Question: How to plot the approximation graph for the primes staircase

I must feed the not trivial zeros numbers into this aproximation formula ?


Riemann hypothese and staircase of primes













numelems(select(isprime, [seq(1 .. 10000)]))



The prime counting function is approximated by Li(x) and x/ln(x).

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 500, legend = [pi(x), Li(x), x/ln(x)])

The staircase of primes approximated by two functions
Interesting is the video: How i learned to love and fear the Riemann Hypothesis


for n from 1 to 30 do
 if is(n,prime)
     then ps[n]:=plot([[n,y],[n,y+1],[n+1,y+1]]):
     else ps[n]:=plot([[n,y],[n+1,y]]):
 end if ;

plot([PrimeCounting(x)] ,x = 1 .. 35, legend = [pi(x)]):

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 35, legend = [pi(x), Li(x), x/ln(x)])





Prime counting function
What found RIEMANN for the prime counting function in relation to the zeta function after he defined the zeta function?


He found further a function what follows exactly the shape of the prime counting function

Final discovery v. Riemann.  

- step in the omhoog in de priemtelfunctie = log(p) (zie video)


Using the logarithmic primecount function( from Chebyshev) (approximation)
Further  analyse with this Chebyshev approximation formula in relation to the not trivial zero points from Riemann zeta function ( zeros) gives another real function for approximating the primecounting function what uses the non trivial zeros from Riemanns zeta function  in this function:


"(not trivial zeros ) u[k ] = "i*w[k]+v[k]   
Number now all nottrivial zeros in the upperhalfplane from down to bottom,  as u[1], u[2], u[3, () .. ()]

"`ϕ`(x)  := x-ln(2Pi)-1/(2 )ln(1-1/(x^(2))) - (∑)2/(|u[k]|) x^(v[k]) cos(w[k] ln(x)-alpha[k])"


Its only alpha[k] that must be calculated out of the not trivial zeros and i must have a list of  serie of not trivial zeroes from the zeta function. => see Hardy's Z(t) ? from this ..... alpha[k]  can be calculated ?
All not trivial zeros are complex numbers laying on a line ,but  orginating from (0,0) in the complex plane as  vectors to the points    

varphi(x):= x - ln(2*Pi) - 1/2*ln(1 - 1/x^2) - sum(2*x^v[k]*cos(w[k]*ln(x) - alpha[k])/abs(u[k]), k = 1 .. infinity);

x-ln(2*Pi)-(1/2)*ln(1-1/x^2)-(sum(2*x^v[k]*cos(-w[k]*ln(x)+alpha[k])/abs(u[k]), k = 1 .. infinity))


This formula seems to be correct .
Now how to make a plot ?
Hardy's Z(t) function shows the not trivial zeros in the upperhalfplane of the critical strip of the Riemann zeta function  as zeros in this Z(t) real function : derived from a alternating serie ?


Please Wait...