Oliveira

110 Reputation

One Badge

4 years, 39 days

MaplePrimes Activity


These are questions asked by Oliveira


 

with(VectorCalculus)

pde := Laplacian(u(r, t), 'cylindrical'[r, theta, z]) = diff(u(r, t), t)

iv := {u(1, t) = 0, u(4, t) = 0, u(r, 0) = r}

dsol := pdsolve(pde, iv, numeric):-value(output = listprocedure)

sd := rhs(dsol[3])

proc () local tv, xv, solnproc, stype, ndsol, vals; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; Digits := trunc(evalhf(Digits)); solnproc := proc (tv, xv) local INFO, errest, nd, dvars, dary, daryt, daryx, vals, msg, i, j; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; table( [( "soln_procedures" ) = array( 1 .. 1, [( 1 ) = (18446746697122892894)  ] ) ] ) INFO := table( [( "extrabcs" ) = [0], ( "totalwidth" ) = 6, ( "spacevar" ) = r, ( "dependson" ) = [{1}], ( "solmatrix" ) = Matrix(21, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0}, datatype = float[8], order = C_order), ( "matrixproc" ) = proc (v, vp, vpp, t, x, k, h, n, mat) local _s1, _s2, xi; _s1 := 4*h^2; _s2 := -(h^2+k)/(h^2*k); mat[3] := 1; mat[6*n-3] := 1; for xi from 2 to n-1 do mat[6*xi-3] := _s2; mat[6*xi-4] := -(h-2*x[xi])/(_s1*x[xi]); mat[6*xi-2] := (h+2*x[xi])/(_s1*x[xi]) end do end proc, ( "leftwidth" ) = 1, ( "solmat_i1" ) = 0, ( "eqnords" ) = [[2, 1]], ( "allocspace" ) = 21, ( "method" ) = theta, ( "theta" ) = 1/2, ( "solmat_i2" ) = 0, ( "intspace" ) = Matrix(21, 1, {(1, 1) = .0, (2, 1) = .0, (3, 1) = .0, (4, 1) = .0, (5, 1) = .0, (6, 1) = .0, (7, 1) = .0, (8, 1) = .0, (9, 1) = .0, (10, 1) = .0, (11, 1) = .0, (12, 1) = .0, (13, 1) = .0, (14, 1) = .0, (15, 1) = .0, (16, 1) = .0, (17, 1) = .0, (18, 1) = .0, (19, 1) = .0, (20, 1) = .0, (21, 1) = .0}, datatype = float[8], order = C_order), ( "depords" ) = [[2, 1]], ( "rightwidth" ) = 0, ( "depeqn" ) = [1], ( "stages" ) = 1, ( "spacepts" ) = 21, ( "indepvars" ) = [r, t], ( "minspcpoints" ) = 4, ( "startup_only" ) = false, ( "eqndep" ) = [1], ( "depdords" ) = [[[2, 1]]], ( "adjusted" ) = false, ( "norigdepvars" ) = 1, ( "solvec4" ) = 0, ( "explicit" ) = false, ( "solution" ) = Array(1..3, 1..21, 1..1, {(1, 1, 1) = .0, (1, 2, 1) = .0, (1, 3, 1) = .0, (1, 4, 1) = .0, (1, 5, 1) = .0, (1, 6, 1) = .0, (1, 7, 1) = .0, (1, 8, 1) = .0, (1, 9, 1) = .0, (1, 10, 1) = .0, (1, 11, 1) = .0, (1, 12, 1) = .0, (1, 13, 1) = .0, (1, 14, 1) = .0, (1, 15, 1) = .0, (1, 16, 1) = .0, (1, 17, 1) = .0, (1, 18, 1) = .0, (1, 19, 1) = .0, (1, 20, 1) = .0, (1, 21, 1) = .0, (2, 1, 1) = .0, (2, 2, 1) = .0, (2, 3, 1) = .0, (2, 4, 1) = .0, (2, 5, 1) = .0, (2, 6, 1) = .0, (2, 7, 1) = .0, (2, 8, 1) = .0, (2, 9, 1) = .0, (2, 10, 1) = .0, (2, 11, 1) = .0, (2, 12, 1) = .0, (2, 13, 1) = .0, (2, 14, 1) = .0, (2, 15, 1) = .0, (2, 16, 1) = .0, (2, 17, 1) = .0, (2, 18, 1) = .0, (2, 19, 1) = .0, (2, 20, 1) = .0, (2, 21, 1) = .0, (3, 1, 1) = .0, (3, 2, 1) = .0, (3, 3, 1) = .0, (3, 4, 1) = .0, (3, 5, 1) = .0, (3, 6, 1) = .0, (3, 7, 1) = .0, (3, 8, 