dharr

Dr. David Harrington

8445 Reputation

22 Badges

21 years, 29 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

This partly duplicates @mmcdara's analysis (I voted up!) that used numerical values for the parameters, but with the analytical solutions, and shows how to interpret the PolynomialSystem answer and do the backsubstitution (part of your second question). In this case solve is simpler (and presumably the same as if backsubstitute=true was chosen, but I didn't check), but had there been restrictions on lambda__2 and lambda__3, then fishing out the required solutions from all of them probably would have been easier starting from the PolynomialSystem, backsubstitute=false form, as was the case in your earlier problem.

restart;

@mmcdara's solve solution (without assumptions on the variables).

 The interpretation is, as @mmcdara noted, that one can choose any lambda__2 and lambda__3 and from them find an acceptable lambda__1

sol_solve := {lambda__1 = -(sigma__v^2*(p - 1) - sigma__e^2)*(p*gamma*(lambda__2 + lambda__3)*sigma__v^4 + (sigma__e^2*(lambda__2 + lambda__3)*gamma + 2*lambda__2*lambda__3)*sigma__v^2 + 2*lambda__2*lambda__3*sigma__e^2)*sigma__v^2*gamma/(p*gamma^2*(p - 1)*sigma__v^8 - 2*(1/2*gamma*sigma__e^2 + p*lambda__3 + lambda__2)*gamma*sigma__v^6 + (-gamma^2*sigma__e^4 - 2*sigma__e^2*((p + 1)*lambda__3 + 3*lambda__2)*gamma - 4*lambda__2*lambda__3)*sigma__v^4 - 4*sigma__e^2*(sigma__e^2*(lambda__2 + 1/2*lambda__3)*gamma + 2*lambda__2*lambda__3)*sigma__v^2 - 4*lambda__2*lambda__3*sigma__e^4), lambda__2 = lambda__2, lambda__3 = lambda__3}

{lambda__1 = -(sigma__v^2*(p-1)-sigma__e^2)*(p*gamma*(lambda__2+lambda__3)*sigma__v^4+(sigma__e^2*(lambda__2+lambda__3)*gamma+2*lambda__2*lambda__3)*sigma__v^2+2*lambda__2*lambda__3*sigma__e^2)*sigma__v^2*gamma/(p*gamma^2*(p-1)*sigma__v^8-2*((1/2)*gamma*sigma__e^2+p*lambda__3+lambda__2)*gamma*sigma__v^6+(-gamma^2*sigma__e^4-2*sigma__e^2*((p+1)*lambda__3+3*lambda__2)*gamma-4*lambda__2*lambda__3)*sigma__v^4-4*sigma__e^2*(sigma__e^2*(lambda__2+(1/2)*lambda__3)*gamma+2*lambda__2*lambda__3)*sigma__v^2-4*lambda__2*lambda__3*sigma__e^4), lambda__2 = lambda__2, lambda__3 = lambda__3}

Extract the numerator and denominator pieces of the lambda__1 solution. It is implicit in this solution that the lambda__2 and lambda__3 chosen must not make the denominator zero.

solnm1:=eval(lambda__1,sol_solve):
n1=numer(%);d1:=denom(%%);

n1 = -(p*sigma__v^2-sigma__e^2-sigma__v^2)*(gamma*p*lambda__2*sigma__v^4+gamma*p*lambda__3*sigma__v^4+gamma*lambda__2*sigma__e^2*sigma__v^2+gamma*lambda__3*sigma__e^2*sigma__v^2+2*lambda__2*lambda__3*sigma__e^2+2*lambda__2*lambda__3*sigma__v^2)*sigma__v^2*gamma

gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6-2*gamma*p*lambda__3*sigma__e^2*sigma__v^4-2*gamma*p*lambda__3*sigma__v^6-4*gamma*lambda__2*sigma__e^4*sigma__v^2-6*gamma*lambda__2*sigma__e^2*sigma__v^4-2*gamma*lambda__2*sigma__v^6-2*gamma*lambda__3*sigma__e^4*sigma__v^2-2*gamma*lambda__3*sigma__e^2*sigma__v^4-4*lambda__2*lambda__3*sigma__e^4-8*lambda__2*lambda__3*sigma__e^2*sigma__v^2-4*lambda__2*lambda__3*sigma__v^4

@MaPal93's solution from SolveTools:-PolynomialSystem using the variable order lambda__1 > lambda__3 > lambda__2 (see the userinfo output)

Solution := [[(((-4*sigma__e^4 - 8*sigma__e^2*sigma__v^2 - 4*sigma__v^4)*lambda__2 - 2*gamma*p*sigma__e^2*sigma__v^4 - 2*gamma*p*sigma__v^6 - 2*gamma*sigma__e^4*sigma__v^2 - 2*gamma*sigma__e^2*sigma__v^4)*lambda__3 + (-4*gamma*sigma__e^4*sigma__v^2 - 6*gamma*sigma__e^2*sigma__v^4 - 2*gamma*sigma__v^6)*lambda__2 + gamma^2*p^2*sigma__v^8 - gamma^2*p*sigma__v^8 - gamma^2*sigma__e^4*sigma__v^4 - gamma^2*sigma__e^2*sigma__v^6)*lambda__1 + ((2*gamma*p*sigma__e^2*sigma__v^4 + 2*gamma*p*sigma__v^6 - 2*gamma*sigma__e^4*sigma__v^2 - 4*gamma*sigma__e^2*sigma__v^4 - 2*gamma*sigma__v^6)*lambda__2 + gamma^2*p^2*sigma__v^8 - gamma^2*p*sigma__v^8 - gamma^2*sigma__e^4*sigma__v^4 - gamma^2*sigma__e^2*sigma__v^6)*lambda__3 + (gamma^2*p^2*sigma__v^8 - gamma^2*p*sigma__v^8 - gamma^2*sigma__e^4*sigma__v^4 - gamma^2*sigma__e^2*sigma__v^6)*lambda__2], {((-4*sigma__e^4 - 8*sigma__e^2*sigma__v^2 - 4*sigma__v^4)*lambda__2 - 2*gamma*p*sigma__e^2*sigma__v^4 - 2*gamma*p*sigma__v^6 - 2*gamma*sigma__e^4*sigma__v^2 - 2*gamma*sigma__e^2*sigma__v^4)*lambda__3 + (-4*gamma*sigma__e^4*sigma__v^2 - 6*gamma*sigma__e^2*sigma__v^4 - 2*gamma*sigma__v^6)*lambda__2 + gamma^2*p^2*sigma__v^8 - gamma^2*p*sigma__v^8 - gamma^2*sigma__e^4*sigma__v^4 - gamma^2*sigma__e^2*sigma__v^6 <> 0}]

