i]))), 1/VectorCalculus:-`+`(VectorCalculus:-`+`(exp(VectorCalculus:-`*`(R, x[i])), -1), Q)), i = 1 .. n))):

f[2] := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(m, 1/S), sum(y[j], j = 1 .. m)), VectorCalculus:-`-`(sum(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`+`(2, b[j]), y[j]), exp(VectorCalculus:-`*`(y[j], S))), 1/VectorCalculus:-`+`(VectorCalculus:-`+`(exp(VectorCalculus:-`*`(y[j], S)), -1), Q)), j = 1 .. m))):

f[3] := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(n, m), sum(a[i], i = 1 .. n)), sum(b[j], j = 1 .. m)), 1/Q), VectorCalculus:-`-`(sum(VectorCalculus:-`*`(VectorCalculus:-`+`(2, a[i]), 1/VectorCalculus:-`+`(VectorCalculus:-`+`(exp(VectorCalculus:-`*`(R, x[i])), -1), Q)), i = 1 .. n))), VectorCalculus:-`-`(sum(VectorCalculus:-`*`(VectorCalculus:-`+`(2, b[j]), 1/VectorCalculus:-`+`(VectorCalculus:-`+`(exp(VectorCalculus:-`*`(y[j], S)), -1), Q)), j = 1 .. m))):

NULL

E1[1] := 0.5e-1:

E2[1] := 0.5e-1:

E3[1] := 0.5e-1:

n := 45:

n := 45:

a := [seq(0, i = 1 .. 21), 2, 2, 1, seq(0, i = 1 .. 21)]:

NULL

K := 1000:

for so from 0 to K do W := GenerateUniform(n, 0, 1); for iii to n do vv[iii] := W[iii]^(1/(iii+sum(a[jjj], jjj = n-iii+1 .. n))) end do; for sss to n do uu[sss] := 1-product(vv[n-jjj+1], jjj = 1 .. sss); x[sss] := fsolve(1-3/(exp(.3*t)-(1-3)) = uu[sss], t = 0 .. infinity) end do; U := GenerateUniform(m, 0, 1); for ii to m do v[ii] := U[ii]^(1/(ii+sum(b[jj], jj = m-ii+1 .. m))) end do; for ss to m do u[ss] := 1-product(v[m-jj+1], jj = 1 .. ss); y[ss] := fsolve(1-3/(exp(.1*t)-(1-3)) = u[ss], t = 0 .. infinity) end do; c := describe[quartile[1]]([seq(x[i], i = 1 .. n)]); cc := describe[quartile[3]]([seq(x[i], i = 1 .. n)]); L := describe[quartile[1]]([seq(y[i], i = 1 .. m)]); LL := describe[quartile[3]]([seq(y[i], i = 1 .. m)]); R[1] := fsolve(9*exp(R*c)-exp(R*cc) = 8, R = 0 .. infinity); S[1] := fsolve(9*exp(S*L)-exp(S*LL) = 8, S = 0 .. infinity); Q[1] := 3*(exp(R[1]*c)-1+(exp(S[1]*L)-1))*(1/2); for h to 40 while `and`(`and`(`and`(`and`(`and`(abs(E1[h]) > 0.5e-3, abs(E2[h]) > 0.5e-3), abs(E3[h]) > 0.5e-3), Q[h] > 2), S[h] > 0), R[h] > 0) do Q[h+1] := fsolve(eval(f[3], {R = R[h], S = S[h]}) = 0, Q = 2 .. infinity); R[h+1] := fsolve(eval(f[1], Q = Q[h+1]) = 0, R = 0 .. infinity); S[h+1] := fsolve(eval(f[2], Q = Q[h+1]) = 0, S = 0 .. infinity); KK := Matrix([[R[h]], [S[h]], [Q[h]]]); E1[h+1] := abs(R[h+1]-R[h]); E2[h+1] := abs(S[h+1]-S[h]); E3[h+1] := abs(Q[h+1]-Q[h]) end do; A[so] := Determinant(KK[1]); B[so] := Determinant(KK[2]); C[so] := Determinant(KK[3]); P[so] := simplify(int(A[so]*C[so]^2*exp(A[so]*x)/((exp(A[so]*x)-1+C[so])^2*(exp(B[so]*x)-1+C[so])), x = 0 .. infinity, numeric)) end do

