MaplePrimes Questions

Hi All,

I have a problem with regard to partial differential equations. I am using Lagrangian dynamics for a problem. First i have a function First i defined a function with two speeds of angles (first derivatives):

ODE := 5*(diff(theta1(t), t))+diff(theta2(t), t). This gives:

Now this gives an output. Lagrange (just a simple example now) demands that i now derive the obtained function with regard to the first derivative of theta1. In this case, the answer i want is 5. Now, if i give the command: 

diff(ODE, diff(theta1(t),t)), maple says go home. Does anybody know how to solve this? I have been searching for a solution all afternoon.

 

Thnx in advance!

I'm trying to write an algorithm that arranges the columns of an arbitrary 2xn matrix counter-clockwise starting at the point closest to (1,0). For example, when I input the matrix 

Q := Matrix([

       [ -1 ,  0 ,   0 , -1 ]
     , [  0 ,  1 ,  -1 ,  0 ]

]);

into the algorithm, I would like the output to be

R := Matrix([

       [  0 , -1 , -1 ,   0 ]
     , [  1 ,  0 ,  0 ,  -1 ]

]);

Is there any package that could help me with this? 

three equations,

f1=(256*((256*(-24610976415716501050652227*x+256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(29427736469514379027531261659072347+58899562724319710108573382000184640*y-1732944474195510410991057714955859184*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(256*(-308518681989548429992935348850261+41445095210006425938788783390458*y-1638970396838251453451269879637336*z)*(-801790542801929135637671-732048260009923946735424*x+56975701334774517040256*y-187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(5*(-89303793175477833893354121208000+6533090911353242906294143748495*y-32276910383172707359896832089932*z)*(-61468981380127448102256-5328427636421850183140*x+4647710007810227520885*y-13344414478836548348450*z))/((-46366672189358032-18896234711237580*x+3927118781169095*y+14705346416259850*z)^3)-(3*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z)*(19493858980629008651267653094056+93282964805436900100617577630195*y+42271355681070699741325611572830*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(4*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z)*(52830583937680669669892057655944+303023948138837354463602341532495*y+134962043561465977901954677856080*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-((22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z)*(95973949246309465842551069546976+723429769797021053206211106031819*y+317530466286898645427564085427048*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)-(80*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z)*(205429639975670471114284923188348+2095815907391732802212116237430935*y+883539023887333564964405237094400*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(16*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z)*(943164674716649969807523653958385+18130967224506023673179633045358720*y+7486136216172114262568716503454336*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(80*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-179928369646271075844345534739549+3401432279430696137250330740801392*y+12500875943051297916024009205116096*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(80*(-805507884940017483975376678503744+52529278437993151034132605337909*y-620040027953848498781390188900552*z)*(-716026618045942942760*x+243780804476456624597*y-8*(408351630952413337484+89777022692195474597*z)))/((-50159316775994592-36243094308305160*x+4827156544231217*y+52318895858217464*z)^3)+(768*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z)*(16858970779944867265671037333379*y-176*(1546216290476124632111328928258+3134171189636832381705249359145*z)))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(40*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3434616943638241443585000648954199*y+320*(1107265969195848092307625165761+4643932844541992753284837619195*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(12*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z)*(36451820000039413375829754767131*y-8*(66864837166560711793644210325852+35619205657210451197984743698883*z)))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(512*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z)*(12048859085295019197936041733505*y-6*(32519187452933223586671104614156+40471151781636260063426632487709*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)))/125;
f2=(128*((32768*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z))*(98990697209366584150952278657452+920305667567495470446459093752885*x-65799721166407263195366683527104*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(1024*(-10864227594859409007678067839115+566592725765813239786863532667460*x-3214793226869529893757297514562848*z)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(40*(2938923392457131154149055759247753+8383263629566931208848464949723740*x-24821520393182477390523323699174560*z)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(80*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z))*(3017477155357435955713408172820441+3434616943638241443585000648954199*x-6875761229715351344214913955270620*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(2*(1013986939222028224203834326214704+723429769797021053206211106031819*x-1002019231842824621894736024449560*z)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(698833722744934775627393528218146+279848894416310700301852732890585*x-191427609122898840477329914007915*z)