MaplePrimes Questions

The general solution of x2y'' + 3xy' + λy = 0 is (from Example 4 here)

Why does dsolve(x^2*diff(y(x), x, x) + 3*x*diff(y(x), x) + lambda*y(x) = 0) give only the third case instead of the whole solution?

How to find all solutions [xi,yi] to the following system of equations  

x3y=1

y-sin(12x)=0

which satisfies condition 1,2<x<2  

I want to show the animation of the polar equation r=cos(2theta) be plotted from theta=0 to 2pi

Hello,The system of equations is as follows:

I'd like to find all integer solutions in [1,20], when I use isolve ,the results are not good.  Since at least one variable is equal to 0 in evey solution.

{isolve}({a+b+c=a1+b1+c1, a^2+b^2+c^2=(a1)^2+(b1)^2+(c1)^2,a*b*c=2*a1*b1*c1})

 In maple I did not  want to use less efficient for-loop like C programing as following.

#include <math.h>
#include <stdio.h>
void main()
{
    long int a,b,c,d,e,f;
    for(a=1;a<20;a++)
    {
        for(b=1;b<20;b++)
        {
            for(c=1;c<20;c++)
            {
                for(d=1;d<20;d++)
                {
                    for(e=1;e<20;e++)
                    {
                        for(f=1;f<20;f++)
                        {
                            if(a+b+c==d+e+f&&a*a+b*b+c*c==d*d+e*e+f*f&&a*b*c==2*d*e*f)                                             printf("a=%d,b=%d,c=%d,d=%d,e=%d,f=%d\n",a,b,c,d,e,f);
                        }
                    }
                }
            }
        }
    }
}
a=3,b=5,c=16,d=1,e=8,f=15
a=3,b=5,c=16,d=1,e=15,f=8
a=3,b=5,c=16,d=8,e=1,f=15
a=3,b=5,c=16,d=8,e=15,f=1
a=3,b=5,c=16,d=15,e=1,f=8
a=3,b=5,c=16,d=15,e=8,f=1
a=3,b=16,c=5,d=1,e=8,f=15
a=3,b=16,c=5,d=1,e=15,f=8
a=3,b=16,c=5,d=8,e=1,f=15
a=3,b=16,c=5,d=8,e=15,f=1
a=3,b=16,c=5,d=15,e=1,f=8
a=3,b=16,c=5,d=15,e=8,f=1
a=5,b=3,c=16,d=1,e=8,f=15
a=5,b=3,c=16,d=1,e=15,f=8
a=5,b=3,c=16,d=8,e=1,f=15
a=5,b=3,c=16,d=8,e=15,f=1
a=5,b=3,c=16,d=15,e=1,f=8
a=5,b=3,c=16,d=15,e=8,f=1
a=5,b=16,c=3,d=1,e=8,f=15
a=5,b=16,c=3,d=1,e=15,f=8
a=5,b=16,c=3,d=8,e=1,f=15
a=5,b=16,c=3,d=8,e=15,f=1
a=5,b=16,c=3,d=15,e=1,f=8
a=5,b=16,c=3,d=15,e=8,f=1
a=16,b=3,c=5,d=1,e=8,f=15
a=16,b=3,c=5,d=1,e=15,f=8
a=16,b=3,c=5,d=8,e=1,f=15
a=16,b=3,c=5,d=8,e=15,f=1
a=16,b=3,c=5,d=15,e=1,f=8
a=16,b=3,c=5,d=15,e=8,f=1
a=16,b=5,c=3,d=1,e=8,f=15
a=16,b=5,c=3,d=1,e=15,f=8
a=16,b=5,c=3,d=8,e=1,f=15
a=16,b=5,c=3,d=8,e=15,f=1
a=16,b=5,c=3,d=15,e=1,f=8
a=16,b=5,c=3,d=15,e=8,f=1

Does Maple have more good ways to solve that?

Hello

I had to save previous results of a calculation to files as the number of elements is too big for my computer to handle in one go.   Here it is an idea of what I am doing to read the files and perform the calculations.

mainproc:=proc(arg1,arg2,arg3,arg4) ... end proc:

Grid:-Set(mainproc):
Grid:-Set(arg2,arg3,arg4):   #  They don't change ever.

for i from 1 to number_of_files do 
   read(...):  # it reads arg1 from a file
   Grid:-Set(arg1):
   ans:=Grid:-Seq(mainproc(arg1[i],arg2,arg3,arg4),i=1..numelems(arg1))):
   Grid:-Wait():
   save ans, ....:
   unassign('arg1'):
   unassign('ans'):
   gc():  # An attempt
end do:

The actual code works but, for every step in the loop, the memory used by Maple increases by a certain amount that seems to be mostly related to arg1 (as if arg1 is piling up from iteration to iteration). 

