Ronan

827 Reputation

14 Badges

11 years, 202 days
East Grinstead, United Kingdom

MaplePrimes Activity


These are answers submitted by Ronan

Use solve

T has 4 different value.

solve(T[1], Q); gives  -q*sigma^3/3

You get the same answer for T_2, T_3, T_4


                            

 

 

Might be worth checking this setting.

Shif +F5 stops executable math from running the blue box turns grey. You can use it inside test too. Also RMB to untick executible maths works. When in a line of test and you want to enter an equation click on math button enter equation then RMB untick executible math then click on text button again.
 

restart

``

P = 2*x+5

P = 2*x+5

(1)

P = 2*x+5

``

Test section P = 2*x+5  now more text
Shift Return for this line.

``


 

Download Text_and_equations.mw

https://www.mapleprimes.com/questions/201298-How-To-Animate-A-Bouncing-Ball-On-A-3d-Surface

or another

https://www.mapleprimes.com/questions/224449-How-To-Model-A-Bouncing-Ball-Through

 

Just Search for Ball.

 

 

If you are using Windows 10 turn File History. That keeps a running backup of all files you work on. You coud set to save  once a hour. It has gotten me out of trouble a few times.

 

They moved it to Evaluate Remove Output. Ctrl+Shift+R

This works.
 

restart

with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(1)

c1 := x*y+x+y = 7

x*y+x+y = 7

(2)

c2 := x^2+x*y+y^2 = 13

x^2+x*y+y^2 = 13

(3)

implicitplot([c1, c2], x = -5 .. 5, y = -5 .. 5, colour = [blue, green])

 

sol := `assuming`([solve({c1, c2}, [x, y], useassumptions)], [0 < x and x < 4, 0 < y and y < 4])

[[x = 1, y = 3], [x = 3, y = 1]]

(4)

``


 

Download This_works.mw


Hi,

This really is just a more expanded version of vv 5208  answer.

restart

P := [x3, y3, z3]

[x3, y3, z3]

(1)

A := [x1, y1, z1]

[x1, y1, z1]

(2)

B := [x2, y2, z2]

[x2, y2, z2]

(3)

H lies on the line connecting AB, H can be defined as an affine combination of A and B. -∞ < λ < ∞. If 0 < λ < 1 then λ lies between A and B

 

H := simplify(expand((1-lambda)*A+lambda*B))

[(-x1+x2)*lambda+x1, (-y1+y2)*lambda+y1, (-z1+z2)*lambda+z1]

(4)

``

Get distance between P and H

distPH := sqrt((H[1]-P[1])^2+(H[2]-P[2])^2+(H[3]-P[3])^2)

(((-x1+x2)*lambda+x1-x3)^2+((-y1+y2)*lambda+y1-y3)^2+((-z1+z2)*lambda+z1-z3)^2)^(1/2)

(5)

Miniminist the distance by differentiating wrt λ. Then solve for λ

mdist := diff(distPH, lambda)

(1/2)*(2*((-x1+x2)*lambda+x1-x3)*(-x1+x2)+2*((-y1+y2)*lambda+y1-y3)*(-y1+y2)+2*((-z1+z2)*lambda+z1-z3)*(-z1+z2))/(((-x1+x2)*lambda+x1-x3)^2+((-y1+y2)*lambda+y1-y3)^2+((-z1+z2)*lambda+z1-z3)^2)^(1/2)

(6)

lambda := solve(mdist, lambda)

(x1^2-x1*x2-x1*x3+x2*x3+y1^2-y1*y2-y1*y3+y2*y3+z1^2-z1*z2-z1*z3+z2*z3)/(x1^2-2*x1*x2+x2^2+y1^2-2*y1*y2+y2^2+z1^2-2*z1*z2+z2^2)

(7)

Back substitute. This is the shortest possible distance  between P and H

simplify(distPH)

