Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Cannot find integration proplem_in_maple.mw

restart

with(LinearAlgebra)

with(orthopoly)

``

with(student)

Digits := 32

32

(1)

interface(rtablesize = 100)

10

(2)

a := 0; b := 1; N := 5; h := (b-a)/N; B[0] := 1; B[1] := x; n := 2; B[2] := x^2+2; alpha := 1/2

0

 

1

 

5

 

1/5

 

1

 

x

 

2

 

x^2+2

 

1/2

(3)

NULL

for j from 3 to N do B[j] := expand(x*B[j-1]-B[j-2]) end do

x^3+x

 

x^4-2

 

x^5-3*x-x^3

(4)

for i from 0 to N do x[i] := h*i+a end do

0

 

1/5

 

2/5

 

3/5

 

4/5

 

1

(5)

y := sum(c[s]*B[s], s = 0 .. N)

c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3)

(6)

yt := subs(x = t, y)

c[0]+c[1]*t+c[2]*(t^2+2)+c[3]*(t^3+t)+c[4]*(t^4-2)+c[5]*(t^5-3*t-t^3)

(7)

k := expand(int(yt*sin(t)*x, t = 0 .. x))

x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x)

(8)

k4 := k*y

(x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))

(9)

f := (8*x^3*(1/3)-2*x^(1/2))*y/GAMMA(1/2)+(1/1260)*x+k4

((8/3)*x^3-2*x^(1/2))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))/Pi^(1/2)+(1/1260)*x+(x*c[0]+22*x*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2-x*cos(x)*c[0]-22*x*cos(x)*c[4]+x*c[1]*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x))*(c[0]+c[1]*x+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))

(10)

"f(x):=((8/3 x^3-2 sqrt(x)) (c[0]+c[1] x+c[2] (x^2+2)+c[3] (x^3+x)+c[4] (x^4-2)+c[5] (x^5-3 x-x^3)))/(sqrt(Pi))+1/1260 x+(x c[0]+22 x c[4]+x c[1] sin(x)-5 x c[3] sin(x)+123 x c[5] sin(x)-x cos(x) c[0]-22 x cos(x) c[4]-c[1] cos(x) x^2-c[2] cos(x) x^3+2 c[2] sin(x) x^2-c[3] cos(x) x^4+3 c[3] sin(x) x^3+5 c[3] cos(x) x^2-c[4] cos(x) x^5+4 c[4] sin(x) x^4+12 c[4] cos(x) x^3-24 c[4] sin(x) x^2-c[5] cos(x) x^6+5 c[5] sin(x) x^5+21 c[5] cos(x) x^4-63 c[5] sin(x) x^3-123 c[5] cos(x) x^2) (c[0]+c[1] x+c[2] (x^2+2)+c[3] (x^3+x)+c[4] (x^4-2)+c[5] (x^5-3 x-x^3))"

proc (x) options operator, arrow; ((8/3)*x^3-2*sqrt(x))*(c[0]+Typesetting:-delayDotProduct(c[1], x, true)+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3))/sqrt(Pi)+Typesetting:-delayDotProduct(1/1260, x, true)+(Typesetting:-delayDotProduct(x, c[0], true)+22*x*c[4]+Typesetting:-delayDotProduct(x, c[1], true)*sin(x)-5*x*c[3]*sin(x)+123*x*c[5]*sin(x)-Typesetting:-delayDotProduct(x, cos(x), true)*c[0]-22*x*cos(x)*c[4]-c[1]*cos(x)*x^2-c[2]*cos(x)*x^3+2*c[2]*sin(x)*x^2-c[3]*cos(x)*x^4+3*c[3]*sin(x)*x^3+5*c[3]*cos(x)*x^2-c[4]*cos(x)*x^5+4*c[4]*sin(x)*x^4+12*c[4]*cos(x)*x^3-24*c[4]*sin(x)*x^2-c[5]*cos(x)*x^6+5*c[5]*sin(x)*x^5+21*c[5]*cos(x)*x^4-63*c[5]*sin(x)*x^3-123*c[5]*cos(x)*x^2)*(c[0]+Typesetting:-delayDotProduct(c[1], x, true)+c[2]*(x^2+2)+c[3]*(x^3+x)+c[4]*(x^4-2)+c[5]*(x^5-3*x-x^3)) end proc