I read some of the earlier posts on a similar subject dated 5 to 10 years old.  I wonder if there is something new that can be done to minimize the usage of memory.   

Many thanks

Ed

PS. I am aware of tasksize, numcpus and Threads.   

I have a simple matrix, 11 rows x 3 columns, with header row.  <<

I multiply column 1 and 2 to get <<0.,0.031,0.218,0.657,1.084,1.095,0.654,0.217>>

Now, I just want to add up these elements, but 'sum' doesn't work 'Sum' doesn't work either. Is there a simpel way to do this?
 

m1 := `<|>`(`<,>`("# girls", 0, 1, 2, 3, 4, 5, 6, 7, 8), `<,>`("P(x)", 0.4e-2, 0.31e-1, .109, .219, .271, .219, .109, 0.31e-1, 0.4e-2), `<,>`("x*P(x)", 0, 0, 0, 0, 0, 0, 0, 0, 0))

Matrix(%id = 18446745635438952446)

(1)

m1[2 .. 9, 3] := `~`[`*`](m1[2 .. 9, 1], m1[2 .. 9, 2])

Vector[column](%id = 18446745635417541318)

(2)

"Sum?"

Vector[column](%id = 18446745635493441398)

(3)

"sum?"

Error, (in LinearAlgebra:-Multiply) invalid arguments

 

``


 

Download Untitled_(3).mw

I must do some formula manipulation
 

Classification of conic sections

restart; with(student):

A*x^2+B*y^2+C*x+D*y+E=0;

A*x^2+B*y^2+C*x+D*y+E = 0

(1)

f:= A*x^2+B*y^2+C*x+D*y+E;

A*x^2+B*y^2+C*x+D*y+E

(2)

completesquare(f, x);

A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y+E

(3)

f:= A*x^2+B*y^2+C*x+D*y+E;

A*x^2+B*y^2+C*x+D*y+E

(4)

ans:=Student[Precalculus][CompleteSquare]( (4), [y] );

B*(y+(1/2)*D/B)^2+A*x^2+C*x+E-(1/4)*D^2/B

(5)

ans1:=Student[Precalculus][CompleteSquare]( (4), [x] );

A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y+E

(6)

ans+ans1;

B*(y+(1/2)*D/B)^2+A*x^2+C*x+2*E-(1/4)*D^2/B+A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y

(7)

B*(y + D/(2*B))^2 + A*x^2 + C*x + 2*E - D^2/(4*B) + A*(x + C/(2*A))^2 - C^2/(4*A) + B*y^2 + D*y = 0;

B*(y+(1/2)*D/B)^2+A*x^2+C*x+2*E-(1/4)*D^2/B+A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y = 0

(8)

Now i must  get this form A( )^2 +B( )^2 = M  

 


 

Download vraag_herleiding_conic_sections_formule.mw

 

 

Does this condition happen when the character is too long?

Hello everybody,

i am trying to use PDEchangecoords to transform a system of differential equations from Cartesian coordinates to toroidal coordinates. However, when i use a user defined coordinate transform from toroidal to Cartesian, i don't get the initial equations. Please find attached a minimal working environment.

i would highly appreciate your hints and suggestions!

Thank you

Best regards,

F

question.mw
 

NULL

NULL

NULL

restart; with(DEtools); addcoords(invToroidal, [xi, eta, phi], [sinh(xi)*cos(phi)/(cosh(xi)-cos(eta)), sinh(xi)*sin(phi)/(cosh(xi)-cos(eta)), sin(eta)/(cosh(xi)-cos(eta))]); PDEchangecoords(diff(f(x, y, z), z), [x, y, z], toroidal, [xi, eta, phi]); PDEchangecoords(%, [xi, eta, phi], invToroidal, [x, y, z]); print("i would expect here to get", diff(f(x, y, z), z))

"i would expect here to get", diff(f(x, y, z), z)

(1)

NULL


 

Download question.mw

 

Dear Community,

I would like to have an inverse interpolation with a 2D lookup table in MapleSim. The usual 2D lookup interpolation has u1 column values, and u2 row values, and a corresponding   y   table values, i.e. y = f(u1,u2). Now I would like to go the reverse way. Suppose I know y, and u2, and I would like to get u1. How can I implement this in MapleSim? An additional information is, that the 3D surface represented by the f(u1, u2) function is a smooth, slightly curved, monotonically sloping surface, so to any  y  value a unique pair of u1 and u2 values belong.

 

With my specific data, which are attached in the TestVLP.xlsx file:

 

  • u2 values are: 1st row, cells 2 .. 14
  • u1 values are  1st column, rows 2 .. 11
  • tabulated values are all the rest, i.e. from cell(2,2) .. cell(11,14)

 

Now for my case:

 

  • u2 = 42000.0
  • y   = 94.5614

 

How much is u1? I know the correct answer from elsewhere, it should be something very close to u1 ~ 85. This  y  value is in the rectangle bordered by columns 7 .. 8  and rows 5 .. 6 in the Excel file.