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(557016173590538671691101855964863+303023948138837354463602341532495*x-309197308873592242001670976702725*z)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(128*(-57335208466953058729715954197164+96390872682360153583488333868040*x-372364031472286149332017066304111*z)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)-(5*(-5058036108182894712997605343704+13066181822706485812588287496990*x-23584235630998237996607750176151*z)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)-(256*(-35027435322808897803896166913833+101153824679669203594026224000274*x-443348667941077090029000877418626*z)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)-(24*(-23539469566855513950637813409344+36451820000039413375829754767131*x-87577625291530403453057402554096*z)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)-(112*(97743545586690977941666831119873+189463292388600804291605866927808*x-534599264249120709692835475330432*z)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)-(2560*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z))*(-29205293090710790323990469408790736+212589517464418508578145671300087*x+1750806894610755007047140949242022912*z))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(160*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z)*(52529278437993151034132605337909*x-4*(8646336391489439377118003754263+39602745269819371968458588313429*z)))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)))/125;
f3=(128*((-24576*(3839508863935892182987929073642496+36103009879073133562313702394913733*x-87732961555209684260488911369472*y)*(24610976415716501050652227*x-256*(-10153609683556422184100+374519398571124540883*y-4145573659500944095488*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)-(30720*(65108728870058843312625047943313*x-256*(4791937744017588738333042319232+569924119339438478856491194414721*y))*(2304705299858575630109*x-256*(204828849006588248100+19508530860149228990861*y-2445924471668591306496*z)))/((5042560366642267*x-256*(2446745837411900+4901398098088043*y-144207654645973248*z))^3)+(256*(650985307933227267490679218098413+935767027021514282821089562931792*x+12859172907478119575029190058251392*y)*(9439334964924689507817+17499514376929345709248*x+187907876794815451253888*y-21704870055089718153088*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)+(1280*(114748411888321695540849692963124+110442377985916695620550654636800*x+775672512286952418453853865599205*y)*(4157117722725769078952+4534359335248895646832*x+26193979470458655189977*y-2382852476120229696128*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(1600*(100744894915663705876272277122960+74302925512671884052557401907120*x+343788061485767567210745697763531*y)*(1717566388539311579248*x+7025931019459451548321*y+48*(46537098413809906919-8301700878138964680*z)))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+(16*(72249495731635781189477972681776+39691308285862330678445510678381*x+125252403980353077736842003056195*y)*(22670037111266004087968+12461845278544574559640*x+39219302812923818032157*y-46563087562792926056*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(640*(505227745581172894057712966825000+155010006988462124695347547225138*x-39602745269819371968458588313429*y)*(3266813047619306699872+716026618045942942760*x-243780804476456624597*y+718216181537563796776*z))/((50159316775994592+36243094308305160*x-4827156544231217*y-52318895858217464*z)^3)+(2*(356681541401645116923690413208956+126814067043212099223976834718490*x+191427609122898840477329914007915*y)*(9101665097092871812176+3063507166600182944940*x+6945927557350563805665*y+1052001549322007294950*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(8*(301993014170585471859024964195112+134962043561465977901954677856080*x+309197308873592242001670976702725*y)*(39553725461800043367392+17203831108841472538824*x+45483386678520344593037*y+2703260049547565568088*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(128*(4874430224431350455160317539284048+1942615285518540483044478359410032*x-372364031472286149332017066304111*y)*(45619694076424722199344+14936846773318822792976*x-3365788117861218576473*y+10130491989577935272320*z))/((85141430232132048+97951351741329392*x-8855616621991191*y-199920422688690560*z)^3)+((1486971442137244004077030949061728+322769103831727073598968320899320*x-117921178154991189983038750880755*y)*(61468981380127448102256+5328427636421850183140*x-4647710007810227520885*y+13344414478836548348450*z))/((46366672189358032+18896234711237580*x-3927118781169095*y-14705346416259850*z)^3)+(512*(3005184872892536482128059816733656+1654842388128247497540371661628560*x-221674333970538545014500438709313*y)*(61889933231497708820968+30294916915069669525488*x-4484037822343607626207*y+13934625423713945278848*z))/((45070329471431608+130124049256651728*x-5583613021604317*y-387630670566282112*z)^3)+(192*(137644881571986015841084811827840+35619205657210451197984743698883*x-10947203161441300431632175319262*y)*(88457226224862447127008+13504083955712971035976*x-6622138801690554356387*y+19322683651036147287512*z))/((92856945980914656+51329763147513032*x-8586501277743859*y-56199770659759016*z)^3)+(64*(13728575451141247570683309821008705+13111763174706011627610159037098688*x-935548712435961241962462081828256*y)*(801790542801929135637671+732048260009923946735424*x-56975701334774517040256*y+187552638032246240630656*z))/((-3075770275504817+198931044892562752*x+14199788245258112*y-1122852841901814912*z)^3)))/125;

thank you in advance.