((x1^2*y2^2-2*x1^2*y2*y3+x1^2*y3^2+x1^2*z2^2-2*x1^2*z2*z3+x1^2*z3^2-2*x1*x2*y1*y2+2*x1*x2*y1*y3+2*x1*x2*y2*y3-2*x1*x2*y3^2-2*x1*x2*z1*z2+2*x1*x2*z1*z3+2*x1*x2*z2*z3-2*x1*x2*z3^2+2*x1*x3*y1*y2-2*x1*x3*y1*y3-2*x1*x3*y2^2+2*x1*x3*y2*y3+2*x1*x3*z1*z2-2*x1*x3*z1*z3-2*x1*x3*z2^2+2*x1*x3*z2*z3+x2^2*y1^2-2*x2^2*y1*y3+x2^2*y3^2+x2^2*z1^2-2*x2^2*z1*z3+x2^2*z3^2-2*x2*x3*y1^2+2*x2*x3*y1*y2+2*x2*x3*y1*y3-2*x2*x3*y2*y3-2*x2*x3*z1^2+2*x2*x3*z1*z2+2*x2*x3*z1*z3-2*x2*x3*z2*z3+x3^2*y1^2-2*x3^2*y1*y2+x3^2*y2^2+x3^2*z1^2-2*x3^2*z1*z2+x3^2*z2^2+y1^2*z2^2-2*y1^2*z2*z3+y1^2*z3^2-2*y1*y2*z1*z2+2*y1*y2*z1*z3+2*y1*y2*z2*z3-2*y1*y2*z3^2+2*y1*y3*z1*z2-2*y1*y3*z1*z3-2*y1*y3*z2^2+2*y1*y3*z2*z3+y2^2*z1^2-2*y2^2*z1*z3+y2^2*z3^2-2*y2*y3*z1^2+2*y2*y3*z1*z2+2*y2*y3*z1*z3-2*y2*y3*z2*z3+y3^2*z1^2-2*y3^2*z1*z2+y3^2*z2^2)/(x1^2-2*x1*x2+x2^2+y1^2-2*y1*y2+y2^2+z1^2-2*z1*z2+z2^2))^(1/2)

(8)

``

The coordinates to H

H

[(-x1+x2)*(x1^2-x1*x2-x1*x3+x2*x3+y1^2-y1*y2-y1*y3+y2*y3+z1^2-z1*z2-z1*z3+z2*z3)/(x1^2-2*x1*x2+x2^2+y1^2-2*y1*y2+y2^2+z1^2-2*z1*z2+z2^2)+x1, (-y1+y2)*(x1^2-x1*x2-x1*x3+x2*x3+y1^2-y1*y2-y1*y3+y2*y3+z1^2-z1*z2-z1*z3+z2*z3)/(x1^2-2*x1*x2+x2^2+y1^2-2*y1*y2+y2^2+z1^2-2*z1*z2+z2^2)+y1, (-z1+z2)*(x1^2-x1*x2-x1*x3+x2*x3+y1^2-y1*y2-y1*y3+y2*y3+z1^2-z1*z2-z1*z3+z2*z3)/(x1^2-2*x1*x2+x2^2+y1^2-2*y1*y2+y2^2+z1^2-2*z1*z2+z2^2)+z1]

(9)

``


 

Download Affine_Geometry.mw

Try this, I extended your list,

L1 := [{3, 5}, {4, 5}, {4, 8, 9}, {-7, 2, 3}]:
      
L2 := {};  #empty set
                            L2 := {}
for i to nops(L1) do
L2 := L1[i] union L2
end do;
                          L2 := {3, 5}
                        L2 := {3, 4, 5}
                     L2 := {3, 4, 5, 8, 9}
                  L2 := {-7, 2, 3, 4, 5, 8, 9}
 

Try   implicitplot(cos(x)*cosh(y) = 1, x = -3 .. 3, y = -5 .. 5, gridrefine=2).

You can set higher values for gridrefine   3,4,5

http://www.yorku.ca/marko/ComPhys/Euler/Euler.html

 

you would need to do your own animation though.

Also here in a question, I posted at the time @Rouben Rostamian    gave a quaternion solution.

https://www.mapleprimes.com/questions/221298-I-Am-Looking-For-A-rotate-Type-Command#answer236768

This is an animation I did from following the blog I mentioned in the previous reply. It shows the momentum vectors.


I changed your c:= to an "if then else end if".That stops producing the Error  But I could have intrepited your statement  incorrectly.

 

restart;

NULL

fdsolve := proc({gamma:=NULL, rho:=NULL, mu:=NULL, omega:=NULL, t0:=NULL,
                 t1:=NULL, x0:=NULL, y0:=NULL,
                 N:=NULL}, params)
    local t, h, c, b, x, y, L, n, l, X, Y, f, g, s1, s2, s3, s4, s5, s6, s7, s8, s9;
    eval(F(t,x,y), params);
    f := unapply(%, [t,x,y]);
    eval(G(t,x,y), params);
    g := unapply(%, [t,x,y]);
    L := floor(1/mu);
    h := (t1 - t0)/N;
s1:= sum(((omega*(h*(n-1))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s2:= sum(((omega*(h*n)^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s3:= sum(((omega*(h*n)^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s4:= sum(((omega*(h*(n-i+1))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s5:= sum(((omega*(h*(n-i-1))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s6:= sum(((omega*(h*(n-i))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s7:= sum(((omega*(h*(n-i))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s8:= sum(((omega*(h*(n-i-1))^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);
s9:=sum(((omega*h^rho)^(j)*GAMMA(gamma+j))/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100);    
    c := (i,n) ->
        if i=0 then
              (h^mu)*(  ( ((n-1)^(mu+1))*s1 )-((n^(mu+1))*s2)+((n^(mu))*s3)  )else
              (h^mu)*( (((n-i+1)^(mu+1))*s4)+(((n-i-1)^(mu+1))*s5)-(2*((n-i)^(mu+1))*s6) )
        end if;