1) = .0, (3, 9, 1) = .0, (3, 10, 1) = .0, (3, 11, 1) = .0, (3, 12, 1) = .0, (3, 13, 1) = .0, (3, 14, 1) = .0, (3, 15, 1) = .0, (3, 16, 1) = .0, (3, 17, 1) = .0, (3, 18, 1) = .0, (3, 19, 1) = .0, (3, 20, 1) = .0, (3, 21, 1) = .0}, datatype = float[8], order = C_order), ( "pts", r ) = [1, 4], ( "spaceidx" ) = 1, ( "solmat_v" ) = Vector(126, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0, (43) = .0, (44) = .0, (45) = .0, (46) = .0, (47) = .0, (48) = .0, (49) = .0, (50) = .0, (51) = .0, (52) = .0, (53) = .0, (54) = .0, (55) = .0, (56) = .0, (57) = .0, (58) = .0, (59) = .0, (60) = .0, (61) = .0, (62) = .0, (63) = .0, (64) = .0, (65) = .0, (66) = .0, (67) = .0, (68) = .0, (69) = .0, (70) = .0, (71) = .0, (72) = .0, (73) = .0, (74) = .0, (75) = .0, (76) = .0, (77) = .0, (78) = .0, (79) = .0, (80) = .0, (81) = .0, (82) = .0, (83) = .0, (84) = .0, (85) = .0, (86) = .0, (87) = .0, (88) = .0, (89) = .0, (90) = .0, (91) = .0, (92) = .0, (93) = .0, (94) = .0, (95) = .0, (96) = .0, (97) = .0, (98) = .0, (99) = .0, (100) = .0, (101) = .0, (102) = .0, (103) = .0, (104) = .0, (105) = .0, (106) = .0, (107) = .0, (108) = .0, (109) = .0, (110) = .0, (111) = .0, (112) = .0, (113) = .0, (114) = .0, (115) = .0, (116) = .0, (117) = .0, (118) = .0, (119) = .0, (120) = .0, (121) = .0, (122) = .0, (123) = .0, (124) = .0, (125) = .0, (126) = .0}, datatype = float[8], order = C_order, attributes = [source_rtable = (Matrix(21, 6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0}, datatype = float[8], order = C_order))]), ( "maxords" ) = [2, 1], ( "solvec5" ) = 0, ( "fdepvars" ) = [u(r, t)], ( "spacestep" ) = .150000000000000, ( "banded" ) = true, ( "PDEs" ) = [(diff(u(r, t), r)+r*(diff(diff(u(r, t), r), r)))/r-(diff(u(r, t), t))], ( "erroraccum" ) = true, ( "autonomous" ) = true, ( "solmat_ne" ) = 0, ( "inputargs" ) = [(diff(u(r, t), r)+r*(diff(diff(u(r, t), r), r)))/r = diff(u(r, t), t), {u(1, t) = 0, u(4, t) = 0, u(r, 0) = r}], ( "multidep" ) = [false, false], ( "initialized" ) = false, ( "BCS", 1 ) = {[[1, 0, 1], b[1, 0, 1]], [[1, 0, 4], b[1, 0, 4]]}, ( "matrixhf" ) = true, ( "ICS" ) = [r], ( "timeadaptive" ) = false, ( "solspace" ) = Vector(21, {(1) = 1.0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = 4.0}, datatype = float[8]), ( "vectorproc" ) = proc (v, vp, vpp, t, x, k, h, n, vec) local _s1, _s2, _s3, _s4, _s5, _s6, xi; _s3 := -2*k; _s4 := -4*h^2; _s5 := -h*k; _s6 := 4*h^2*k; vec[1] := 0; vec[n] := 0; for xi from 2 to n-1 do _s1 := -vp[xi-1]+vp[xi+1]; _s2 := vp[xi-1]-2*vp[xi]+vp[xi+1]; vec[xi] := (_s2*_s3*x[xi]+_s4*vp[xi]*x[xi]+_s1*_s5)/(_s6*x[xi]) end do end proc, ( "solvec1" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "timeidx" ) = 2, ( "depvars" ) = [u], ( "bandwidth" ) = [1, 2], ( "depshift" ) = [1], ( "soltimes" ) = Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]), ( "timevar" ) = t, ( "solvec2" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "timestep" ) = .150000000000000, ( "spaceadaptive" ) = false, ( "solvec3" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "IBC" ) = b, ( "solmat_is" ) = 