Kitonum

21540 Reputation

26 Badges

17 years, 117 days

MaplePrimes Activity


These are answers submitted by Kitonum

deqv := m*v(s)*(diff(v(s), s)) = m*g-k*v(s)^2;
solv := dsolve({deqv, v(0) = v0}, v(s))  assuming m>0, k>0, g>0, v0>0;

       

 

 

eval(x[1,2,1], Sol[2]);

                                                               1

I have assumed that the angle is 35 degrees (by default  in Maple angles in radians). The system has 2 solutions in the range  -Pi<=x<=Pi :

a:=35*Pi/180:
Eq1:=-sin(a)*T1+T2=0:
Eq2:=40-T1*cos(a)=0:
Eq3:=T3*sin(x)-T2=0:
Eq4:=50+cos(x)*T3=0:
Sol:=solve({Eq1,Eq2,Eq3,Eq4}, explicit);  
# Symbolic (exact) answer
evalf(Sol);  # Numerical (approximate) answer


Edit. We can slightly simplify the resulting symbolic answer  Sol  by :

simplify([Sol]);
 

 

 

I made a few corrections in the latter group.

quest1.mw

restart;
f:=y^3+x^2:
M:=maximize(f, x=0..1, y=-1..1);
A:=plot3d(f-M, x = 0 .. 1, y = -1 .. 1, style=surface, color=khaki, filled):
F:=plottools:-transform((x,y,z)->[x, y, z+M]):
plots:-display(F(A),  orientation=[45,75]);

List:=[13,16,16,29,34,33,33,12,22,26,25,25,25,11]:
ListTools[Search](25, List);  
# The position of the first number 25  in the list  List
List:=subsop(%=NULL, List);

                                              11
   [13, 16, 16, 29, 34, 33, 33, 12, 22, 26, 25, 25, 11]
 

Here is another way similar Preben's one, but shorter and without tricky commands as freeze, evalindets and etc.

restart;
sys:={u+v = a , u-v = b};
solve(sys, {u,v});
eval(%, {a=<-2,4>, b=<-3,6>});

                     

 

 


 

The problem is easily reduced to solving a system of four equations with four unknowns:

u:=<u1,u2>:  v:=<v1,v2>:
Eq1:=u+v =~ <-2,4>;  Eq2:=u-v = ~<-3,6>;
solve({Eq1[1], Eq1[2], Eq2[1], Eq2[2]});
eval([u, v], %)[ ];

                     

 

Addition. Here is a version with  Equate  command:

u:=<u1,u2>: v:=<v1,v2>:
Sys:=op~({Equate(u+v,<-2,4>), Equate(u-v,<-3,6>)});
solve(Sys);
u, v:=eval([u,v], %)[ ];


 

This is your error rather than Maple. You have entered a non-linear equation, and Maple only solves (step by step) linear equations. See Instructions below in the window of this application.

 

Addition.  See this application  http://www.universalmathsolver.com/    especially here

http://download.cnet.com/Free-Universal-Algebra-Equation-Solver/3000-2053_4-75211972.html?part=dl-&subj=dl&tag=button

I did not understand that your procedure solveEeaMatrix should be doing.

Here is an implementation of the extended Euclidean algorithm with Maple. The procedure  ExtendedEuclid  returns the greatest common divisor  d  of numbers  a  and  b  and  2 numbers  x  and  y  that  a*x+b*y=d

ExtendedEuclid:=proc(a::nonnegint, b::nonnegint)
local d, x, y, x1, y1, x2, y2, a1, b1, q, r;
if a<b then error "Should be a>=b" fi;
if b=0 then d:=a; x:=1; y:=0; return [d,x,y] fi;
x2:=1; x1:=0; y2:=0; y1:=1; a1:=a; b1:=b;
while b1>0 do
q:=floor(a1/b1); r:=a1-q*b1; x:=x2-q*x1; y:=y2-q*y1;
a1:=b1; b1:=r; x2:=x1; x1:=x; y2:=y1; y1:=y;
od;
d:=a1; x:=x2; y:=y2;
[d,x,y];
end proc:

 

Example of use:

ExtendedEuclid(30,12);

                                                          [6, 1, -2]

 

We see that  30*1 + 12*(-2) = 6

 

If four points lie in the same plane, then such the unique sphere does not exist. This case should be provided for the procedure:

getEq := proc(L::listlist) 
local p, S;
uses geom3d; 
seq(point(p || j, L[j]), j = 1 .. 4);
if AreCoplanar(p1,p2,p3,p4) then return `Not exist` else 
Equation(sphere(S, [p1, p2, p3, p4], [x, y, z])) fi; 
end proc:

 

Example of use:

map(getEq, L);

 

Edit.

If  A  and  B  are 2 points then  t*A+(1-t)*B  ( 0<=t<=1 )  is the segment  AB .

Example:

A:=[1,1]:  B:=[3,2]:
plot([op(t*~A+(1-t)*~B), t=0..1], color=red, thickness=3, view=[0..4, 0..3], scaling=constrained);

                      

Addition.  You can also use  geometry:-segment  command or  plottools:-line  command.

seq(point(M||i, L[i]), i=1..nops(L));
seq(Equation(plane(Q||i, [M||i, n], [x,y,z])), i=1..nops(L));

1. Should be  coordinates  instead of   cordinates .

2. It will be easier to find the intersection of two curves by  solve  command:

solve([x^2+y^2-6600*x-4400*y+15730000=12100, x^2+y^2-6820*x-4840*y+17484500=6400], explicit);

We see that these circles do not intersect.

 

Visualization:

plots:-implicitplot([x^2+y^2-6600*x-4400*y+15730000=12100, x^2+y^2-6820*x-4840*y+17484500=6400], x=3100..3600,y=2000..2500, scaling=constrained, gridrefine=3);

                         

 

 

The procedure  FP  solves your problem for a plane  P . Using  map  command you can solve the problem for the list of several planes.

FP:=proc(P::`=`, var::list, A::list, B::list)
local n1, n2, n, k;
uses LinearAlgebra;
n1:=convert(map2(coeff, lhs(P), var), Vector);
n2:=convert(B-A, Vector);
n:=n1 &x n2;
k:=sort(primpart(n.convert(var-A, Vector)));
k*signum(lcoeff(k)) = 0;
end proc:

 

Examples of use ( L  is your list above):

FP(L[5], [x,y,z], [1,5,3], [-2,-4,3]);

map(FP, L, [x,y,z], [1,5,3], [-2,-4,3]);

 

Addition. The procedure  FP  will not give the correct answer if the plane  P is perpendicular to the vector AB, because in this case, there is no an unique solution. You are free to supplement the procedure for this case.


 

First 168 169 170 171 172 173 174 Last Page 170 of 290