(11)

NULL

"H(f,alpha,x):=Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x)"

proc (f, alpha, x) options operator, arrow; Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x) end proc

(12)

`assuming`([value(%)], [x > 0])

proc (f, alpha, x) options operator, arrow; Int((x-s)^(alpha-1)*f(s)/GAMMA(alpha), s = 0 .. x) end proc

(13)

H(f, alpha, x)

Int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(14)

z := value(%)

int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(15)

`assuming`([value(%)], [x > 0])

int((((8/3)*s^3-2*s^(1/2))*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3))/Pi^(1/2)+(1/1260)*s+(s*c[0]+22*s*c[4]+c[1]*s*sin(s)-5*s*c[3]*sin(s)+123*s*c[5]*sin(s)-s*cos(s)*c[0]-22*s*cos(s)*c[4]-c[1]*cos(s)*s^2-c[2]*cos(s)*s^3+2*c[2]*sin(s)*s^2-c[3]*cos(s)*s^4+3*c[3]*sin(s)*s^3+5*c[3]*cos(s)*s^2-c[4]*cos(s)*s^5+4*c[4]*sin(s)*s^4+12*c[4]*cos(s)*s^3-24*c[4]*sin(s)*s^2-c[5]*cos(s)*s^6+5*c[5]*sin(s)*s^5+21*c[5]*cos(s)*s^4-63*c[5]*sin(s)*s^3-123*c[5]*cos(s)*s^2)*(c[0]+c[1]*s+c[2]*(s^2+2)+c[3]*(s^3+s)+c[4]*(s^4-2)+c[5]*(s^5-3*s-s^3)))/((x-s)^(1/2)*Pi^(1/2)), s = 0 .. x)

(16)

``


Download proplem_in_maple.mw
 

Could anyone give an example how to use the hint option in polynomial solutions in PDEtools in maple?

The dsolve numeric events syntax requires the use of If(a,b,c) rather than the usual if then else syntax. Also, the possible action parts of an event are truly mysterious as are discrete variables. Has anyone plaed around with this much? For example, can the If's be nested? I know I can test that in a toy situation but there are many such questions that arise and I don't want to reinvent the wheel.

Can Maple auto switch input language according to mode of editing?

I would like to:
In 2D-math mode- auto set (after pressing F5 or clicking "math" button) english language
In Text-mode- auto set (after pressing F5 or clicking "text" button) my native language

How Can I set up this option?

Hello,

I obtained a mode shape from a vibration problem.

I want to normalized mode shape for the comparison of responses corresponding to different modes.

How I can normalize the mode shape that provided in the maple file?

The figure corresponds to this mode shape is plotted that is attached.

Thanks

mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw


 