0, ( "errorest" ) = false, ( "mixed" ) = false, ( "vectorhf" ) = true, ( "linear" ) = true, ( "t0" ) = 0, ( "periodic" ) = false ] ); if xv = "left" then return INFO["solspace"][1] elif xv = "right" then return INFO["solspace"][INFO["spacepts"]] elif tv = "start" then return INFO["t0"] elif not (type(tv, 'numeric') and type(xv, 'numeric')) then error "non-numeric input" end if; if xv < INFO["solspace"][1] or INFO["solspace"][INFO["spacepts"]] < xv then error "requested %1 value must be in the range %2..%3", INFO["spacevar"], INFO["solspace"][1], INFO["solspace"][INFO["spacepts"]] end if; dary := Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]); daryt := 0; daryx := 0; dvars := []; errest := false; nd := nops(INFO["depvars"]); if dary[nd+1] <> tv then try `pdsolve/numeric/evolve_solution`(INFO, tv) catch: msg := StringTools:-FormatMessage(lastexception[2 .. -1]); if tv < INFO["t0"] then error cat("unable to compute solution for %1<%2:
", msg), INFO["timevar"], INFO["failtime"] else error cat("unable to compute solution for %1>%2:
", msg), INFO["timevar"], INFO["failtime"] end if end try end if; if dary[nd+1] <> tv or dary[nd+2] <> xv then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["solspace"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, dary); if errest then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_t"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryt); `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_x"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryx) end if end if; dary[nd+1] := tv; dary[nd+2] := xv; if dvars = [] then [seq(dary[i], i = 1 .. INFO["norigdepvars"])] else vals := NULL; for i to nops(dvars) do j := eval(dvars[i]); try if errest then vals := vals, evalhf(j(tv, xv, dary, daryt, daryx)) else vals := vals, evalhf(j(tv, xv, dary)) end if catch: userinfo(5, `pdsolve/numeric`, `evalhf failure`); try if errest then vals := vals, j(tv, xv, dary, daryt, daryx) else vals := vals, j(tv, xv, dary) end if catch: vals := vals, undefined end try end try end do; [vals] end if end proc; stype := "2nd"; if nargs = 1 then if args[1] = "left" then return solnproc(0, "left") elif args[1] = "right" then return solnproc(0, "right") elif args[1] = "start" then return solnproc("start", 0) else error "too few arguments to solution procedure" end if elif nargs = 2 then if stype = "1st" then tv := evalf(args[1]); xv := evalf(args[2]) else tv := evalf(args[2]); xv := evalf(args[1]) end if; if not (type(tv, 'numeric') and type(xv, 'numeric')) then if procname <> unknown then return ('procname')(args[1 .. nargs]) else ndsol := pointto(solnproc("soln_procedures")[1]); return ('ndsol')(args[1 .. nargs]) end if end if else error "incorrect arguments to solution procedure" end if; vals := solnproc(tv, xv); vals[1] end proc