[[(((-4*sigma__e^4-8*sigma__e^2*sigma__v^2-4*sigma__v^4)*lambda__2-2*gamma*p*sigma__e^2*sigma__v^4-2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-2*gamma*sigma__e^2*sigma__v^4)*lambda__3+(-4*gamma*sigma__e^4*sigma__v^2-6*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__1+((2*gamma*p*sigma__e^2*sigma__v^4+2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-4*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__3+(gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__2], {((-4*sigma__e^4-8*sigma__e^2*sigma__v^2-4*sigma__v^4)*lambda__2-2*gamma*p*sigma__e^2*sigma__v^4-2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-2*gamma*sigma__e^2*sigma__v^4)*lambda__3+(-4*gamma*sigma__e^4*sigma__v^2-6*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6 <> 0}]

Extract the solution and the left-hand side of the condition<>0.

soln:=Solution[][1][];
cond:=lhs(Solution[][2][]);

(((-4*sigma__e^4-8*sigma__e^2*sigma__v^2-4*sigma__v^4)*lambda__2-2*gamma*p*sigma__e^2*sigma__v^4-2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-2*gamma*sigma__e^2*sigma__v^4)*lambda__3+(-4*gamma*sigma__e^4*sigma__v^2-6*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__1+((2*gamma*p*sigma__e^2*sigma__v^4+2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-4*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__3+(gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6)*lambda__2

((-4*sigma__e^4-8*sigma__e^2*sigma__v^2-4*sigma__v^4)*lambda__2-2*gamma*p*sigma__e^2*sigma__v^4-2*gamma*p*sigma__v^6-2*gamma*sigma__e^4*sigma__v^2-2*gamma*sigma__e^2*sigma__v^4)*lambda__3+(-4*gamma*sigma__e^4*sigma__v^2-6*gamma*sigma__e^2*sigma__v^4-2*gamma*sigma__v^6)*lambda__2+gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6

The output from the solver with backsubstitute=false is usually three (partial) solutions, which using the solver order here would contain (lambda__1, lambda__2, lambda__3),  (lambda__2, lambda__3) and (lambda__2). The backsubstitution process consists of finding the solutions to the third equation for lambda__2 substituting into the second equation to find the values of lambda__3 and then substituting the values for lambda__3 and lambda__2 into the first solution to find the values of lambda__1. In this case, the lack of the second and third solutions is just a way of saying that lambda__2 and lambda__3 can have any values. Then we solve for lambda__1 as follows

solnm2:=solve(soln,lambda__1);

-gamma*sigma__v^2*(gamma*p^2*lambda__2*sigma__v^6+gamma*p^2*lambda__3*sigma__v^6-gamma*p*lambda__2*sigma__v^6-gamma*p*lambda__3*sigma__v^6-gamma*lambda__2*sigma__e^4*sigma__v^2-gamma*lambda__2*sigma__e^2*sigma__v^4-gamma*lambda__3*sigma__e^4*sigma__v^2-gamma*lambda__3*sigma__e^2*sigma__v^4+2*p*lambda__2*lambda__3*sigma__e^2*sigma__v^2+2*p*lambda__2*lambda__3*sigma__v^4-2*lambda__2*lambda__3*sigma__e^4-4*lambda__2*lambda__3*sigma__e^2*sigma__v^2-2*lambda__2*lambda__3*sigma__v^4)/(gamma^2*p^2*sigma__v^8-gamma^2*p*sigma__v^8-gamma^2*sigma__e^4*sigma__v^4-gamma^2*sigma__e^2*sigma__v^6-2*gamma*p*lambda__3*sigma__e^2*sigma__v^4-2*gamma*p*lambda__3*sigma__v^6-4*gamma*lambda__2*sigma__e^4*sigma__v^2-6*gamma*lambda__2*sigma__e^2*sigma__v^4-2*gamma*lambda__2*sigma__v^6-2*gamma*lambda__3*sigma__e^4*sigma__v^2-2*gamma*lambda__3*sigma__e^2*sigma__v^4-4*lambda__2*lambda__3*sigma__e^4-8*lambda__2*lambda__3*sigma__e^2*sigma__v^2-4*lambda__2*lambda__3*sigma__v^4)

This is the same as the solution solve gave, and the condition is just that the denominator is not zero

simplify(solnm1-solnm2);
simplify(cond-d1);

0

0

NULL

Download solvers.mw

Looks like a bug. As you probably know, you can set the display precision for the whole worksheet from the menu Tools -> Options -> Pecision.

The divide symbol is not on my keyboad. Yours appears as "&divide;" in the string. Assuming yours is always encoded in the same way, then it can be substituted with "/" using StringTools:-Subs. I needed to use 1-D entry here.

PEMDASTest.mw

It's not obvious which variables to eliminate, but this works. 

restart

eqP := P = R*T/(v-b)-a/(v*(v+b)+b*(v-b))

P = R*T/(v-b)-a/(v*(v+b)+b*(v-b))

eqA := A = a*P/(R^2*T^2); eqB := B = b*P/(R*T); eqZ := Z = P*v/(R*T)

A = a*P/(R^2*T^2)

B = b*P/(R*T)

Z = P*v/(R*T)

elim := eliminate({eqA, eqB, eqP, eqZ}, {a, b, v})

[{a = A*R^2*T^2/P, b = B*R*T/P, v = Z*R*T/P}, {B^3-3*B^2*Z+B*Z^2+Z^3-A*B+A*Z+B^2-2*B*Z-Z^2}]

eq5 := collect(elim[2][], Z)

Z^3+(B-1)*Z^2+(-3*B^2+A-2*B)*Z+B^3-A*B+B^2

NULL

Download elim.mw

For a numerical solution the limit boundary condition can't be used. If you want to approximate infinity by by a large number you can use, say, U[2,n](20)=0. But then you have boundary conditions at -Pi, 0 and 20; the solver needs just two boundary locations, so I replaced it with a boundary condition at 0, which you will need to modify to what you want. You need also to replace x[01] with X[01] to avoid confusion with the simple variable x. Then it is possible to get a solution.

restart

a := Pi; b := Pi; lambda := 0.1e-1; beta := 2.5; X[1] := -1; X[2] := 1; y[1] := 1.5; y[2] := 1.5; alpha := 1; Q[1] := 40; Q[2] := 35; n := 3

Pi

Pi

0.1e-1

2.5

-1

1

1.5

1.5

1

40

35

3

upsilon := (2*n-1)*Pi/(2*b)

5/2

EQ1 := diff(U[1, n](x), x, x)-upsilon^2*U[1, n](x) = -2*(int(Q[1]*Dirac(x-X[1])*Dirac(eta-y[1])*sin(upsilon*eta), eta = 0 .. b))/b

diff(diff(U[1, 3](x), x), x)-(25/4)*U[1, 3](x) = 14.55468946*Dirac(x+1.)

