Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

The Perimeter Institute for Theoretical Physics (PI) is a place where bold ideas flourish. It brings together great minds in a shared effort to achieve scientific breakthroughs that will transform our future. PI is an independent research center in foundational theoretical physics.

One of the key mission objectives of Perimeter is to provide scientific training and educational outreach activities to the general public. Maplesoft is proud to be part of this endeavor, as PI’s Educational Outreach Champion. Maplesoft’s contributions support Perimeter’s Teacher Network training activities, core educational resources, development of online course material, support of events such as the EinsteinPlus workshop for high school teachers, the International Summer School for Young Physicists (ISSYP), and other initiatives.
 

The annual International Summer School for Young Physicists (ISSYP) is a two-week camp that brings together 40 exceptional physics-minded students from high schools across the globe to PI. The program covers many different topics in physics such as quantum mechanics, special relativity, general relativity, and cosmology. Each year students receive a complimentary copy of Maple, and use the product to practice and strengthen their math skills. The program receives an average of three-hundred applications from students in grades eleven and twelve from around the world. Competition is intense, and students who are chosen for the program are extremely bright and advanced for their age; however there is some variation in their level of math and physics knowledge. . Students are asked to review a “math primer” document to prepare them with the background needed for the program.The ISSYP program now uses Möbius, Maplesoft’s online courseware platform to administer this primer. With Möbius, PI has moved from a pdf document primer to fully online material, which has motivated more students to complete the material and be more engaged in their courses. The interactivity and engagement that technology provides has made the summer program more productive and dynamic.

EinsteinPlus is a one-week intensive workshop for Canadian and international high school teachers that focuses on modern physics, including quantum physics, special relativity, and cosmology. EinsteinPlus also provides unique opportunities to learn some of the latest developments in physics from expert researchers at the forefront of their fields. Maplesoft proudly supports this workshop by giving teachers access to and training in Maple.

 

Perimeter Institute also organizes a lively program of seminars, regularly exposing researchers and students to current ideas in the wider theoretical physics community. The talks provide content outside of, but related to, core disciplines.  Recently Maplesoft’s own physics expert Dr. Edgardo Cheb-Terrab conducted a lecture and training session at PI on Computer Algebra for Theoretical Physics.

Dr. Edgardo Cheb-Terrab is the force behind the algorithms and Maple libraries of the ODE and PDE symbolic solvers, the MathematicalFunctions package (an expert system in special functions) and the Physics package, among other things.  

In his talk at PI, the Physics project at Maplesoft was presented and the resulting Physics package was illustrated through simple problems in classical field theory, quantum mechanics and general relativity, and through tackling the computations of some recent Physical Review papers in those areas.   In addition there was a hands-on workshop where attendees were offered four choices of activity:  follow the mini-course; explore items of the worksheet of the morning presentation; or bring their own problems so that Dr. Cheb-Terrab could guide them on how to tackle it using the Physics package and Maple in general.

As a company that strives to continuously improve student learning, and empower instructors and researchers with the tools necessary to compete in an ever changing and demanding educational environment, Maplesoft’s partnership with the Perimeter Institute allows us to do just that. We take great pride and joy in bringing our technology to outreach programs for students and teachers, making these opportunities a more productive and dynamic experience for all.

 

 I want to learn about maple software. How to additte any text in maple work sheet? Kindly guide me in such a cases.

 

Regarded Nadeem Abbas (PhD scholar Mathematics PK)

My question is within the worksheet.

assignation.mw

I must be missing something in my Fourier integral.  My understanding is that the sinc function is the transform of a square wave.  In the link below I am getting something slightly different.  I have the parameter tau to define relative to the period, T, to vary the width aspect ratio of the wave,  If tau=T I do get the sinc function.

What am I missing or is what I have correct?

Sq_wave_Fourier_transform.mw

Hi all,

I am stuck in a question. Perhaps somebody can help me. I have to find the values for a, b, c and d such that the expansion of y in powers of x, does not contain the term of x^p for p=3,4,5,6. 

I defined y:

restart:
y:=[(1+a*x+b*x^2)/(1+c*x+d*x^2)]*ln(sinh(x)^2 + cosh(x)^2);

 

But now it became terrible. I tried: series(ln(sinh(x)^2 + cosh(x)^2), x=0, 10). I think I am not right. Can somebody please help me?

  how can I find equation discribing elliptic intersections and use lagrange to show the higest and lowest value ?    g 

I am trying to solve laplaces eqn in maple, and i cannot see an error in my code, however when i run it it returns me nothing. No error, not solution. just nothing.