a := Vector(325, {(1) = 0, (2) = 0., (3) = 0., (4) = 0.1e-3, (5) = 0.1e-3, (6) = 0.2e-3, (7) = 0.4e-3, (8) = 0.7e-3, (9) = 0.10e-2, (10) = 0.16e-2, (11) = 0.23e-2, (12) = 0.33e-2, (13) = 0.44e-2, (14) = 0.65e-2, (15) = 0.89e-2, (16) = 0.114e-1, (17) = 0.139e-1, (18) = 0.162e-1, (19) = 0.178e-1, (20) = 0.186e-1, (21) = 0.183e-1, (22) = 0.171e-1, (23) = 0.150e-1, (24) = 0.120e-1, (25) = 0.85e-2, (26) = 0.51e-2, (27) = 0.16e-2, (28) = -0.19e-2, (29) = -0.51e-2, (30) = -0.79e-2, (31) = -0.103e-1, (32) = -0.120e-1, (33) = -0.132e-1, (34) = -0.138e-1, (35) = -0.136e-1, (36) = -0.129e-1, (37) = -0.118e-1, (38) = -0.106e-1, (39) = -0.94e-2, (40) = -0.83e-2, (41) = -0.75e-2, (42) = -0.71e-2, (43) = -0.69e-2, (44) = -0.71e-2, (45) = -0.75e-2, (46) = -0.79e-2, (47) = -0.83e-2, (48) = -0.84e-2, (49) = -0.81e-2, (50) = -0.73e-2, (51) = -0.60e-2, (52) = -0.43e-2, (53) = -0.20e-2, (54) = 0.11e-2, (55) = 0.46e-2, (56) = 0.82e-2, (57) = 0.117e-1, (58) = 0.149e-1, (59) = 0.174e-1, (60) = 0.191e-1, (61) = 0.200e-1, (62) = 0.198e-1, (63) = 0.187e-1, (64) = 0.167e-1, (65) = 0.139e-1, (66) = 0.103e-1, (67) = 0.65e-2, (68) = 0.28e-2, (69) = -0.5e-3, (70) = -0.27e-2, (71) = -0.45e-2, (72) = -0.56e-2, (73) = -0.62e-2, (74) = -0.64e-2, (75) = -0.64e-2, (76) = -0.62e-2, (77) = -0.60e-2, (78) = -0.58e-2, (79) = -0.57e-2, (80) = -0.59e-2, (81) = -0.62e-2, (82) = -0.69e-2, (83) = -0.78e-2, (84) = -0.90e-2, (85) = -0.103e-1, (86) = -0.122e-1, (87) = -0.138e-1, (88) = -0.150e-1, (89) = -0.153e-1, (90) = -0.147e-1, (91) = -0.133e-1, (92) = -0.111e-1, (93) = -0.82e-2, (94) = -0.49e-2, (95) = -0.13e-2, (96) = 0.25e-2, (97) = 0.62e-2, (98) = 0.96e-2, (99) = 0.126e-1, (100) = 0.150e-1, (101) = 0.167e-1, (102) = 0.176e-1, (103) = 0.176e-1, (104) = 0.169e-1, (105) = 0.155e-1, (106) = 0.135e-1, (107) = 0.112e-1, (108) = 0.89e-2, (109) = 0.68e-2, (110) = 0.50e-2, (111) = 0.37e-2, (112) = 0.28e-2, (113) = 0.23e-2, (114) = 0.22e-2, (115) = 0.21e-2, (116) = 0.22e-2, (117) = 0.22e-2, (118) = 0.21e-2, (119) = 0.19e-2, (120) = 0.15e-2, (121) = 0.8e-3, (122) = -0., (123) = -0.11e-2, (124) = -0.25e-2, (125) = -0.40e-2, (126) = -0.68e-2, (127) = -0.97e-2, (128) = -0.127e-1, (129) = -0.154e-1, (130) = -0.175e-1, (131) = -0.189e-1, (132) = -0.193e-1, (133) = -0.187e-1, (134) = -0.171e-1, (135) = -0.146e-1, (136) = -0.113e-1, (137) = -0.76e-2, (138) = -0.42e-2, (139) = -0.9e-3, (140) = 0.23e-2, (141) = 0.52e-2, (142) = 0.76e-2, (143) = 0.96e-2, (144) = 0.110e-1, (145) = 0.118e-1, (146) = 0.121e-1, (147) = 0.118e-1, (148) = 0.110e-1, (149) = 0.100e-1, (150) = 0.91e-2, (151) = 0.84e-2, (152) = 0.78e-2, (153) = 0.75e-2, (154) = 0.76e-2, (155) = 0.79e-2, (156) = 0.85e-2, (157) = 0.92e-2, (158) = 0.98e-2, (159) = 0.103e-1, (160) = 0.103e-1, (161) = 0.98e-2, (162) = 0.88e-2, (163) = 0.72e-2, (164) = 0.51e-2, (165) = 