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 2.251942600

 

cc := 6.413093396

 

L := 8.631577783

 

LL := 25.39584518

 

R[1] := .4287243564

 

S[1] := .1043333848

 

Q[1] := 4.630481096

 

A[0] := .4247642181

 

B[0] := .1149899971

 

C[0] := 6.627593396

 

P[0] := .8815279215

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 2.918917328

 

cc := 5.547621812

 

L := 3.857225847

 

LL := 21.10240063

 

R[1] := .8018219086

 

S[1] := 0.5213484487e-1

 

Q[1] := 14.41300577

 

A[1] := .3666457947

 

B[1] := .1191082759

 

C[1] := 3.847329446

 

P[1] := .8226338823

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 2.442365249

 

cc := 7.394009487

 

L := 4.713824874

 

LL := 24.79260797

 

R[1] := .3468711931

 

S[1] := 0.4792653690e-1

 

Q[1] := 2.379817029

 

A[2] := .2337020019

 

B[2] := 0.7824619488e-1

 

C[2] := 2.252708122

 

P[2] := .7880876611

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 1.950620121

 

cc := 7.490968154

 

L := 7.989340649

 

LL := 22.40840798

 

R[1] := .2570696142

 

S[1] := .1248268277

 

Q[1] := 3.543022180

 

A[3] := .3254617069

 

B[3] := .1177911768

 

C[3] := 4.708933240

 

P[3] := .8124474245

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 1.973241013

 

cc := 7.005418646

 

L := 6.495611086

 

LL := 22.94839275

 

R[1] := .3034319432

 

S[1] := 0.9318350072e-1

 

Q[1] := 2.477406387

 

A[4] := .3446953632

 

B[4] := .1065224704

 

C[4] := 4.241185270

 

P[4] := .8370643415

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 1.839457984

 

cc := 7.186959772

 

L := 6.911480924

 

LL := 24.15316459

 

R[1] := .2619901249

 

S[1] := 0.8971740871e-1

 

Q[1] := 2.217385534

 

A[5] := .2889717346

 

B[5] := 0.8838227764e-1

 

C[5] := 2.965514897

 

P[5] := .8196572233

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 2.075842156

 

cc := 6.451509594

 

L := 7.355551514

 

LL := 22.57154486

 

R[1] := .3857437868

 

S[1] := .1118795995

 

Q[1] := 3.756557664

 

A[6] := .3672067772

 

B[6] := .1169243938

 

C[6] := 4.269406267

 

P[6] := .8320277948

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

c := 2.052084434

 

cc := 5.954773664

 

L := 7.287571569

 

LL := 19.13650694

 

R[1] := .4519986760

 

S[1] := .1574582015

 

Q[1] := 5.517824640

 

A[7] := .3834726657

 

B[7] := .1300598692

 

C[7] := 4.443377611

 

P[7] := .8222904412

 

W := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

U := Vector(4, {(1) = ` 1 .. 45 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*C_order})

 

1.288903514

 

6.337860209

 

6.623173031

 

20.57453160

 

.2114575385

 

.1210220497

 

2.313450170

 

Error, (in fsolve) Q is in the equation, and is not solved for

 

a := [seq(A[i], i = 1 .. 1000)]:

for i to 1000 do aa_[i] := `if`(0 < P[i] and P[i] < 1, a[i], 0); bb_[i] := `if`(0 < P[i] and P[i] < 1, b[i], 0); cc_[i] := `if`(0 < P[i] and P[i] < 1, c[i], 0); gg_[i] := `if`(0 < P[i] and P[i] < 1, p[i], 0) end do:

NULL

Tau := [seq(aa_[i], i = 1 .. 1000)]:

rr := [seq(`if`(Tau[i] = 0, NULL, i), i = 1 .. 1000)]:

r := Tau[rr]:

1000

 

1000

 

1000

 