 

pde := (diff(u(x, y), x, x))+diff(u(x, y), y, y) = 0;

bc[1]:= D[2](u)(x,0) = 0;
bc[2]:= (u)(x,1) = x^2-x;
bc[3]:= (u)(0,y)=0;
bc[4]:= (u)(1,y)=0;

pdsolve({pde, bc[1], bc[2],bc[3],bc[4]}, HINT= X(x)*Y(y));

 

what is going wrong?

Hello!

I am about to draw the rectangle pulse response in Maple. I am new so I am not sure how to start. I did try Google and found some massive functions, and since I am still at the basic level I assume there is something I am missing out on.

What I have:

  1. An interval
  2. A small delta
  3. y(t) = e^-tθ(t) and RC = 1

I did find this: https://www.maplesoft.com/support/help/maple/view.aspx?path=DynamicSystems%2FImpulseResponsePlot

That I got to work for me and the graph is shown. But this TransferFunction is unknown for me. Is there any way to convert my y(t) = e^-tθ(t) into a TransferFunction?

How can i solve this nonlinear equation using adomian decomposition method in maple? 

utt −uxx +u^2 = 6xt(x^2 −t^2)+x^6t^6

 

Hi all,

How can I solve this Integral? 

I do want to learn how could I solve numerically the attached integral. As you can see through the file, there is written one method, however, it is not able to solve the integral.

 
 

Download Integral.mwIntegral.mw
 

Download Integral.mwIntegral.mw

 

 

I'm having this

2+2;
Typesetting:-mn("4"), [4]

everytime I try a calculation. Could someone explain me what is this typesetting thing, and how can it be prevented? I haven't used Maple for a while and I cannot recall having seen it before. Thank you

In Maple 2017 using print in a variable produces the line b:=().  d:="hello" is as it should

In Maple 2016 using the print in a variable produces a blank line where b:=() appears in 2017

In the context of homework, there are some calculations that I do through Maple, and others that I do mostly by hand, and just show my work with Maple's engine that is great at rendering special mathematical formats (like matrices, for example).

I would like to show something like that:

 

It's pretty easy to make the matrices, right now my line looks like this:

 

But I would like to refrain for executing the "+" operator and the multiplication by x6 and x7, to have the output like in the first picture. If I disable all execution and take the statement as plain text, then obviously I will not get the correctly rendered matrices.

Is there a way, like an escape character, to prevent specific operations from being executed in one line in particular?


 

لا شيء

-------------------------------------------------- -------------------------------------------------- -------------------------------------------------- -------------------------

إعادة بدء

مع (LinearAlgebra)

مع (orthopoly)

مع (طالب)

لا شيء

لا شيء

لا شيء

لا شيء

سيل (ألفا): = 2؛  سيل (بيتا): = 1؛  ألفا: = 1.5؛  بيتا: = .5

2

 

1

 

1.5

 

0.5

(1)

n: = 8؛  m: = 8

8

 

8

(2)

 

لا شيء

x [3]: = .611423302089630؛  x [4]: ​​= 1.09446605083631؛  x [5]: = 1.99636816302962؛  x [6]: = 3.38757178455234؛  x [7]: = 5.41873370919121؛  x [8]: = 8.49143699030089

،611423302089630

 

+1.09446605083631

 

1.99636816302962

 

3.38757178455234

 

5.41873370919121

 

8.49143699030089

(3)

# 1 / حساب مصفوفة (A). (طريقة الجمع)

A := array(1 .. n, 1 .. m); for j to m do A[1, j] := evalf(subs(x = 0, L(j-1, 2*x-1))) end do; for j to m do A[2, j] := evalf(subs(x = 0, diff(L(j-1, 2*x-1), x))) end do; for i from 3 to n do for j to m do A[i, j] := evalf(subs(x = x[i], fracdiff(L(j-1, 2*x-1), x, alpha, method = direct))+subs(x = x[i], fracdiff(L(j-1, 2*x-1), x, beta, method = direct))+subs(x = x[i], diff(L(j-1, 2*x-1), x))+subs(x = x[i], L(j-1, 2*x-1))) end do end do

print(`A=`, A)

`A=`, A

(4)

A := convert(A, Matrix)