0.24e-2, (166) = -0.15e-2, (167) = -0.57e-2, (168) = -0.99e-2, (169) = -0.137e-1, (170) = -0.164e-1, (171) = -0.184e-1, (172) = -0.196e-1, (173) = -0.197e-1, (174) = -0.189e-1, (175) = -0.171e-1, (176) = -0.146e-1, (177) = -0.115e-1, (178) = -0.81e-2, (179) = -0.47e-2, (180) = -0.16e-2, (181) = 0.8e-3, (182) = 0.24e-2, (183) = 0.34e-2, (184) = 0.40e-2, (185) = 0.43e-2, (186) = 0.43e-2, (187) = 0.42e-2, (188) = 0.41e-2, (189) = 0.41e-2, (190) = 0.43e-2, (191) = 0.47e-2, (192) = 0.53e-2, (193) = 0.62e-2, (194) = 0.76e-2, (195) = 0.92e-2, (196) = 0.109e-1, (197) = 0.127e-1, (198) = 0.146e-1, (199) = 0.160e-1, (200) = 0.166e-1, (201) = 0.162e-1, (202) = 0.149e-1, (203) = 0.128e-1, (204) = 0.99e-2, (205) = 0.65e-2, (206) = 0.28e-2, (207) = -0.10e-2, (208) = -0.47e-2, (209) = -0.82e-2, (210) = -0.112e-1, (211) = -0.137e-1, (212) = -0.154e-1, (213) = -0.164e-1, (214) = -0.166e-1, (215) = -0.159e-1, (216) = -0.147e-1, (217) = -0.129e-1, (218) = -0.110e-1, (219) = -0.90e-2, (220) = -0.73e-2, (221) = -0.59e-2, (222) = -0.49e-2, (223) = -0.44e-2, (224) = -0.41e-2, (225) = -0.41e-2, (226) = -0.42e-2, (227) = -0.43e-2, (228) = -0.43e-2, (229) = -0.41e-2, (230) = -0.36e-2, (231) = -0.29e-2, (232) = -0.18e-2, (233) = -0.3e-3, (234) = 0.16e-2, (235) = 0.38e-2, (236) = 0.62e-2, (237) = 0.88e-2, (238) = 0.121e-1, (239) = 0.151e-1, (240) = 0.175e-1, (241) = 0.192e-1, (242) = 0.198e-1, (243) = 0.194e-1, (244) = 0.181e-1, (245) = 0.159e-1, (246) = 0.122e-1, (247) = 0.80e-2, (248) = 0.34e-2, (249) = -0.9e-3, (250) = -0.41e-2, (251) = -0.68e-2, (252) = -0.87e-2, (253) = -0.98e-2, (254) = -0.103e-1, (255) = -0.103e-1, (256) = -0.98e-2, (257) = -0.92e-2, (258) = -0.86e-2, (259) = -0.80e-2, (260) = -0.76e-2, (261) = -0.75e-2, (262) = -0.77e-2, (263) = -0.82e-2, (264) = -0.89e-2, (265) = -0.98e-2, (266) = -0.109e-1, (267) = -0.117e-1, (268) = -0.121e-1, (269) = -0.119e-1, (270) = -0.111e-1, (271) = -0.96e-2, (272) = -0.74e-2, (273) = -0.46e-2, (274) = -0.7e-3, (275) = 0.36e-2, (276) = 0.80e-2, (277) = 0.121e-1, (278) = 0.150e-1, (279) = 0.173e-1, (280) = 0.188e-1, (281) = 0.193e-1, (282) = 0.189e-1, (283) = 0.176e-1, (284) = 0.155e-1, (285) = 0.128e-1, (286) = 0.98e-2, (287) = 0.67e-2, (288) = 0.38e-2, (289) = 0.15e-2, (290) = -0.1e-3, (291) = -0.12e-2, (292) = -0.18e-2, (293) = -0.21e-2, (294) = -0.22e-2, (295) = -0.22e-2, (296) = -0.21e-2, (297) = -0.22e-2, (298) = -0.24e-2, (299) = -0.27e-2, (300) = -0.33e-2, (301) = -0.42e-2, (302) = -0.54e-2, (303) = -0.68e-2, (304) = -0.85e-2, (305) = -0.103e-1, (306) = -0.130e-1, (307) = -0.154e-1, (308) = -0.170e-1, (309) = -0.177e-1, (310) = -0.173e-1, (311) = -0.160e-1, (312) = -0.138e-1, (313) = -0.108e-1, (314) = -0.75e-2, (315) = -0.38e-2, (316) = -0., (317) = 0.37e-2, (318) = 0.71e-2, (319) = 0.101e-1, (320) = 0.124e-1, (321) = 0.141e-1, (322) = 0.149e-1, (323) = 0.152e-1, (324) = 0.152e-1, (325) = 0.149e-1})