1000

(1)

lambda[1] := Mean([seq(r[i], i = 1 .. nops(r))]); lambda[2] := Mean([seq(s[i], i = 1 .. nops(s))]); alpha := Mean([seq(q[i], i = 1 .. nops(q))]); Pro := Mean([seq(w[i], i = 1 .. nops(w))]); Bi_ := .647737-Pro; ME_ := Bi_^2

Error, (in Statistics:-Mean) unable to evaluate `if`(0 < P[8] and P[8] < 1, a[i], 0) to floating-point

 

Error, (in Statistics:-Mean) unable to evaluate `if`(0 < P[8] and P[8] < 1, b[i], 0) to floating-point

 

Error, (in Statistics:-Mean) unable to evaluate `if`(0 < P[8] and P[8] < 1, c[i], 0) to floating-point

 

Error, (in Statistics:-Mean) unable to evaluate `if`(0 < P[8] and P[8] < 1, p[i], 0) to floating-point

 

.647737-Pro

 

(.647737-Pro)^2

(2)

NULL


 

Download exp_new_for_alpha_more_than_22.mw

 

I am calling a function (GTS2) multiple times with varying inputs, using the curry function, and i want to record how long/how much RAM the function takes with each input, and put those in seperate matrices that i can plot later
 

Sols3 := proc (H::algebraic, F::(list(algebraic)), i::posint, j::posint) options operator, arrow; GTS2(H, F, i, j) end proc;
n, m := 5, 4;
M=Matrix(n, m, curry(Sols3, H, F))


You can find all the functions required in this worksheet. The curried call to this function is in section 4.

MHD_cchf_2.mw
 

NULL

NULL

NULL

NULL

w := .572433:

NULL

for j to nops(N, m) do sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x(f(eta)*(diff(diff(f(eta), eta), eta))-(m[j]*m[j])*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[j], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); plots[odeplot](sol1, color = red); plots[odeplot](sol1, [eta, theta(eta)], color = K[j], linestyle = L[j]); fplt[j] := plots[odeplot](sol1, [eta, f(eta)], color = K[j], axes = boxed, linestyle = L[j]); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = box, linestyle = L[j]) end do; plots:-display([seq(fplt[j], j = 1 .. nops(N, m))]); plots:-display([seq(tplt[j], j = 1 .. nops(N, m))])

Error, invalid input: nops expects 1 argument, but received 2

 

Error, invalid input: nops expects 1 argument, but received 2

 

Error, invalid input: nops expects 1 argument, but received 2

 

``

``


 

Download MHD_cchf_2.mw

 

Respected sir, I try to plot graphs using two parameters once. But it showing the error as

Error, invalid input: nops expects 1 argument, but received 2
Error, invalid input: nops expects 1 argument, but received 2
Error, invalid input: nops expects 1 argument, but received 2

can anybody do help in this regard?

I have a problem writing a program for the numerical solution of nonlinear volterra integral equation using the method of reproducing kernel space. I have my algorithm as well as the program I tried to write, though they are full of error messages. Please could anyone give me a clue on how to go about my challenges. The algorithm is as follows:

Step 1. Fix 𝑎 ≤ 𝑥 and 𝑡 ≤ 𝑏.
If 𝑡 ≤ 𝑥, set 𝑅𝑥(𝑡) = 1 − 𝑎 + 𝑡.
Else set 𝑅𝑥(𝑡) = 1 − 𝑎 + 𝑥.
Step 2. For 𝑖 = 1, 2, . . . , 𝑚 set 𝑥i = (𝑖 − 1)/(𝑚 − 1).

Set 𝜓i(𝑥) = 𝐿t𝑅𝑥(𝑡)|𝑡=𝑥i .
Step 3. Set 𝑢0(𝑥1) = 𝑢(𝑥1).
Step 4. For 𝑖 = 1, 2, . . . , 𝑚 set 𝛾ij = [𝜓-1]ij.
Step 5. 𝑛 = 1.
Step 6. Set Sn = Σ𝑛
𝑘=1 𝛾nk𝑢k-1(𝑥k).
Step 7. Set 𝑢n(𝑥) = Σ𝑛
𝑖=1 Si𝜓i(𝑥).
Step 8. If 𝑛 < 𝑚then set 𝑛 = 𝑛 + 1 and go to step 6.
Else stop.

how can i plot outside of an sphere? for example x^2+y^2+z^2>1 ? tnx for help

So I have this system of equations with which I am not sure if the result is the same or not using "series" and "limit" or what is going on here.