b := (i,n) -> (h^mu)*( ((n-i)^(mu)*s7)-((n-i-1)^(mu)*s8) );

    t := Array(0..N, i-> (1-i/N)*t0 + i/N*t1, datatype=float[8]);
    x[0], y[0] := x0, y0;                                           
    for n from 0 to N-1 do
        X[0], Y[0] :=
            x[0] + add(b(i,n+1)*f(t[i],x[i],y[i]), i=0..n),
            y[0] + add(b(i,n+1)*g(t[i],x[i],y[i]), i=0..n);
        for l from 1 to L do
            X[l], Y[l] :=
                x[0] + add(c(i,n+1)*f(t[i],x[i],y[i]), i=0..n)
                     + (h^mu)*s9*f(t[n+1], X[l-1], Y[l-1]),
                y[0] + add(c(i,n+1)*g(t[i],x[i],y[i]), i=0..n)
                     + (h^mu)*s9*g(t[n+1], X[l-1], Y[l-1]);
        end do;
        x[n+1], y[n+1] := X[L], Y[L];
        #printf("y[%d]=%a\n", n+1, y[n+1]);
    end do;
    return Array(0..N, i -> [t[i], x[i], y[i]]);
end proc

proc (params, { N := NULL, gamma := NULL, mu := NULL, omega := NULL, rho := NULL, t0 := NULL, t1 := NULL, x0 := NULL, y0 := NULL }) local t, h, c, b, x, y, L, n, l, X, Y, f, g, s1, s2, s3, s4, s5, s6, s7, s8, s9; eval(F(t, x, y), params); f := unapply(%, [t, x, y]); eval(G(t, x, y), params); g := unapply(%, [t, x, y]); L := floor(1/mu); h := (t1-t0)/N; s1 := sum((omega*(h*(n-1))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s2 := sum((omega*(h*n)^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s3 := sum((omega*(h*n)^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s4 := sum((omega*(h*(n-i+1))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s5 := sum((omega*(h*(n-i-1))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s6 := sum((omega*(h*(n-i))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s7 := sum((omega*(h*(n-i))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s8 := sum((omega*(h*(n-i-1))^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+1)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); s9 := sum((omega*h^rho)^j*GAMMA(gamma+j)/(GAMMA(j*rho+mu+2)*factorial(j)*GAMMA(gamma)), j = 0 .. 100); c := proc (i, n) options operator, arrow; if i = 0 then h^mu*((n-1)^(mu+1)*s1-n^(mu+1)*s2+n^mu*s3) else h^mu*((n-i+1)^(mu+1)*s4+(n-i-1)^(mu+1)*s5-2*(n-i)^(mu+1)*s6) end if end proc; b := proc (i, n) options operator, arrow; h^mu*((n-i)^mu*s7-(n-i-1)^mu*s8) end proc; t := Array(0 .. N, proc (i) options operator, arrow; (1-i/N)*t0+i*t1/N end proc, datatype = float[8]); x[0], y[0] := x0, y0; for n from 0 to N-1 do X[0], Y[0] := x[0]+add(b(i, n+1)*f(t[i], x[i], y[i]), i = 0 .. n), y[0]+add(b(i, n+1)*g(t[i], x[i], y[i]), i = 0 .. n); for l to L do X[l], Y[l] := x[0]+add(c(i, n+1)*f(t[i], x[i], y[i]), i = 0 .. n)+h^mu*s9*f(t[n+1], X[l-1], Y[l-1]), y[0]+add(c(i, n+1)*g(t[i], x[i], y[i]), i = 0 .. n)+h^mu*s9*g(t[n+1], X[l-1], Y[l-1]) end do; x[n+1], y[n+1] := X[L], Y[L] end do; return Array(0 .. N, proc (i) options operator, arrow; [t[i], x[i], y[i]] end proc) end proc

(1)

 

 


 

Download _Prab-1.mw

If you want to some home study by yourself this is very good. Called Maths Foundation series.
 
https://www.youtube.com/user/njwildberger/playlists?view=50&shelf_id=10&sort=dd
 
1 2 3 4 5 Page 4 of 5