_rtable[18446746442173411926]

(1)

``

t := Vector(325, {(1) = 0, (2) = 0.67e-2, (3) = 0.134e-1, (4) = 0.202e-1, (5) = 0.269e-1, (6) = 0.336e-1, (7) = 0.403e-1, (8) = 0.471e-1, (9) = 0.538e-1, (10) = 0.637e-1, (11) = 0.736e-1, (12) = 0.836e-1, (13) = 0.935e-1, (14) = .1098, (15) = .1261, (16) = .1424, (17) = .1586, (18) = .1764, (19) = .1943, (20) = .2121, (21) = .2299, (22) = .2465, (23) = .2632, (24) = .2798, (25) = .2965, (26) = .3109, (27) = .3253, (28) = .3397, (29) = .3542, (30) = .3686, (31) = .3830, (32) = .3974, (33) = .4118, (34) = .4284, (35) = .4450, (36) = .4615, (37) = .4781, (38) = .4938, (39) = .5095, (40) = .5253, (41) = .5410, (42) = .5567, (43) = .5724, (44) = .5882, (45) = .6039, (46) = .6204, (47) = .6368, (48) = .6533, (49) = .6697, (50) = .6843, (51) = .6989, (52) = .7135, (53) = .7281, (54) = .7448, (55) = .7615, (56) = .7781, (57) = .7948, (58) = .8113, (59) = .8278, (60) = .8442, (61) = .8607, (62) = .8775, (63) = .8943, (64) = .9112, (65) = .9280, (66) = .9468, (67) = .9655, (68) = .9843, (69) = 1.0031, (70) = 1.0190, (71) = 1.0348, (72) = 1.0507, (73) = 1.0665, (74) = 1.0794, (75) = 1.0924, (76) = 1.1053, (77) = 1.1183, (78) = 1.1312, (79) = 1.1442, (80) = 1.1571, (81) = 1.1700, (82) = 1.1842, (83) = 1.1984, (84) = 1.2126, (85) = 1.2268, (86) = 1.2459, (87) = 1.2651, (88) = 1.2842, (89) = 1.3034, (90) = 1.3198, (91) = 1.3362, (92) = 1.3527, (93) = 1.3691, (94) = 1.3844, (95) = 1.3996, (96) = 1.4149, (97) = 1.4302, (98) = 1.4454, (99) = 1.4607, (100) = 1.4760, (101) = 1.4913, (102) = 1.5075, (103) = 1.5238, (104) = 1.5400, (105) = 1.5563, (106) = 1.5733, (107) = 1.5904, (108) = 1.6075, (109) = 1.6246, (110) = 1.6410, (111) = 1.6574, (112) = 1.6739, (113) = 1.6903, (114) = 1.7021, (115) = 1.7140, (116) = 1.7258, (117) = 1.7377, (118) = 1.7495, (119) = 1.7614, (120) = 1.7732, (121) = 1.7851, (122) = 1.7964, (123) = 1.8076, (124) = 1.8189, (125) = 1.8302, (126) = 1.8475, (127) = 1.8649, (128) = 1.8822, (129) = 1.8995, (130) = 1.9168, (131) = 1.9341, (132) = 1.9514, (133) = 1.9687, (134) = 1.9856, (135) = 2.0026, (136) = 2.0195, (137) = 2.0365, (138) = 2.0507, (139) = 2.0649, (140) = 2.0791, (141) = 2.0933, (142) = 2.1075, (143) = 2.1217, (144) = 2.1359, (145) = 2.1501, (146) = 2.1674, (147) = 2.1846, (148) = 2.2018, (149) = 2.2191, (150) = 2.2341, (151) = 2.2492, (152) = 2.2643, (153) = 2.2793, (154) = 2.2949, (155) = 2.3105, (156) = 2.3261, (157) = 2.3417, (158) = 2.3576, (159) = 2.3735, (160) = 2.3895, (161) = 2.4054, (162) = 2.4203, (163) = 2.4353, (164) = 2.4503, (165) = 2.4653, (166) = 