I hope it is clear what I mean.


 

restart; with(MathematicalFunctions); Assume(k__2H2O > 0, `k__HA+OH` > 0, `k__A+H2O` > 0, `k__H3O+OH` > 0, `k__HA+H2O` > 0, `k__H3O+A` > 0, HA__0 > 0, H2O > 0); sys := k__2H2O*H2O^2+`k__A+H2O`*H2O*(HA__0-HA)-(H3O*`k__H3O+OH`+HA*`k__HA+OH`)*OH = 0, k__2H2O*H2O^2+`k__HA+H2O`*H2O*HA-(`k__H3O+A`*(HA__0-HA)+`k__H3O+OH`*OH)*H3O = 0, (H2O*`k__HA+H2O`+OH*`k__HA+OH`)*HA-(H2O*`k__A+H2O`+H3O*`k__H3O+A`)*(HA__0-HA) = 0; sys := `~`[simplify]([eval(eval(sys, HA = HA__0+OH-H3O), HA__0 = x__HA0*H2O)]); sol := solve(sys, [OH, H3O]); sol := sol[1]; OH__sol := simplify(rhs(sol[1])); H3O__sol := simplify(rhs(sol[2])); simplify(OH__sol*H3O__sol); OHH3O := simplify(limit(%, `k__HA+OH` = 0)); series(OHH3O, x__HA0 = 0, 2); collect(convert(%, polynom), x__HA0, simplify, factor); r1 := limit(%, x__HA0 = 0); r2 := radnormal(limit(OHH3O, x__HA0 = 0)); simplify(r1-r2)

[`&Intersect`, `&Minus`, `&Union`, Assume, Coulditbe, Evalf, Get, Is, SearchFunction, Sequences, Series]

 

{H2O::(RealRange(Open(0), infinity))}, {HA__0::(RealRange(Open(0), infinity))}, {k__2H2O::(RealRange(Open(0), infinity))}, {`k__A+H2O`::(RealRange(Open(0), infinity))}, {`k__H3O+A`::(RealRange(Open(0), infinity))}, {`k__H3O+OH`::(RealRange(Open(0), infinity))}, {`k__HA+H2O`::(RealRange(Open(0), infinity))}, {`k__HA+OH`::(RealRange(Open(0), infinity))}

 

k__2H2O*H2O^2+`k__A+H2O`*H2O*(HA__0-HA)-(H3O*`k__H3O+OH`+HA*`k__HA+OH`)*OH = 0, k__2H2O*H2O^2+`k__HA+H2O`*H2O*HA-(`k__H3O+A`*(HA__0-HA)+`k__H3O+OH`*OH)*H3O = 0, (H2O*`k__HA+H2O`+OH*`k__HA+OH`)*HA-(H2O*`k__A+H2O`+H3O*`k__H3O+A`)*(HA__0-HA) = 0

 

[-OH^2*`k__HA+OH`+((-x__HA0*`k__HA+OH`-`k__A+H2O`)*H2O+H3O*(`k__HA+OH`-`k__H3O+OH`))*OH+k__2H2O*H2O^2+`k__A+H2O`*H2O*H3O = 0, (x__HA0*`k__HA+H2O`+k__2H2O)*H2O^2+`k__HA+H2O`*(OH-H3O)*H2O+(-`k__H3O+A`*H3O+OH*(`k__H3O+A`-`k__H3O+OH`))*H3O = 0, H2O^2*x__HA0*`k__HA+H2O`+((x__HA0*`k__HA+OH`+`k__A+H2O`+`k__HA+H2O`)*OH-H3O*(`k__A+H2O`+`k__HA+H2O`))*H2O+(OH-H3O)*(H3O*`k__H3O+A`+OH*`k__HA+OH`) = 0]

 