EQ2 := -(diff(U[2, n](x), x, x))-upsilon^2*U[2, n](x) = -2*(int(Q[2]*Dirac(x-X[2])*Dirac(eta-y[2])*sin(upsilon*eta), eta = 0 .. b))/b

-(diff(diff(U[2, 3](x), x), x))-(25/4)*U[2, 3](x) = 12.73535328*Dirac(x-1.)

bc := U[2, n](0) = 1, alpha*(D(U[1, n]))(-a)-beta*U[1, n](-a) = 0, U[1, n](0) = U[2, n](0), (D(U[1, n]))(0) = lambda*(D(U[2, n]))(0)

U[2, 3](0) = 1, (D(U[1, 3]))(-Pi)-2.5*U[1, 3](-Pi) = 0, U[1, 3](0) = U[2, 3](0), (D(U[1, 3]))(0) = 0.1e-1*(D(U[2, 3]))(0)

dsys6 := {EQ1, EQ2, bc}

{diff(diff(U[1, 3](x), x), x)-(25/4)*U[1, 3](x) = 14.55468946*Dirac(x+1.), -(diff(diff(U[2, 3](x), x), x))-(25/4)*U[2, 3](x) = 12.73535328*Dirac(x-1.), (D(U[1, 3]))(-Pi)-2.5*U[1, 3](-Pi) = 0, U[1, 3](0) = U[2, 3](0), U[2, 3](0) = 1, (D(U[1, 3]))(0) = 0.1e-1*(D(U[2, 3]))(0)}

dsol6 := dsolve(dsys6, numeric)