2.4839, (167) = 2.5025, (168) = 2.5211, (169) = 2.5397, (170) = 2.5561, (171) = 2.5725, (172) = 2.5888, (173) = 2.6052, (174) = 2.6226, (175) = 2.6399, (176) = 2.6572, (177) = 2.6746, (178) = 2.6930, (179) = 2.7114, (180) = 2.7297, (181) = 2.7481, (182) = 2.7634, (183) = 2.7787, (184) = 2.7940, (185) = 2.8094, (186) = 2.8226, (187) = 2.8358, (188) = 2.8490, (189) = 2.8622, (190) = 2.8755, (191) = 2.8887, (192) = 2.9019, (193) = 2.9151, (194) = 2.9302, (195) = 2.9453, (196) = 2.9604, (197) = 2.9755, (198) = 2.9940, (199) = 3.0126, (200) = 3.0311, (201) = 3.0496, (202) = 3.0659, (203) = 3.0822, (204) = 3.0985, (205) = 3.1149, (206) = 3.1302, (207) = 3.1455, (208) = 3.1609, (209) = 3.1762, (210) = 3.1915, (211) = 3.2069, (212) = 3.2222, (213) = 3.2375, (214) = 3.2545, (215) = 3.2715, (216) = 3.2885, (217) = 3.3055, (218) = 3.3223, (219) = 3.3391, (220) = 3.3560, (221) = 3.3728, (222) = 3.3888, (223) = 3.4047, (224) = 3.4206, (225) = 3.4365, (226) = 3.4494, (227) = 3.4622, (228) = 3.4750, (229) = 3.4879, (230) = 3.5007, (231) = 3.5136, (232) = 3.5264, (233) = 3.5392, (234) = 3.5529, (235) = 3.5667, (236) = 3.5804, (237) = 3.5941, (238) = 3.6116, (239) = 3.6292, (240) = 3.6468, (241) = 3.6644, (242) = 3.6810, (243) = 3.6976, (244) = 3.7143, (245) = 3.7309, (246) = 3.7508, (247) = 3.7707, (248) = 3.7905, (249) = 3.8104, (250) = 3.8273, (251) = 3.8442, (252) = 3.8610, (253) = 3.8779, (254) = 3.8938, (255) = 3.9096, (256) = 3.9255, (257) = 3.9414, (258) = 3.9559, (259) = 3.9705, (260) = 3.9851, (261) = 3.9997, (262) = 4.0149, (263) = 4.0301, (264) = 4.0452, (265) = 4.0604, (266) = 4.0779, (267) = 4.0953, (268) = 4.1128, (269) = 4.1302, (270) = 4.1459, (271) = 4.1615, (272) = 4.1771, (273) = 4.1927, (274) = 4.2114, (275) = 4.2300, (276) = 4.2486, (277) = 4.2673, (278) = 4.2833, (279) = 4.2993, (280) = 4.3153, (281) = 4.3313, (282) = 4.3485, (283) = 4.3657, (284) = 4.3829, (285) = 4.4001, (286) = 4.4182, (287) = 4.4362, (288) = 4.4543, (289) = 4.4724, (290) = 4.4881, (291) = 4.5037, (292) = 4.5194, (293) = 4.5351, (294) = 4.5472, (295) = 4.5593, (296) = 4.5715, (297) = 4.5836, (298) = 4.5957, (299) = 4.6079, (300) = 4.6200, (301) = 4.6321, (302) = 4.6456, (303) = 4.6591, (304) = 4.6726, (305) = 4.6861, (306) = 4.7059, (307) = 4.7256, (308) = 4.7454, (309) = 4.7652, (310) = 4.7819, (311) = 4.7986, (312) = 4.8153, (313) = 4.8320, (314) = 4.8474, (315) = 4.8627, (316) = 4.8781, (317) = 4.8935, (318) = 4.9088, (319) = 4.9242, (320) = 4.9396, (321) = 4.9550, (322) = 4.9662, (323) = 4.9775, (324) = 4.9887, (325) = 5.0000})