A := Matrix(8, 8, {(1, 1) = 1., (1, 2) = 2., (1, 3) = 3.500000000, (1, 4) = 5.666666667, (1, 5) = 8.708333333, (1, 6) = 12.88333333, (1, 7) = 18.50972222, (1, 8) = 25.97658730, (2, 1) = 0., (2, 2) = -2., (2, 3) = -6., (2, 4) = -13., (2, 5) = -24.33333333, (2, 6) = -41.75000000, (2, 7) = -67.51666667, (2, 8) = -104.5361111, (3, 1) = 1., (3, 2) = -2.987486314, (3, 3) = -3.301220288, (3, 4) = .5119939327, (3, 5) = 9.171314221, (3, 6) = 23.72035697, (3, 7) = 45.59773916, (3, 8) = 76.72165628, (4, 1) = 1., (4, 2) = -4.549878909, (4, 3) = -1.208865530, (4, 4) = 6.408882482, (4, 5) = 16.03540544, (4, 6) = 27.10075251, (4, 7) = 40.26736031, (4, 8) = 57.11215315, (5, 1) = 1., (5, 2) = -7.181375466, (5, 3) = 6.777193107, (5, 4) = 12.19170970, (5, 5) = 9.600555508, (5, 6) = 7.084730200, (5, 7) = 11.13249218, (5, 8) = 24.60731420, (6, 1) = 1., (6, 2) = -10.92878792, (6, 3) = 28.28352183, (6, 4) = -10.19173665, (6, 5) = -20.04576479, (6, 6) = 9.17677094, (6, 7) = 39.97816692, (6, 8) = 49.07345342, (7, 1) = 1., (7, 2) = -16.09078867, (7, 3) = 78.08969329, (7, 4) = -166.5158779, (7, 5) = 129.0586058, (7, 6) = 104.8307190, (7, 7) = -104.838425, (7, 8) = -111.0119440, (8, 1) = 1., (8, 2) = -23.55908364, (8, 3) = 192.6052140, (8, 4) = -856.8131732, (8, 5) = 2255.610395, (8, 6) = -3256.154493, (8, 7) = 1577.05254, (8, 8) = 2063.443568})

(5)

NULL

# ------------------------------------------------- --------------------------
# 2 / حساب مصفوفة (ب) من قبل أدومين بوليس لمصطلح غير الخطية.

"G(y):=(e)^(y)"

proc (y) options operator, arrow; exp(y) end proc

(6)

"g(x):=evalf(((4*sqrt(x))/(sqrt(Pi)))+(8/(3))*((x^(3/(2)))/(sqrt(Pi)))+2*x+x^(2)+(e)^(x^(2)))"

proc (x) options operator, arrow; evalf(4*sqrt(x)/sqrt(Pi)+(8/3)*x^(3/2)/sqrt(Pi)+2*x+x^2+exp(x^2)) end proc

(7)

#Find أدومين بولي:

for k from 0 to n-1 do AP[k] := evalf(subs(lambda = 0, (diff(G(sum(y[t]*lambda^t, t = 0 .. k)), [`$`(lambda, k)]))/factorial(k))) end do

exp(y[0])

 

y[1]*exp(y[0])

 

y[2]*exp(y[0])+.5000000000*y[1]^2*exp(y[0])

 

y[3]*exp(y[0])+y[2]*y[1]*exp(y[0])+.1666666667*y[1]^3*exp(y[0])

 

y[4]*exp(y[0])+y[3]*y[1]*exp(y[0])+.5000000000*y[2]^2*exp(y[0])+.5000000000*y[2]*y[1]^2*exp(y[0])+0.4166666667e-1*y[1]^4*exp(y[0])

 

y[5]*exp(y[0])+y[4]*y[1]*exp(y[0])+y[3]*y[2]*exp(y[0])+.5000000000*y[3]*y[1]^2*exp(y[0])+.5000000000*y[2]^2*y[1]*exp(y[0])+.1666666667*y[2]*y[1]^3*exp(y[0])+0.8333333333e-2*y[1]^5*exp(y[0])

 

y[6]*exp(y[0])+y[5]*y[1]*exp(y[0])+y[4]*y[2]*exp(y[0])+.5000000000*y[4]*y[1]^2*exp(y[0])+.5000000000*y[3]^2*exp(y[0])+y[3]*y[2]*y[1]*exp(y[0])+.1666666667*y[3]*y[1]^3*exp(y[0])+.1666666667*y[2]^3*exp(y[0])+.2500000000*y[2]^2*y[1]^2*exp(y[0])+0.4166666667e-1*y[2]*y[1]^4*exp(y[0])+0.1388888889e-2*y[1]^6*exp(y[0])

 

y[7]*exp(y[0])+.5000000000*y[3]*y[2]*y[1]^2*exp(y[0])+.5000000000*y[5]*y[1]^2*exp(y[0])+y[5]*y[2]*exp(y[0])+y[6]*y[1]*exp(y[0])+y[4]*y[3]*exp(y[0])+.5000000000*y[3]^2*y[1]*exp(y[0])+.1666666667*y[2]^3*y[1]*exp(y[0])+0.1984126984e-3*y[1]^7*exp(y[0])+y[4]*y[2]*y[1]*exp(y[0])+0.8333333333e-2*y[2]*y[1]^5*exp(y[0])+0.8333333333e-1*y[2]^2*y[1]^3*exp(y[0])+0.4166666667e-1*y[3]*y[1]^4*exp(y[0])+.5000000000*y[3]*y[2]^2*exp(y[0])+.1666666667*y[4]*y[1]^3*exp(y[0])