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(53, {(1) = -3.14159265358979, (2) = -3.086869467826823, (3) = -3.031348504946009, (4) = -2.974950344632409, (5) = -2.9172482249140086, (6) = -2.8578986954236654, (7) = -2.796633107212863, (8) = -2.733289667430295, (9) = -2.6679547018250354, (10) = -2.6010152548056817, (11) = -2.533120054701126, (12) = -2.465114057930623, (13) = -2.397890234194044, (14) = -2.3321800749944503, (15) = -2.2684387274244364, (16) = -2.2068256922258085, (17) = -2.147253744698504, (18) = -2.0894626384055837, (19) = -2.0331326775212855, (20) = -1.9778966969723746, (21) = -1.9233051302746953, (22) = -1.8689240004784848, (23) = -1.8143479529840667, (24) = -1.759178273526714, (25) = -1.7029860120437164, (26) = -1.6453682979450643, (27) = -1.585981078624346, (28) = -1.5245686286774929, (29) = -1.46101976425386, (30) = -1.3954708796823505, (31) = -1.3283603076081056, (32) = -1.2604088886537288, (33) = -1.1925056231731292, (34) = -1.1255282972161582, (35) = -1.060166803149537, (36) = -.9968208337603711, (37) = -.9355958332055698, (38) = -.8763768620757185, (39) = -.8188960191579733, (40) = -.7627923535845436, (41) = -.7076543950277331, (42) = -.6530707805946335, (43) = -.5986452054223651, (44) = -.5439457751022644, (45) = -.48854036225918673, (46) = -.4320163936842751, (47) = -.3739928906756354, (48) = -.3141094576263415, (49) = -.2521104324222031, (50) = -.18792201484247464, (51) = -.1219209904944405, (52) = -0.5774232861909959e-1, (53) = .0}, datatype = float[8], order = C_order); Y := Matrix(53, 4, {(1, 1) = 0.3882032039268557e-3, (1, 2) = 0.9705080098171391e-3, (1, 3) = -100.00000000049809, (1, 4) = 2.499999997815112, (2, 1) = 0.4451168751182677e-3, (2, 2) = 0.1112792187795669e-2, (2, 3) = -98.92925613106779, (2, 4) = 36.57204204133732, (3, 1) = 0.5113934708661108e-3, (3, 2) = 0.12784836771652767e-2, (3, 3) = -95.95379305935661, (3, 4) = 70.43922902138677, (4, 1) = 0.5888283390187462e-3, (4, 2) = 0.1472070847546866e-2, (4, 3) = -91.0421120920531, (4, 4) = 103.45088888924714, (5, 1) = 0.6802021243402053e-3, (5, 2) = 0.17005053108505132e-2, (5, 3) = -84.14782521017595, (5, 4) = 135.09588059261714, (6, 1) = 0.7889980263657762e-3, (6, 2) = 0.1972495065914439e-2, (6, 3) = -75.23478414482555, (6, 4) = 164.7104894727781, (7, 1) = 0.9195898817365468e-3, (7, 2) = 0.2298974704341366e-2, (7, 3) = -64.30235750490439, (7, 4) = 191.4779167979666, (8, 1) = 0.1077378860695122e-2, (8, 2) = 0.2693447151737806e-2, (8, 3) = -51.419531674574685, (8, 4) = 214.4328531624133, (9, 1) = 0.12685423995122318e-2, (9, 2) = 0.317135599878058e-2, (9, 3) = -36.78739101799119, (9, 4) = 232.4823630700066, (10, 1) = 0.14996280969012195e-2, (10, 2) = 0.37490702422530494e-2, (10, 3) = -20.78376209495727, (10, 4) = 244.55361417878348, (11, 1) = 0.17770508105882912e-2, (11, 2) = 0.4442627026470727e-2, (11, 3) = -3.9606782144882553, (11, 4) = 249.8163453939849, (12, 1) = 0.21063785252678625e-2, (12, 2) = 0.5265946313169655e-2, (12, 3) = 13.003708885087217, (12, 4) = 247.8898893070616, (13, 1) = 0.249186068258328e-2, (13, 2) = 0.6229651706458199e-2, (13, 3) = 29.40627560755466, (13, 4) = 238.95960635328623, (14, 1) = 0.2936754592417099e-2, (14, 2) = 0.7341886481042746e-2, (14, 3) = 44.641927521047265, (14, 4) = 223.7199464072195, (15, 1) = 0.3444085666623671e-2, (15, 2) = 0.8610214166559178e-2, (15, 3) = 58.27625330903941, (15, 4) = 203.17600590872755, (16, 1) = 0.4017625467632397e-2, (16, 2) = 0.10044063669080987e-1, (16, 3) = 70.05513432638597, (16, 4) = 178.4180160916429, (17, 1) = 0.4662822340331413e-2, (17, 2) = 0.11657055850828532e-1, (17, 3) = 79.86911538645819, (17, 4) = 150.45606517026198, (18, 1) = 0.5387592814161548e-2, (18, 2) = 0.1346898203540387e-1, (18, 3) = 87.70178171102593, (18, 4) = 120.1404772747311, (19, 1) = 0.6202321051741903e-2, (19, 2) = 0.15505802629354757e-1, (19, 3) = 93.57874437467991, (19, 4) = 88.17661968009193, (20, 1) = 0.7120753415084811e-2, (20, 2) = 0.17801883537712036e-1, (20, 3) = 97.54300007368604, (20, 4) = 55.13410563562042, (21, 1) = 0.8162026251578035e-2, (21, 2) = 0.20405065628945097e-1, (21, 3) = 99.63648925693877, (21, 4) = 21.44324028162055, (22, 1) = 0.9350644559652645e-2, (22, 2) = 0.23376611399131608e-1, (22, 3) = 99.8796262721294, (22, 4) = -12.515054881656106, (23, 1) = 0.10717580135388488e-1, (23, 2) = 0.26793950338471224e-1, (23, 3) = 98.27048771710446, (23, 4) = -46.362110330783665, (24, 1) = 0.12302587365372732e-1, (24, 2) = 0.30756468413431846e-1, (24, 3) = 94.78758363493509, (24, 4) = -79.69919967830852, (25, 1) = 0.14158147435394198e-1, (25, 2) = 0.3539536858848551e-1, (25, 3) = 89.39005065709564, (25, 4) = -112.0942361243453, (26, 1) = 0.16351743604253826e-1, (26, 2) = 0.4087935901063455e-1, (26, 3) = 82.02798473444136, (26, 4) = -143.01244964273488, (27, 1) = 0.18968933887015375e-1, (27, 2) = 0.4742233471753843e-1, (27, 3) = 72.66363839199656, (27, 4) = -171.77375482882923, (28, 1) = 0.22116716101413348e-1, (28, 2) = 0.55291790253533354e-1, (28, 3) = 61.30126013153686, (28, 4) = -197.53410316836656, (29, 1) = 0.2592495111150616e-1, (29, 2) = 0.6481237777876543e-1, (29, 3) = 48.0289257365294, (29, 4) = -219.29179038200223, (30, 1) = 0.30541245446158414e-1, (30, 2) = 0.7635311361539601e-1, (30, 3) = 33.07539715281775, (30, 4) = -235.94249965849457, (31, 1) = 0.3612028106573307e-1, (31, 2) = 0.9030070266433263e-1, (31, 3) = 16.850915110845825, (31, 4) = -246.4377033343757, (32, 1) = 0.4280834487714029e-1, (32, 2) = .10702086219285073, (32, 3) = -0.57012711555319735e-1, (32, 4) = -250.01245905923216, (33, 1) = 0.5072866934270118e-1, (33, 2) = .12682167335675293, (33, 3) = -16.951434539334358, (33, 4) = -246.39461321068953, (34, 1) = 0.59975403466136196e-1, (34, 2) = .1499385086653405, (34, 3) = -33.14019787527235, (34, 4) = -235.88566198485236, (35, 1) = 0.7062175709040089e-1, (35, 2) = .17655439272600215, (35, 3) = -48.048066313865085, (35, 4) = -219.26558273462993, (36, 1) = 0.8274000277575962e-1, (36, 2) = .20685000693939903, (36, 3) = -61.27842140118162, (36, 4) = -197.57838745975906, (37, 1) = 0.964250185014489e-1, (37, 2) = .2410625462536222, (37, 