-RootOf(-x__HA0*`k__A+H2O`^2*`k__HA+H2O`+k__2H2O^2*`k__H3O+A`-k__2H2O*`k__A+H2O`^2-k__2H2O*`k__A+H2O`*`k__HA+H2O`+(2*x__HA0*`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`-k__2H2O*`k__A+H2O`*`k__H3O+A`+k__2H2O*`k__A+H2O`*`k__H3O+OH`+k__2H2O*`k__H3O+OH`*`k__HA+H2O`)*_Z+(-x__HA0*`k__H3O+OH`^2*`k__HA+H2O`-k__2H2O*`k__H3O+A`*`k__H3O+OH`+`k__A+H2O`^2*`k__H3O+OH`+`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`)*_Z^2+(`k__A+H2O`*`k__H3O+A`*`k__H3O+OH`-`k__A+H2O`*`k__H3O+OH`^2-`k__H3O+OH`^2*`k__HA+H2O`)*_Z^3)*H2O^2*(-`k__A+H2O`*RootOf(-x__HA0*`k__A+H2O`^2*`k__HA+H2O`+k__2H2O^2*`k__H3O+A`-k__2H2O*`k__A+H2O`^2-k__2H2O*`k__A+H2O`*`k__HA+H2O`+(2*x__HA0*`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`-k__2H2O*`k__A+H2O`*`k__H3O+A`+k__2H2O*`k__A+H2O`*`k__H3O+OH`+k__2H2O*`k__H3O+OH`*`k__HA+H2O`)*_Z+(-x__HA0*`k__H3O+OH`^2*`k__HA+H2O`-k__2H2O*`k__H3O+A`*`k__H3O+OH`+`k__A+H2O`^2*`k__H3O+OH`+`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`)*_Z^2+(`k__A+H2O`*`k__H3O+A`*`k__H3O+OH`-`k__A+H2O`*`k__H3O+OH`^2-`k__H3O+OH`^2*`k__HA+H2O`)*_Z^3)+k__2H2O)/(-`k__H3O+OH`*RootOf(-x__HA0*`k__A+H2O`^2*`k__HA+H2O`+k__2H2O^2*`k__H3O+A`-k__2H2O*`k__A+H2O`^2-k__2H2O*`k__A+H2O`*`k__HA+H2O`+(2*x__HA0*`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`-k__2H2O*`k__A+H2O`*`k__H3O+A`+k__2H2O*`k__A+H2O`*`k__H3O+OH`+k__2H2O*`k__H3O+OH`*`k__HA+H2O`)*_Z+(-x__HA0*`k__H3O+OH`^2*`k__HA+H2O`-k__2H2O*`k__H3O+A`*`k__H3O+OH`+`k__A+H2O`^2*`k__H3O+OH`+`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`)*_Z^2+(`k__A+H2O`*`k__H3O+A`*`k__H3O+OH`-`k__A+H2O`*`k__H3O+OH`^2-`k__H3O+OH`^2*`k__HA+H2O`)*_Z^3)+`k__A+H2O`)

 

-(k__2H2O*`k__H3O+A`^2-2*`k__A+H2O`^2*`k__H3O+A`+`k__A+H2O`^2*`k__H3O+OH`-2*`k__A+H2O`*`k__H3O+A`*`k__HA+H2O`+2*`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`+`k__H3O+OH`*`k__HA+H2O`^2)*`k__A+H2O`*`k__HA+H2O`*H2O^2*x__HA0/((`k__A+H2O`*`k__H3O+A`-`k__A+H2O`*`k__H3O+OH`-`k__H3O+OH`*`k__HA+H2O`)*(k__2H2O*`k__H3O+A`^2-`k__A+H2O`^2*`k__H3O+OH`-2*`k__A+H2O`*`k__H3O+OH`*`k__HA+H2O`-`k__H3O+OH`*`k__HA+H2O`^2))-(k__2H2O*`k__H3O+A`-`k__A+H2O`^2-`k__A+H2O`*`k__HA+H2O`)*H2O^2*(`k__A+H2O`+`k__HA+H2O`)/(`k__H3O+A`*(`k__A+H2O`*`k__H3O+A`-`k__A+H2O`*`k__H3O+OH`-`k__H3O+OH`*`k__HA+H2O`))

 