_rtable[18446746442112534638]

(2)

``


 

Download mode_shapes.mw

Determine the polynomials P∈R₃ [X] such that P (-1) = - 18 and whose remainders in the Euclidean division by X-1, X-2 and X-3 are equal to 6.

I am trying to calculate the following integra   
r*rr*g1^2*h1^2*f1^2*fh1^2*exp(-2*t)/t

here g1 is a kummerM functin in s, and also h1 is another kummerM function  in ss, and f1 and fh1 are the HeunB functions with complex arguments in r and rr. and t=sqrt((r-rr)^2+(s-ss)^2).I would like to integte over dr drr ds dss

I had difficulty in making my latest post.  It would fail at Submit.

I had success when I saved a draft post.  I was able to edit the draft to submit.

 

Lee

   Dear friends,on the left I created two Tasks named a and aa.However,I do not know how to delete these two Tasks.Then I refer to the help pages below.

The text I marked says I should enter full filename.I do not know the fullfile name of customized Tasks.So does anyone know how to delete them?

 

Using mode with axis we can choose linear or log.  But what if we want some other custom scaled axis?

Seems if we want a y^3 y-axis, we'll have to cube root the data then use plottools to form our own scale.  Unless there's some other way I don't know. 

Images posted on Maple Primes, if too large, are scaled down to match the post size. Is there a way to attach a scroll bar to allow full scale viewing instead?

In the help file the permitted declartions for the second argument of the Escape command from the StringTools package are html,regexp and xml, to not specify one, which as far as I can tell instructs maple to take all characters as plain text with no escape characters.

Is this the complete list of options for the form when using the escape command?

Or is it possible to custom build escape rules?

 

I thought the easiest way to show the world map, a projected flat map into 3d was to use the builtin one and just transform it.  You can zoom into it and rotate it no problem but unforunately it's not as clean as I thought.  Is it possible to have cleaner shading manipulating the Builtin map to 3d?

with(plots):
with(plottools):
with(DataSets):
with(Builtin):
m := WorldMap():
m1 := Display(m)
                                

to3d := transform((x, y) -> [x, y, 0]):
m2 := to3d(m1)
                               

display(m2)

 

 

If a maple command or function are not available on the target language  of the code generation of maple, is it possible to set myself the expected output for such cases so that the Csharp(...)  recognizes the cases and generates the expect code?

for example 

h := proc(x::Array(1 .. 3, 1 .. 3), y::Array(1 .. 3, 1 .. 3)) local z; z := evalm(x &* y); return z[1, 1] + z[2, 2]; end proc;
CSharp(h);

The function names {`&*`, evalm} can not be recognized in the target language

but for the &* it shoud be easy to add a template with the desired C# output. 

Is it possible to add templates in existing languages but not new language definitions?


 

I'm using variable names that have subscripts, not as a table index but literal i.e. R__1 as a unique variable name.  It seems whenever I make assumptions on variables that have subscripts, when I use them the variables that have subscripts are printed twice:

 

Can anyone explain why this happens and how to get around it?

 

Thanks in advance.

First 8 9 10 11 12 13 14 Last Page 10 of 268