(8)

NULL

#Find a ماتريسز b ^ (k) و C ^ (k): = A ^ (- 1) * b ^ (k)، ثم ايجاد حل تقريبي Y [k]: = سوم (C ^ (k) [i ] * L [i]، i = 1 .. n ):

# 1) البحث ب (0)

b0 := array(1 .. n, 1 .. m-7); for i to 2 do b0[i, 1] := 0 end do; for i from 3 to n do b0[i, 1] := evalf(subs(x = x[i], g(x[i]))) end do

print(`b0=`, b0)

`b0=`, b0

(9)

b0 := convert(b0, Matrix)

b0 := Matrix(8, 1, {(1, 1) = 0, (2, 1) = 0, (3, 1) = 5.533921684, (4, 1) = 10.78339161, (5, 1) = 69.22208674, (6, 1) = 96372.14332, (7, 1) = 0.5649990671e13, (8, 1) = 0.2063418920e32})

(10)

# 2) البحث عن ج (0)

C0 := LinearSolve(A, b0)

C0 := Matrix(8, 1, {(1, 1) = -0.11474558283495975e27, (2, 1) = -0.6041534517526968e26, (3, 1) = 0.28431046341368933e27, (4, 1) = -0.1109483456679843e28, (5, 1) = 0.2601411410469915e28, (6, 1) = -0.34736953613415415e28, (7, 1) = 0.23829217145639085e28, (8, 1) = -0.634449734180237e27}, datatype = float[8])

(11)

for i to n do k0[i] := C0[i, 1] end do

HFloat(-1.1474558283495975e26)

 

HFloat(-6.041534517526968e25)

 

HFloat(2.8431046341368933e26)

 

HFloat(-1.109483456679843e27)

 

HFloat(2.601411410469915e27)

 

HFloat(-3.4736953613415415e27)

 

HFloat(2.3829217145639085e27)

 

HFloat(-6.34449734180237e26)

(12)

# 3) البحث عن y (0)

y[0] := sum(k0[s]*L(s-1, 2*x-1), s = 1 .. 8)

-HFloat (5.083969685801073e25) -HFloat (1.4661238981264424e26) * س + HFloat (1.2387812172594187e26) * (2 * س 1) ^ 2-HFloat (1.9836944590452831e24) * (2 * س 1) ^ 3 HFloat (5.120751558697758 E25) * (2 * س 1) ^ 4 + HFloat (2.0830079097858884e25) * (2 * س 1) ^ 5 HFloat (2.8586478120802086e24) * (2 * س 1) ^ 6 + HFloat (1.2588288376592004e23) * (2 * س 1) ^ 7

(13)

# -------------------------

#Find b (1)

لا شيء

لا شيء

لا شيء

b1: = أري (1 .. n، 1 .. m-7)؛  ل i تو 2 دو b1 [i، 1]: = 0 إند دو؛  من i إلى n n b1 [i، 1]: = سوبس (x = x [i]، أب [0]) إند دو

برينت (`b1 =`، b1)

`b1 =`، b1

(14)

b1: = كونفيرت (b1، ماتريكس)

b1: = مصفوفة (8، 1، {(1، 1) = 0، (2، 1) = 0، (3، 1) = إكس (هفلوات (-1.3446720400287247e26))، (4، 1) = إكس هفلوت (-1.000132892371102e26))، (5، 1) = إكس (هفلوت (-1.7743764624635952e26))، (6، 1) = إكس (هفلوت (9.701444095568667e26))، (7، 1) = إكس 1.9741498268709318e28))، (8، 1) = إكس (هفلوات (4.2920269682087554e30))})

(15)

لا شيء

# 2) البحث ج (1)

لينيرزولف (A، b1)

المصفوفة ([هفلوات (هفلوات (وندفيند))]، [هفلوت (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند) )، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]، [هفلوات (هفلوات (وندفيند))]])

(16)

لا شيء


 

تحميل jam.mw

Hi everybody,

I want to solve numerically an ode and I get this error (undocumented on the maplesoft web site https://www.maplesoft.com/support/help/errors/....)

Error, (in sol) maximum number of event iterations reached (100) at t=2.6610663

I understand where this error can come from but the help pages don't say anything to fix this.
There is some stuff about round-off that could help but I don't understand how to use it.

I would be grateful if you provide me some help.
Thanks in advance


Download ErrorWithDsolve.mw

 

 

First 879 880 881 882 883 884 885 Last Page 881 of 2215