-(k__2H2O*`k__H3O+A`-`k__A+H2O`^2-`k__A+H2O`*`k__HA+H2O`)*H2O^2*(`k__A+H2O`+`k__HA+H2O`)/(`k__H3O+A`*(`k__A+H2O`*`k__H3O+A`-`k__A+H2O`*`k__H3O+OH`-`k__H3O+OH`*`k__HA+H2O`))

 

k__2H2O*H2O^2/`k__H3O+OH`

 

-`k__A+H2O`*(-(`k__A+H2O`+`k__HA+H2O`)^2*`k__H3O+OH`+k__2H2O*`k__H3O+A`^2)*H2O^2/(`k__H3O+OH`*`k__H3O+A`*((-`k__A+H2O`-`k__HA+H2O`)*`k__H3O+OH`+`k__A+H2O`*`k__H3O+A`))

(1)

``


 

Download Mapleprimes_-_Ionproduct.mw

restart;
N:=4;alpha:=5*3.14/180;r:=10;Ha:=5;H:=1;
dsolve(diff(f(x),x,x,x));
Rf:=diff(f[m-1](x),x,x,x)+2*alpha*r*sum*(f[m-1-n](x)*diff(f[n](x),x),n=0..m-1)
+(4-Ha)*(alpha)^2*diff(f[m-1](x),x);
dsolve(diff(f[m](x),x,x,x)-CHI[m]*(diff(f[m-1](x),x,x,x))=h*H*Rf,f[m](x));
f[0](x):=1-x^2;
for m from 1 by 1 to N do
CHI[m]:='if'(m>1,1,0);
f[m](x):=int(int(int(CHI[m]*(diff(f[m-1](x),x,x,x))+h*H(diff(f[m-1](x),x,x,x))
+2*h*H*alpha*r*(sum(f[m-1-n](x)*(diff(f[n](x),x)),n=0..m-1))+4*h*H*alpha^2*
(diff(f[m-1](x),x))-h*H*alpha^2*(diff(f[m-1](x),x))*Ha,x),x)+_C1*x,x)+_C2*x+_C3;
s1:=evalf(subs(x=0,f[m](x)))=0;
s2:=evalf(subs(x=0,diff(f[m](x),x)))=0;
s1:=evalf(subs(x=1,f[m](x)))=0;
s:={s1,s2,s3}:
f[m](x):=simplify(subs(solve(s,{_C1,_C2,_C3}),f[m](x)));
end do;
f(x):=sum(f[1](x),1=0..N);
hh:=evalf(subs(x=1,diff(f(x),x))):
plot(hh,h=-1.5..-0.2);
A(x):=subs(h=-0.9,f(x));
plot(A(x),x=0..1);

A parameterization of the function i am studying this morning produced what seems to be not single valued on the domain i choose,

 


plot(floor((x+1)^2/x^2)-(x+1)^2, x = -10 .. 10, coords = logarithmic);

plot(floor((x+1)^2/x^2)-(x+1)^2, x = -10 .. 10, coords = logcosh);


 

but the cartesian is fine:


Dear Users!

I am facing problem to compare the coefficient of x^i*y^j for i, j =1..,Equations. Please my effort and fix the problem.

H1 := 3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta;

Equation := 12;

for i from 0 to Equation do;

for j from 0 to Equation do;

C[i, j] := coeff(H1, x^i*y^j) = 0;

end do;

end do;

I got this error
Error, invalid input: coeff received 1, which is not valid for its 2nd argument, x
 

Dear Users!

Hope you would be fine. I want to write an expression in sigma notation which control ny n (any constant >0);
for n =1 expression expand as

E[1]+1

for n =2 expression expand as
E[1]*E[2]*a[12]+E[1]+E[2]+1;

for n =3 expression expand as

E[1]*E[2]*E[3]*a[123]+E[1]*E[2]*a[12]+E[1]*E[3]*a[13]+E[2]*E[3]*a[23]+E[1]+E[2]+E[3]+1;

for n =4 expression expand as

E[1]*E[2]*E[3]*E[4]*c[1234]+E[1]*E[2]*E[3]*a[123]+E[1]*E[2]*E[4]*a[124]+E[1]*E[3]*E[4]*a[134]+E[2]*E[3]*E[4]*a[234]+E[1]*E[2]*a[12]+E[1]*E[3]*a[13]+E[1]*E[4]*a[14]+E[2]*E[3]*a[23]+E[2]*E[4]*a[24]+E[3]*E[4]*a[34]+E[1]+E[2]+E[3]+E[4]+1;

and so on.