3) = -72.61156054193519, (37, 4) = -171.91133753471286, (38, 1) = .11181135532806942, (38, 2) = .2795283883201738, (38, 3) = -81.96052549943433, (38, 4) = -143.2539759453953, (39, 1) = .12909069651583652, (39, 2) = .3227267412895911, (39, 3) = -89.32177445048865, (39, 4) = -112.43388637952489, (40, 1) = .14852813402627374, (40, 2) = .3713203350656843, (40, 3) = -94.73190777306867, (40, 4) = -80.11186123487396, (41, 1) = .17048022224171397, (41, 2) = .4262005556042849, (41, 3) = -98.23655034327561, (41, 4) = -46.809465967098035, (42, 1) = .19540578155864546, (42, 2) = .48851445389661347, (42, 3) = -99.8704416417994, (42, 4) = -12.965069966582012, (43, 1) = .2238871802608824, (43, 2) = .5597179506522063, (43, 3) = -99.65085267397875, (43, 4) = 21.021947066476347, (44, 1) = .25669557282299343, (44, 2) = .6417389320574837, (44, 3) = -97.57425163323794, (44, 4) = 54.7873969436885, (45, 1) = .2948316080924044, (45, 2) = .7370790202310107, (45, 3) = -93.61389642697638, (45, 4) = 87.94310645822289, (46, 1) = .3395816078756192, (46, 2) = .8489540196890483, (46, 3) = -87.72642009909106, (46, 4) = 120.02799716632154, (47, 1) = .39259284314422777, (47, 2) = .9814821078605699, (47, 3) = -79.86501965986429, (47, 4) = 150.46965297719441, (48, 1) = .45599490441179935, (48, 2) = 1.1399872610294979, (48, 3) = -69.99467789993854, (48, 4) = 178.56625286021332, (49, 1) = .5324447827957952, (49, 2) = 1.3311119569894878, (49, 3) = -58.12891683160391, (49, 4) = 203.43962599481935, (50, 1) = .6251241324127373, (50, 2) = 1.562810331031843, (50, 3) = -44.37958883666299, (50, 4) = 224.04592295288356, (51, 1) = .7372689881556563, (51, 2) = 1.843172470389142, (51, 3) = -29.05656994221207, (51, 4) = 239.22682415431592, (52, 1) = .8655797013486091, (52, 2) = 2.1639492533715217, (52, 3) = -13.395899359723881, (52, 4) = 247.75933232100704, (53, 1) = 1.0, (53, 2) = 2.5, (53, 3) = 1.0, (53, 4) = 250.0}, datatype = float[8], order = C_order); YP := Matrix(53, 4, {(1, 1) = 0.9705080098171391e-3, (1, 2) = 0.2426270024542848e-2, (1, 3) = 2.499999997815112, (1, 4) = 625.0000000031131, (2, 1) = 0.1112792187795669e-2, (2, 2) = 0.2781980469489173e-2, (2, 3) = 36.57204204133732, (2, 4) = 618.3078508191737, (3, 1) = 0.12784836771652767e-2, (3, 2) = 0.31962091929131926e-2, (3, 3) = 70.43922902138677, (3, 4) = 599.7112066209788, (4, 1) = 0.1472070847546866e-2, (4, 2) = 0.3680177118867164e-2, (4, 3) = 103.45088888924714, (4, 4) = 569.0132005753319, (5, 1) = 0.17005053108505132e-2, (5, 2) = 0.4251263277126284e-2, (5, 3) = 135.09588059261714, (5, 4) = 525.9239075635998, (6, 1) = 0.1972495065914439e-2, (6, 2) = 0.4931237664786101e-2, (6, 3) = 164.7104894727781, (6, 4) = 470.2174009051597, (7, 1) = 0.2298974704341366e-2, (7, 2) = 0.57474367608534175e-2, (7, 3) = 191.4779167979666, (7, 4) = 401.88973440565246, (8, 1) = 0.2693447151737806e-2, (8, 2) = 0.6733617879344513e-2, (8, 3) = 214.4328531624133, (8, 4) = 321.37207296609176, (9, 1) = 0.317135599878058e-2, (9, 2) = 0.792838999695145e-2, (9, 3) = 232.4823630700066, (9, 4) = 229.92119386244494, (10, 1) = 0.37490702422530494e-2, (10, 2) = 0.9372675605632623e-2, (10, 3) = 244.55361417878348, (10, 4) = 129.89851309348296, (11, 1) = 0.4442627026470727e-2, (11, 2) = 0.1110656756617682e-1, (11, 3) = 249.8163453939849, (11, 4) = 24.754238840551597, (12, 1) = 0.5265946313169655e-2, (12, 2) = 0.1316486578292414e-1, (12, 3) = 247.8898893070616, (12, 4) = -81.2731805317951, (13, 1) = 0.6229651706458199e-2, (13, 2) = 0.155741292661455e-1, (13, 3) = 238.95960635328623, (13, 4) = -183.78922254721664, (14, 1) = 0.7341886481042746e-2, (14, 2) = 0.1835471620260687e-1, (14, 3) = 223.7199464072195, (14, 4) = -279.0120470065454, (15, 1) = 0.8610214166559178e-2, (15, 2) = 0.21525535416397946e-1, (15, 3) = 203.17600590872755, (15, 4) = -364.2265831814963, (16, 1) = 0.10044063669080987e-1, (16, 2) = 0.2511015917270248e-1, (16, 3) = 178.4180160916429, (16, 4) = -437.8445895399123, (17, 1) = 0.11657055850828532e-1, (17, 2) = 0.2914263962707133e-1, (17, 3) = 150.45606517026198, (17, 4) = -499.1819711653637, (18, 1) = 0.1346898203540387e-1, (18, 2) = 0.33672455088509676e-1, (18, 3) = 120.1404772747311, (18, 4) = -548.136135693912, (19, 1) = 0.15505802629354757e-1, (19, 2) = 0.3876450657338689e-1, (19, 3) = 88.17661968009193, (19, 4) = -584.8671523417495, (20, 1) = 0.17801883537712036e-1, (20, 2) = 0.44504708844280066e-1, (20, 3) = 55.13410563562042, (20, 4) = -609.6437504605378, (21, 1) = 0.20405065628945097e-1, (21, 2) = 0.5101266407236272e-1, (21, 3) = 21.44324028162055, (21, 4) = -622.7280578558673, (22, 1) = 0.23376611399131608e-1, (22, 2) = 0.58441528497829034e-1, (22, 3) = -12.515054881656106, (22, 4) = -624.2476642008088, (23, 1) = 0.26793950338471224e-1, (23, 2) = 0.6698487584617804e-1, (23, 3) = -46.362110330783665, (23, 4) = -614.1905482319029, (24, 1) = 0.30756468413431846e-1, (24, 2) = 0.7689117103357958e-1, (24, 3) = -79.69919967830852, (24, 4) = -592.4223977183443, (25, 1) = 0.3539536858848551e-1, (25, 2) = 0.8848842147121373e-1, (25, 3) = -112.0942361243453, (25, 4) = -558.6878166068477, (26, 1) = 0.4087935901063455e-1, (26, 2) = .10219839752658641, (26, 3) = -143.01244964273488, (26, 4) = -512.6749045902585, (27, 1) = 0.4742233471753843e-1, (27, 2) = .1185558367938461, (27, 3) = -171.77375482882923, (27, 4) = -454.1477399499785, (28, 1) = 0.55291790253533354e-1, (28, 2) = .13822947563383342, (28, 3) = -197.53410316836656, (28, 4) = -383.13287582210535, (29, 1) = 0.6481237777876543e-1, (29, 2) = .1620309444469135, (29, 3) = -219.29179038200223, (29, 4) = -300.18078585330875, (30, 1) = 0.7635311361539601e-1, (30, 2) = .1908827840384901, (30, 3) = -235.94249965849457, (30, 4) = -206.72123220511094, (31, 1) = 0.9030070266433263e-1, (31, 2) = .2257517566608317, (31, 3) = -246.4377033343757, (31, 4) = -105.31821944278641, (32, 1) = .10702086219285073, (32, 2) = .2675521554821268, (32, 3) = -250.01245905923216, (32, 4) = .35632944722074833, (33, 1) = .12682167335675293, (33, 2) = .31705418339188235, (33, 3) = -246.39461321068953, (33, 4) = 105.94646587083973, (34, 1) = .1499385086653405, (34, 