(1)

eval(diff(sd(r, t), r), [r = 2, t = 4])

(D[1](sd))(2, 4)

(2)

subs(r = 2, t = 4, diff(sd(r, t), r))

diff(sd(2, 4), 2)

(3)

 Using numerical methods, I cannot calculate the derivative of sd with respect to r at r = 2 and t = 4.

Oliveira.

``


 

Download Derivative-numerical.mw

Does anyone know how to enter in the pdsolve function Dirichlet conditions and Neumann values?

Oliveira.


 

``

  Note: To enter units, I used the unit key (blue) in the Units palette.

  When I use the combine and simplify functions to manipulate temperature units, Maple returns a wrong answer, as we can see below;

combine(20*Unit(Unit('Celsius'))+30*Unit('K'), units)

50*Units:-Unit(K)

(1)

simplify(20*Unit(Unit('Celsius'))+30*Unit('K'))

50*Units:-Unit(K)

(2)

  The quantity 20 Celsius is not converted correctly. However, for other types of dimensions, the combine and simplify functions work correctly.

combine(10*Unit('m')+120*Unit('cm')+200*Unit('ft'), units)

(1804/25)*Units:-Unit(m)

(3)

simplify(10*Unit('m')+120*Unit('cm')+200*Unit('ft'))

(1804/25)*Units:-Unit(m)

(4)

``

Another strange thing happens with the convert function, with temperature units. When we use the same source unit, the convert function deletes the unit, leaving only the quantity.

convert(30*Unit('K'), temperature, Unit('K'))

30

(5)

 I do not understand why this occurs.

convert(10*Unit('m'), units, Unit('m'))

10*Units:-Unit(m)

(6)

I do not understand why this occurs.

 

Oliveira


 

Download Matching_units.mw

In the DE solution below I cannot convert the RootOf function to radicals.
macro(solve = allvalues@solve);
_EnvExplicit := true;
de := x^4*diff(y(x), x $ 2) + omega^2*y(x) = 0;
bc := y(a) = 0, y(b) = 0, D(y)(a) = 1;
dsol := (dsolve({bc, de}, {omega, y(x)}) assuming (0 < a, a < b));
convert(dsol, radical);
{omega = RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b, y(x) = x*(-cos(RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b/x)*sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b*_C2/a) - arccos(RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b*_C2/a))*a/(RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b) + sin(RootOf(tan(_Z)*_Z*b*_C2 - sin(-2*_B5*Pi + 2*Pi*_Z10 + 2*_B5*arccos(_Z*b*_C2/a) - arccos(_Z*b*_C2/a))*a)*b/x)*_C2)}

Does anyone know how to convert the above expression to radicals?
I'm grateful.
Oliveira
RootOf_to_radical.mw
 

In the DE solution below I cannot convert the RootOf function to radicals.

macro(solve = `@`(allvalues, solve))

_EnvExplicit := true

de := x^4*(diff(y(x), `$`(x, 2)))+omega^2*y(x) = 0

bc := y(a) = 0, y(b) = 0, (D(y))(a) = 1

dsol := `assuming`([dsolve({bc, de}, {omega, y(x)})], [a > 0, b > a])

convert(dsol, radical)

{omega = RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b, y(x) = x*(-cos(RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b/x)*sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b*_C2/a)-arccos(RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b*_C2/a))*a/(RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b)+sin(RootOf(tan(_Z)*_Z*b*_C2-sin(-2*_B5*Pi+2*Pi*_Z10+2*_B5*arccos(_Z*b*_C2/a)-arccos(_Z*b*_C2/a))*a)*b/x)*_C2)}

(1)

Does anyone know how to convert the above expression to radicals?
I'm grateful.

Oliveira


 

Download RootOf_to_radical.mw

 

When I apply the uses function with the Physics package in a procedure, the commands in this package are not restricted to the inside of the procedure, but are applied globally. See the example below:

gds := proc(LL, qi, t)

 local ta,i;  

uses Physics;

ta := sec(diff(diff(LL, diff(qi[i](t), t)), t), i = 1 .. nops(qi));

RETURN(ta) end:

sxy := diff(x(t), t)^2 + diff(y(t), t)^2:

gds(sxy, [x, y], t);

Error, (in Physics:-diff) name expected for external function
 

On the other hand, when I apply the uses function with the LinearAlgebra package in a procedure, the commands in this package are restricted to the inside of the procedure only.
dst:=proc(MM) 

local DA; 

uses LinearAlgebra;

DA:=Determinant(MM); 

RETURN(DA) end:

dst(<<1 | 2>, <3 | 4>>);

                  -2

Determinant(<<1 | 2>, <3 | 4>>);

                         Determinant(Matrix(2, 2, [[1, 2], [3, 4]]))

This could be a bug in Maple 2019?

1 2 3 4 Page 1 of 4