I am waiting your kind respons. Thanks

Hello,

how to calculate the laplace transform for the following equations?

L1:=laplace(psi1(t)*(diff(z1(t), t)), t, s):
L2:=laplace((diff(psi1(t), t))^2, t, s):

 

I can't final an equivalent to Mathematica's Flatten for sets. I know Maple has ListTools:-Flatten for lists.   

For example, given set r:={a,{b,c},d,{e,f,{g,h}}}; How to convert it to  {a,b,c,d,e,f,g,h}; 

does one have to convert each set and all the inner sets to lists, then apply ListTools:-Flatten to the result? How to map convert(z,list) for all levels?

     map(z->convert(z,list),r);

does not work, since it only maps at top level, giving {[a], [d], [b, c], [e, f, {g, h}]}

So doing

   ListTools:-Flatten(convert(map(z->convert(z,list),r),list));

Gives [a, d, b, c, e, f, {g, h}] 

 

     

Hey there, I'm trying to count how many letter arrangements are possible by using the algorithm below (for Maple TA). It's a bit crude but the console tells me countcharacteroccurences second argument must be a string, but it works for the earlier letters. Can someone please give me a bit of guidance?

 

$temp = maple("
randomize();
with(MathML):
with(StringTools):
with(combinat):

rintS := rand(1..27);
word := ARITHMETIC,ALGORITHM,ASYMPTOTE,AVERAGE,CARTESIAN,CALCULUS,COEFFICIENT,COORDINATE,NUMERATOR,
DENOMINATOR,DIFFERENTIATE,DERIVATIVE,DIAMETER,DYNAMICS,EXTRAPOLATION,FACTORIALS,GEOMETRIC,
HYPOTENUSE,INTEGRATION,IRRATIONAL,INVERSE,ITERATION,POLYNOMIAL,COMBINATIONS,PERMUTATIONS,POLYGON;

disp := word[rintS()];
n := length(disp);

n1 := CountCharacterOccurrences(disp,A);
n2 := CountCharacterOccurrences(disp,B);
n3 := CountCharacterOccurrences(disp,C);
n4 := CountCharacterOccurrences(disp,D);
n5 := CountCharacterOccurrences(disp,E);
n6 := CountCharacterOccurrences(disp,F);
n7 := CountCharacterOccurrences(disp,G);
n8 := CountCharacterOccurrences(disp,H);
n9 := CountCharacterOccurrences(disp,I);
a1 := CountCharacterOccurrences(disp,J);
a2 := CountCharacterOccurrences(disp,K);
a3 := CountCharacterOccurrences(disp,L);
a4 := CountCharacterOccurrences(disp,M);
a5 := CountCharacterOccurrences(disp,N);
a6 := CountCharacterOccurrences(disp,O);
a7 := CountCharacterOccurrences(disp,P);
a8 := CountCharacterOccurrences(disp,Q);
a9 := CountCharacterOccurrences(disp,R);
b1 := CountCharacterOccurrences(disp,S);
b2 := CountCharacterOccurrences(disp,T);
b3 := CountCharacterOccurrences(disp,U);
b4 := CountCharacterOccurrences(disp,V);
b5 := CountCharacterOccurrences(disp,W);
b6 := CountCharacterOccurrences(disp,X);
b7 := CountCharacterOccurrences(disp,Y);
b8 := CountCharacterOccurrences(disp,Z);

z1 := n1!*n2!*n3!*n4!*n5!*n6!*n7!*n8!*n9!;
z2 := a1!*a2!*a3!*a4!*a5!*a6!*a7!*a8!*a9!;
z3 := b1!*b2!*b3!*b4!*b5!*b6!*b7!*b8!;
ans := n!/(z1*z2*z3);

Export(disp),convert(ans,string),convert(z1,string),convert(z2,string),convert(z3,string);
");

$ans = switch(1,$temp);
$disp = switch(0,$temp);

First 784 785 786 787 788 789 790 Last Page 786 of 2217