2) = .3748462716633512, (34, 3) = -235.88566198485236, (34, 4) = 207.1262367204522, (35, 1) = .17655439272600215, (35, 2) = .44138598181500555, (35, 3) = -219.26558273462993, (35, 4) = 300.30041446165677, (36, 1) = .20685000693939903, (36, 2) = .5171250173484976, (36, 3) = -197.57838745975906, (36, 4) = 382.99013375738514, (37, 1) = .2410625462536222, (37, 2) = .6026563656340556, (37, 3) = -171.91133753471286, (37, 4) = 453.8222533870949, (38, 1) = .2795283883201738, (38, 2) = .6988209708004339, (38, 3) = -143.2539759453953, (38, 4) = 512.2532843714646, (39, 1) = .3227267412895911, (39, 2) = .8068168532239782, (39, 3) = -112.43388637952489, (39, 4) = 558.261090315554, (40, 1) = .3713203350656843, (40, 2) = .9283008376642109, (40, 3) = -80.11186123487396, (40, 4) = 592.0744235816792, (41, 1) = .4262005556042849, (41, 2) = 1.0655013890107123, (41, 3) = -46.809465967098035, (41, 4) = 613.9784396454726, (42, 1) = .48851445389661347, (42, 2) = 1.2212861347415342, (42, 3) = -12.965069966582012, (42, 4) = 624.1902602612463, (43, 1) = .5597179506522063, (43, 2) = 1.3992948766305149, (43, 3) = 21.021947066476347, (43, 4) = 622.8178292123672, (44, 1) = .6417389320574837, (44, 2) = 1.604347330143709, (44, 3) = 54.7873969436885, (44, 4) = 609.839072707737, (45, 1) = .7370790202310107, (45, 2) = 1.8426975505775274, (45, 3) = 87.94310645822289, (45, 4) = 585.0868526686024, (46, 1) = .8489540196890483, (46, 2) = 2.12238504922262, (46, 3) = 120.02799716632154, (46, 4) = 548.2901256193192, (47, 1) = .9814821078605699, (47, 2) = 2.4537052696514237, (47, 3) = 150.46965297719441, (47, 4) = 499.15637287415177, (48, 1) = 1.1399872610294979, (48, 2) = 2.849968152573746, (48, 3) = 178.56625286021332, (48, 4) = 437.46673687461583, (49, 1) = 1.3311119569894878, (49, 2) = 3.3277798924737203, (49, 3) = 203.43962599481935, (49, 4) = 363.30573019752444, (50, 1) = 1.562810331031843, (50, 2) = 3.9070258275796084, (50, 3) = 224.04592295288356, (50, 4) = 277.3724302291437, (51, 1) = 1.843172470389142, (51, 2) = 4.607931175972852, (51, 3) = 239.22682415431592, (51, 4) = 181.60356213882545, (52, 1) = 2.1639492533715217, (52, 2) = 5.409873133428807, (52, 3) = 247.75933232100704, (52, 4) = 83.72437099827425, (53, 1) = 2.5, (53, 2) = 6.25, (53, 3) = 250.0, (53, 4) = -6.25}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(53, {(1) = -3.14159265358979, (2) = -3.086869467826823, (3) = -3.031348504946009, (4) = -2.974950344632409, (5) = -2.9172482249140086, (6) = -2.8578986954236654, (7) = -2.796633107212863, (8) = -2.733289667430295, (9) = -2.6679547018250354, (10) = -2.6010152548056817, (11) = -2.533120054701126, (12) = -2.465114057930623, (13) = -2.397890234194044, (14) = -2.3321800749944503, (15) = -2.2684387274244364, (16) = -2.2068256922258085, (17) = -2.147253744698504, (18) = -2.0894626384055837, (19) = -2.0331326775212855, (20) = -1.9778966969723746, (21) = -1.9233051302746953, (22) = -1.8689240004784848, (23) = -1.8143479529840667, (24) = -1.759178273526714, (25) = -1.7029860120437164, (26) = -1.6453682979450643, (27) = -1.585981078624346, (28) = -1.5245686286774929, (29) = -1.46101976425386, (30) = -1.3954708796823505, (31) = -1.3283603076081056, (32) = -1.2604088886537288, (33) = -1.1925056231731292, (34) = -1.1255282972161582, (35) = -1.060166803149537, (36) = -.9968208337603711, (37) = -.9355958332055698, (38) = -.8763768620757185, (39) = -.8188960191579733, (40) = -.7627923535845436, (41) = -.7076543950277331, (42) = -.6530707805946335, (43) = -.5986452054223651, (44) = -.5439457751022644, (45) = -.48854036225918673, (46) = -.4320163936842751, (47) = -.3739928906756354, (48) = -.3141094576263415, (49) = -.2521104324222031, (50) = -.18792201484247464, (51) = -.1219209904944405, (52) = -0.5774232861909959e-1, (53) = .0}, datatype = float[8], order = C_order); Y := Matrix(53, 4, {(1, 1) = -0.8676912989535984e-16, (1, 2) = -0.21608219432643615e-15, (1, 3) = 0.4980885195056167e-9, (1, 4) = 0.21861528682156814e-8, (2, 1) = -0.8802859986534675e-16, (2, 2) = -0.21974320878577658e-15, (2, 3) = 0.6081708324864874e-9, (2, 4) = 0.1895587615635047e-8, (3, 1) = -0.8797286110239746e-16, (3, 2) = -0.2188341638521309e-15, (3, 3) = 0.6959133345170034e-9, (3, 4) = 0.1567902154105096e-8, (4, 1) = -0.850433981484997e-16, (4, 2) = -0.21414751621683712e-15, (4, 3) = 0.7588163403092906e-9, (4, 4) = 0.1213021084504045e-8, (5, 1) = -0.800745135993315e-16, (5, 2) = -0.20093785115665454e-15, (5, 3) = 0.7945727742811416e-9, (5, 4) = 0.8386944098484217e-9, (6, 1) = -0.7109900763347926e-16, (6, 2) = -0.17517786079204476e-15, (6, 3) = 0.8008285545673557e-9, (6, 4) = 0.4565776667453786e-9, (7, 1) = -0.5650320686304369e-16, (7, 2) = -0.14073951210410393e-15, (7, 3) = 0.7760320782138161e-9, (7, 4) = 0.8192195855681021e-10, (8, 1) = -0.33573825200367297e-16, (8, 2) = -0.8641031501217497e-16, (8, 3) = 0.7199907142762069e-9, (8, 4) = -0.26572650293870884e-9, (9, 1) = -0.7547848329632523e-17, (9, 2) = -0.2116065647516365e-16, (9, 3) = 0.6360297369536085e-9, (9, 4) = -0.5656002680885608e-9, (10, 1) = 0.2622490015415541e-16, (10, 2) = 0.6475810259802702e-16, (10, 3) = 0.5312400467523144e-9, (10, 4) = -0.7990642702779534e-9, (11, 1) = 0.6563500920377273e-16, (11, 2) = 0.16967260424050358e-15, (11, 3) = 0.41562024075028786e-9, (11, 4) = -0.9570057000181058e-9, (12, 1) = 0.1159953139509308e-15, (12, 2) = 0.2925912206598185e-15, (12, 3) = 0.29949719502119016e-9, (12, 4) = -0.10417535634363825e-8, (13, 1) = 0.17103575510835418e-15, (13, 2) = 0.4269546164503595e-15, (13, 3) = 0.19072618756222055e-9, (13, 4) = -0.10656996470171502e-8, (14, 1) = 0.2318272178226041e-15, (14, 2) = 0.5848485527349647e-15, (14, 3) = 0.9361197303943904e-10, (14, 4) = -0.10427746162038269e-8, (15, 1) = 0.306571106603149e-15, (15, 2) = 0.7722126175565033e-15, (15, 3) = 0.9812023677745901e-11, (15, 4) = -0.9873030397643844e-9, (16, 1) = 0.38928309840636176e-15, (16, 2) = 0.9827595170254798e-15, (16, 3) = -0.6095799494641777e-10, (16, 4) = -0.9085857017156305e-9, (17, 1) = 0.4764499780703486e-15, (17, 2) = 0.1186572523636631e-14, (17, 3) = -0.11935245336246415e-9, (17, 4) = -0.8142155602303641e-9, (18, 