RandomCompositions:= proc(n::posint, k::posint)
local
C,
Compositions:= [seq(C-~1, C= combinat:-composition(n+k, k))],
Rand:= rand(1..nops(Compositions))
;
()-> Compositions[Rand()]
end proc:

R:= RandomCompositions(9,6):
n:= 10:
S:= 'R()' $ n;

S := [4, 1, 1, 1, 2, 0], [3, 2, 1, 1, 0, 2], [0, 1, 1, 0, 0, 7], [0, 1, 1, 5, 0, 2], [1, 0, 3, 1, 3, 1],

        [1, 3, 1, 1, 0, 3], [1, 4, 2, 0, 2, 0], [5, 0, 0, 3, 1, 0], [1, 1, 1, 4, 0, 2], [0, 1, 2, 1, 0, 5]

 

[4, 1, 1, 1, 2, 0] , [1, 1, 1, 4, 0, 2]  and [0, 1, 1, 5, 0, 2] , [0, 1, 2, 1, 0, 5]  are same number 

  but different order.

There are two same sequence. I want to  count  as one, and compile statistics the summation, and 

divide by 8.

the result

0=14/8

1=17/8

2=6/8

...

4=2/8

5=2/8

...

 

according to

http://www.maplesoft.com/support/faqs/detail.aspx?sid=32658

But the above does not work in Maple 18, windows: (I use worksheet)

restart;
assume(z>0):
interface(showassumed=0):
z;

Only the other solution works, which is using options->display->turnoff assumed variables tilda.

Why does not the above command work?

I do not like to load a package using with() and then use its commands and functions, since I then lose track knowing from which package a function or command being used in the code came from when I look at the code later on. So I like to write

pkg:-f() or pkg[f]() instead of with(pkg); f()

This seems to work most of the time, except I just found a case where I am forced to do with(pkg) at the top. Here is the example. I'd like to know if there is a workaround where I can avoid with(pkg) in this case as well:

restart;
f:=t->piecewise(t<0,0,t>=0 and t<z,t,t>z,z):
r:=convert(f(t),Heaviside):
r:=inttrans[laplace](r,t,s);


Now since Maple does not know what z is, it could not fully evaluate the result above (I can handle this with assumptions, but this is just an example). So now I replaced z by 0.5, but since laplace is not loaded, it still could not do it:

r:=subs(z=0.5,r);

So now I had to load the package, just to simply the above expression:

with(inttrans);
r;

This all becuase the expression earlier was left with only "laplace" in it, and not "inttrans[laplace]" as I typed. (why this happend, I do not know).

My question is: How would you do the above, without loading the package? I really do not like loading packages as I said, and like to keep the name of the package attached to each function to help me know where each function is coming from.

 

How does one adjust the aspect ratio for Maple plot? I actually searched for aspect ratio for Maple on google and not able to find much of anything. Help does not have such phrase. May be it called something else in Maple? The reason I ask, is that when I change the size of bode plot, the aspect ratio become bad. So I need a way to adjust that. Here is an example

restart:
alias(DS=DynamicSystems):
sys:=DS:-TransferFunction(5*s/(s^2+4*s+25)):
DS:-BodePlot(sys,range=0.1..100);

Now if I do

DS:-BodePlot(sys,range=0.1..100,size=[300,"default"]);

I am finding so many problems with Bodeplot in Maple, but this is for another time. I think it needs much more polishing

Maple 18, windows 7

When I do

restart:
alias(DS=DynamicSystems):
sys:=DS:-TransferFunction(5*s/(s^2+4*s+25)):
DS:-BodePlot(sys,output=dualaxis);

I get nice small plot.  with no outer frame filling the whole window



But if I just do

DS:-BodePlot(sys);

The plot is too large. So I tried the size option, but all what this did is reduce the plot size, but left the outer frame filling the whole window:

DS:-BodePlot(sys,size=[400,300]);

 

Is there a way to get the above plot, but either without the outer frame, or have the outerframe fit correctly around the plots?