 

So my question is how do I correctly implement this in MapleSim? As visible from the attached TestInverse2DInterpolation.msim file I tried to do it with an Inverse Block Constraints component and a horizontally flipped 2D Lookup Table (VLP) and Constants for y and u2, but upon running MapleSim I get an error message that no solution is found, although the solution is relatively easy and straightforward. May I ask you to have a look at it, what can be the problem here, what do I do wrong? I’m using MapleSim 2019.2.

 

Your kind help is appreciated in advance

best regards

 

Andras

TestInverse2DInterpolation.msim

TestVLP.xlsx

Hello Everyone!

I have one more challenge for you.

How can I find for a Free-Pinned-Pinned-Free (3-span) beam (Picture A below) using the Krylov–Duncan Method (Literature links and references below):

- the matrix of the system?

- the transcendental equation in order to determine the natural frequencies?

- the first three mode shapes?

I tried to do it as you can see from my MAPLE (file below), but I got stuck when I use the command "determinant" and it did not find the transcendental equation.

Krylov_function_free_pinned_pinned_free_beam.mw

 

Picture_A

References:

Krylov–Duncan Method
https://link.springer.com/content/pdf/10.1007%2F978-1-4419-1047-9_14.pdf
 

Krylov–Duncan Functions - page 96

You can find that book using the https://libgen.is/
https://www.amazon.com/Formulas-Structural-Dynamics-Tables-Solutions/dp/0071367128

Hello.

I would like to solve numerically highly nonlinear and cumbersome the second order differential equation. 

Applying the numerical procedure I got an error "Error, (in dsolve) found wrong extra argument(s): range = 0 .. 4*Pi, type = numerical". The similar problem has been described earlier here however I can't realize my problem. 

Below is my code

restart;

A1 := 8*Pi^3*R^2*n(x)^4*m+(2*Pi*sin((1/2)*x)*m*omega0*p+Pi*sin((1/2)*x)*m*omega0+3*Pi^2*(diff(n(x), x, x)))*n(x)^3+(-2*sin((1/2)*x)^2*m^2*omega0^2*p^2+2*cos((1/2)*x)^2*m^2*omega0^2*p^2-2*sin((1/2)*x)^2*m^2*omega0^2*p+2*cos((1/2)*x)^2*m^2*omega0^2*p)*n(x)^2+(-4*(diff(n(x), x, x))*sin((1/2)*x)^2*m^2*omega0^2*p^2-8*sin((1/2)*x)*(diff(n(x), x))*cos((1/2)*x)*m^2*omega0^2*p^2-4*(diff(n(x), x, x))*sin((1/2)*x)^2*m^2*omega0^2*p-8*sin((1/2)*x)*(diff(n(x), x))*cos((1/2)*x)*m^2*omega0^2*p)*n(x)+8*sin((1/2)*x)^2*(diff(n(x), x))^2*m^2*omega0^2*p^2+8*sin((1/2)*x)^2*(diff(n(x), x))^2*m^2*omega0^2*p;

R := 1; m := 1; p := 10; omega0 := 1000;

A2 := A1;

with(plots):
A3 := dsolve({A2, n(0) = n(4*Pi), (D(n))(0) = (D(n))(4*Pi)}, type = numerical, range = 0 .. 4*Pi):

odeplot(A3);


I appreciate for any help and suggestion.

 

Help required to plot the real part only in  multiple plots. i have written some codes  please help me to rectify the errors.Thanks in advance

 

restart:
with(plots):
n:=0.75:Eh:=100:mn:=1:t0:=0.2:
a1:=(mn/t0)^((n-1)/(n))*(tb)^(1/n):a3:=Eh/tb:a4:=(Eh)^2:
U1:=(a1/Eh)*(-1+(a3*r/Eh))^(1/n)*(n*a4/(1+n))*(1/a3-(r/Eh))-a1*(-1+(1/tb))^(1/n)*(n/(n+1)*(tb-1)):
plot([Re(seq(eval(U1,tb=j),j in[0.8,0.9,1.0]))],r=0..1,legend = [tb =0.8, tb=0.9,tb =1.0],  labels = ["z ", "U"], labeldirections = ["horizontal", "vertical"],  linestyle = [solid,dash,dot],color = [black, red,green]);

I want to shade the area where the two polar curves overlap. The first curve is r=2 and the other curve is r=2(1-cos(theta)). How do I do this?

I want to find the surface area of this parametric curve revolving around the x-axis. I was able to plot the 2D rendering but I want to show the plot so that I can see the surface area. I suspect that would be the 3D rendering.

x=cos(t), y=2+sin(t), 0<=t<=2pi, x-axis

First 533 534 535 536 537 538 539 Last Page 535 of 2432