1) = 0.5829522617558218e-15, (18, 2) = 0.14521985463337272e-14, (18, 3) = -0.16655017418448784e-9, (18, 4) = -0.7087135929794485e-9, (19, 1) = 0.6972662594027298e-15, (19, 2) = 0.17368509418185003e-14, (19, 3) = -0.2034791699072464e-9, (19, 4) = -0.5958861921970877e-9, (20, 1) = 0.8227149601810672e-15, (20, 2) = 0.2045539985050064e-14, (20, 3) = -0.23084694727422887e-9, (20, 4) = -0.4783657037134373e-9, (21, 1) = 0.9667167879129214e-15, (21, 2) = 0.24099216987734515e-14, (21, 3) = -0.2492104027677984e-9, (21, 4) = -0.35843439555687914e-9, (22, 1) = 0.1113111483390967e-14, (22, 2) = 0.28050241136520836e-14, (22, 3) = -0.25897786113834673e-9, (22, 4) = -0.2378879269052534e-9, (23, 1) = 0.12929170305243563e-14, (23, 2) = 0.32152184661561065e-14, (23, 3) = -0.2601905825461818e-9, (23, 4) = -0.11882497382299937e-9, (24, 1) = 0.14729325462726298e-14, (24, 2) = 0.3634256462297577e-14, (24, 3) = -0.2530546261395792e-9, (24, 4) = -0.40263134980524275e-11, (25, 1) = 0.16306879561682082e-14, (25, 2) = 0.4062690519212076e-14, (25, 3) = -0.2376077189368142e-9, (25, 4) = 0.10370103933888716e-9, (26, 1) = 0.1784173177455558e-14, (26, 2) = 0.4463448108899063e-14, (26, 3) = -0.2138892974620425e-9, (26, 4) = 0.200480118297719e-9, (27, 1) = 0.1901284312961507e-14, (27, 2) = 0.476257888638928e-14, (27, 3) = -0.18248992238773505e-9, (27, 4) = 0.28141351837015277e-9, (28, 1) = 0.19279140282615575e-14, (28, 2) = 0.4848522914708871e-14, (28, 3) = -0.1446727242233918e-9, (28, 4) = 0.34101725446699387e-9, (29, 1) = 0.1834442360874534e-14, (29, 2) = 0.45219870905196815e-14, (29, 3) = -0.10288700998919516e-9, (29, 4) = 0.37356218774460824e-9, (30, 1) = 0.15926624522198781e-14, (30, 2) = 0.4038240732008787e-14, (30, 3) = -0.607069798696215e-10, (30, 4) = 0.3760153658523864e-9, (31, 1) = 0.12208338209409565e-14, (31, 2) = 0.31010048825879734e-14, (31, 3) = -0.22581054258547533e-10, (31, 4) = 0.35057261285338124e-9, (32, 1) = 0.7800409792478199e-15, (32, 2) = 0.18912905418498113e-14, (32, 3) = 0.805460798307106e-11, (32, 4) = 0.30421052105863735e-9, (33, 1) = 0.2103500289242134e-15, (33, 2) = 0.5527012222907194e-15, (33, 3) = 0.29776634581559975e-10, (33, 4) = 0.24821824251917226e-9, (34, 1) = -0.4961307208021511e-15, (34, 2) = -0.12811774245578649e-14, (34, 3) = 0.43428996667644654e-10, (34, 4) = 0.19146389668276046e-9, (35, 1) = -0.14981834904372908e-14, (35, 2) = -0.3524672322484466e-14, (35, 3) = 0.50936155887014364e-10, (35, 4) = 0.13922828274130106e-9, (36, 1) = -0.27269088906787527e-14, (36, 2) = -0.6795368531094833e-14, (36, 3) = 0.5410492144377719e-10, (36, 4) = 0.9399890322992246e-10, (37, 1) = -0.4325717810019063e-14, (37, 2) = -0.1063258753807204e-13, (37, 3) = 0.5441246008826415e-10, (37, 4) = 0.5568046941695293e-10, (38, 1) = -0.6243004225526994e-14, (38, 2) = -0.16270570929763745e-13, (38, 3) = 0.52386787046637554e-10, (38, 4) = 0.23124636396403946e-10, (39, 1) = -0.8694708108420794e-14, (39, 2) = -0.21456403659082042e-13, (39, 3) = 0.4889190445826038e-10, (39, 4) = -0.4140421677670486e-11, (40, 1) = -0.11897091313236854e-13, (40, 2) = -0.29642626324173214e-13, (40, 3) = 0.4429246955009329e-10, (40, 4) = -0.26913675481025795e-10, (41, 1) = -0.15086605200015608e-13, (41, 2) = -0.3774932272351975e-13, (41, 3) = 0.3856155042221638e-10, (41, 4) = -0.4537751493215933e-10, (42, 1) = -0.1938887902224666e-13, (42, 2) = -0.4794251562509063e-13, (42, 3) = 0.32239691308459715e-10, (42, 4) = -0.5973804350978617e-10, (43, 1) = -0.24209988145776807e-13, (43, 2) = -0.6136519196273285e-13, (43, 3) = 0.25431102416599753e-10, (43, 4) = -0.7016177011128924e-10, (44, 1) = -0.30191539534274623e-13, (44, 2) = -0.7582632905380969e-13, (44, 3) = 0.18123737586995968e-10, (44, 4) = -0.766058474418373e-10, (45, 1) = -0.37534072998795584e-13, (45, 2) = -0.9303085643538405e-13, (45, 3) = 0.10805866706614065e-10, (45, 4) = -0.7877262932718223e-10, (46, 1) = -0.4518752383273554e-13, (46, 2) = -0.11385220035764982e-12, (46, 3) = 0.3610905236892672e-11, (46, 4) = -0.7637293665285871e-10, (47, 1) = -0.54203963840859055e-13, (47, 2) = -0.13711832923920587e-12, (47, 3) = -0.2863286491250468e-11, (47, 4) = -0.6938326465531548e-10, (48, 1) = -0.6390561927231601e-13, (48, 2) = -0.15886267121731282e-12, (48, 3) = -0.800836900303354e-11, (48, 4) = -0.57835568004517225e-10, (49, 1) = -0.6958838172846833e-13, (49, 2) = -0.17383795077766753e-12, (49, 3) = -0.11004344747313351e-10, (49, 4) = -0.41694622855798825e-10, (50, 1) = -0.6696235849973125e-13, (50, 2) = -0.16588535883101567e-12, (50, 3) = -0.1068695327003035e-10, (50, 4) = -0.23841574874806828e-10, (51, 1) = -0.44633379288509404e-13, (51, 2) = -0.11461203106012963e-12, (51, 3) = -0.655426895554895e-11, (51, 4) = -0.8394590103565032e-11, (52, 1) = -0.16907013667709464e-13, (52, 2) = -0.3954218532301208e-13, (52, 3) = -0.20016707651239473e-11, (52, 4) = -0.13397340282579073e-11, (53, 1) = .0, (53, 2) = .0, (53, 3) = .0, (53, 4) = .0}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[53] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1861528682156814e-9) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 53, [U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[53] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[53] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(53, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(53, 4, X, Y, outpoint, yout, L, V) end if; [x = outpoint, seq('[U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[53] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(2.1861528682156814e-9) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 53, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[53] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[53] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(53, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(53, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(0..0, {}), (3) = [x, U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [x = res[1], seq('[U[1, 3](x), diff(U[1, 3](x), x), U[2, 3](x), diff(U[2, 3](x), x)]'[i] = res[i+1], i = 1 .. 4)] catch: error  end try end proc