Maple 18 on window 7

 

Hi all.

Assume that we have:

where

and assume we  want to construct a special Vector as

and from the above vector construct following matrix

how can we do it?

Best wishes

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

RandomCompositions:= module()
local
Compositions, Rand,
ModuleApply:= proc(n::posint, k::posint)
local C;
Compositions:= [seq(C-~1, C= combinat:-composition(n+k, k))];
Rand:= rand(1..nops(Compositions));
()-> Compositions[Rand()]
end proc
;
end module:
R:= RandomCompositions(8,6):
n:= 3:
S:= 'R()' $ n;
map(lhs=rhs/n, Statistics:-Tally(op~([S])));

[0 = 7/3, 1 = 5/3, 2 = 4/3, 5 = 1/3, 6 = 1/3]

plot([S],x=0..8,style=point);

I have  plot problem .

I want to plot the statistics result,but it runs error.

 

 

Here is one example:

restart;
alias(DS=DynamicSystems):
zeros :=[-1,-2]:
poles :=[0,-4,-6]:
gain  :=5:
sys   :=DS:-TransferFunction(zeros,poles,gain):

now sys above is a transfer function "object". But how would one go about extracting its properties? For example, I'd like to read the actual rational polynomial in s that represents the transfer function, which is embedded inside this oject, but I am not able to find an API to read it. I can only print it to the screen :


DS:-PrintSystem(sys);

But I'd like to assign the  "tf" printed above (the rational polynomial) into a seaprate variable, so I can extract the numerator and denominator if I want to. I have looked and not able to see a way to read this out. I just started learning this package.

Any idea how to look into these system objects? This does nothing:

o:=DS:-PrintSystem(sys);
whattype(o);
o[1];

Using Maple 18. I am looking for a programmable approach, using code. Not a click and point and menu based solution.

 

Hello,

In my model, it seems that I have parameters which are not evaluated.

Indeed, I'm not sure that the parameters defined with relations as you can see in the printscreen are evaluated.

 

One point which helps me to debug my model is to follow the evaluation of the construction of my model with the 3D visualization.

Questions :
1) How can I do to be sure that my parameters are evaluated ?

2) Is it possible to launch the update of the 3D visualization even if I still have some bugs in my model ?

Thank you for help.

Hi All,

I'm a new Maple user and I just have a question about evaluating a formula.

Say that you have a formula y=45*r*t

and you know what "r" is, lets say r=5

What do I do if I want to evaluate this formula for the values t=2 all they way up to t=150.

Is there a simple command that lets me do this?

 

Yours

John.

 



Hello, 

During the simulation of my model, I received this bug:

"cannot resolve function `Main.'Typesetting:-mambiguous'`; there is no function `'Typesetting:-mambiguous'` visible in model `Main`"

Have you a idea of the problem ?

How can I localize my issue ? Is there some options to localize the issue with a debug mode ?

Thanks a lot for your help

 

According to help here  on display, it says "The options parameter can include plot options as described in the plot/option "  and when  I go to the plots/option I see legend there. But when I try to use it, I get an error that plots:-display does not accept the legened option.

I am generating 2 plots, and use display() to show them on one axes. But need to add a legend as well. Is there a correct way to do this? 

restart:
with(DynamicSystems):
with(plots):
sys := TransferFunction(1/(s^2+0.2*s+1)): 
p1:=ResponsePlot(sys, Step(),duration=50,color=red):
p2:=ImpulseResponsePlot(sys,50);
display([p1,p2],axes=boxed, title=`step and impulse reponses`,legend=["step","impulse"]);

Now if I add legend, it fail

display([p1,p2],axes=boxed, title=`step and impulse reponses`,legend=["step","impulse"]);

I am sure I am doing something wrong. How to add legend to display? I can't use plot([...]) since the plots are allready generated by other Maple functions.

 

 

First 1388 1389 1390 1391 1392 1393 1394 Last Page 1390 of 2429