plots:-odeplot(dsol6, [[x, U[1, 3](x)], [x, U[2, 3](x)]], -Pi .. 0, color = [red, blue])

Can't use n here since you used it above for a different purpose and gave it a value.

U[1](x, y) = sum(U[1, n](x)*sin(upsilon*y), n = 1 .. infinity)

Error, (in sum) summation variable previously assigned, 2nd argument evaluates to 3 = 1 .. infinity

U[2](x, y) = sum(U[2, n](x)*sin(upsilon*y), n = 1 .. infinity)

Error, (in sum) summation variable previously assigned, 2nd argument evaluates to 3 = 1 .. infinity

``

Download Thesis_(1).mw

So here is a workaround,  which just loops as @sursumCorda suggested.

restart

F := BesselI(0, sigma*lambda)*BesselK(12, sigma)

BesselI(0, sigma*lambda)*BesselK(12, sigma)

The result below has less than the requested order, a severe case of the type documented in the Order help page.
series multiplies the two series for the Bessel functions, each to order 0

series(F, sigma = 0, 0); series(BesselI(0, sigma*lambda), sigma = 0, 0); series(BesselK(12, sigma), sigma = 0, 0)

series(+O(sigma^(-12)),sigma,-12)

series(+O(sigma^0),sigma,0)

series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+O(sigma^0),sigma,0)

series(F, sigma, 20)

series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+1/12-3*lambda^2+(105/4)*lambda^4-(280/3)*lambda^6+(315/2)*lambda^8-126*lambda^10+(77/2)*lambda^12+(-1/1680+(1/48)*lambda^2-(3/16)*lambda^4+(35/48)*lambda^6-(35/24)*lambda^8+(63/40)*lambda^10-(7/8)*lambda^12+(11/56)*lambda^14)*sigma^2+(1/215040-(1/6720)*lambda^2+(1/768)*lambda^4-(1/192)*lambda^6+(35/3072)*lambda^8-(7/480)*lambda^10+(7/640)*lambda^12-(1/224)*lambda^14+(11/14336)*lambda^16)*sigma^4+(-1/23224320+(1/860160)*lambda^2-(1/107520)*lambda^4+(1/27648)*lambda^6-(1/12288)*lambda^8+(7/61440)*lambda^10-(7/69120)*lambda^12+(1/17920)*lambda^14-(1/57344)*lambda^16+(11/4644864)*lambda^18)*sigma^6+O(sigma^8),sigma,8)

series has option remember, so now going to order zero works (assuming a garbage collection hasn't occurred).

op(series); series(F, sigma = 0, 0)

proc () options builtin = series, remember, system; table( [( (series(lambda*sigma,sigma))^18, sigma ) = series((lambda^18)*sigma^18,sigma), 20, ( (series(sigma^17,sigma))^2, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(sigma,sigma))^10, sigma ) = series(sigma^10,sigma), 20, ( (series(sigma,sigma))*(series(sigma^12,sigma)), sigma ) = series(sigma^13,sigma), 20, ( (series((lambda^2)*sigma^2,sigma))^2, sigma ) = series((lambda^4)*sigma^4,sigma), 20, ( (series(lambda*sigma,sigma))^40*O(1), sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series((lambda^11)*sigma^11,sigma))^2, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(sigma^2,sigma))^2, sigma ) = series(sigma^4,sigma), 20, ( (series((lambda^18)*sigma^18,sigma))^2, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(sigma,sigma))^15, sigma ) = series(sigma^15,sigma), 20, ( BesselI(0, sigma*lambda), sigma ) = series(1+((1/4)*lambda^2)*sigma^2+((1/64)*lambda^4)*sigma^4+((1/2304)*lambda^6)*sigma^6+((1/147456)*lambda^8)*sigma^8+((1/14745600)*lambda^10)*sigma^10+((1/2123366400)*lambda^12)*sigma^12+((1/416179814400)*lambda^14)*sigma^14+((1/106542032486400)*lambda^16)*sigma^16+((1/34519618525593600)*lambda^18)*sigma^18+O(sigma^20),sigma,20), 20, ( (39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22)/sigma^12, sigma ) = series(39916800*sigma^(-12)-907200*sigma^(-10)+11340*sigma^(-8)-105*sigma^(-6)+(105/128)*sigma^(-4)-(3/512)*sigma^(-2)+1/24576-(1/3440640)*sigma^2+(1/440401920)*sigma^4-(1/47563407360)*sigma^6+(1/3805072588800)*sigma^8-(1/167423193907200)*sigma^10,sigma), 32, ( (series(lambda*sigma,sigma))^36, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(lambda*sigma,sigma))^7, sigma ) = series((lambda^7)*sigma^7,sigma), 20, ( (series((lambda^10)*sigma^10,sigma))^2, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^22, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(lambda*sigma,sigma))*(series((lambda^18)*sigma^18,sigma)), sigma ) = series((lambda^19)*sigma^19,sigma), 20, ( (series(sigma,sigma))^9, sigma ) = series(sigma^9,sigma), 20, ( (series((lambda^14)*sigma^14,sigma))^2, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series(sigma,sigma))^2, sigma ) = series(sigma^2,sigma), 20, ( (series(sigma^14,sigma))^2, sigma ) = series(+O(sigma^28),sigma,28), 20, ( BesselI(0, sigma*lambda)*BesselK(12, sigma), sigma ) = series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+1/12-3*lambda^2+(105/4)*lambda^4-(280/3)*lambda^6+(315/2)*lambda^8-126*lambda^10+(77/2)*lambda^12+(-1/1680+(1/48)*lambda^2-(3/16)*lambda^4+(35/48)*lambda^6-(35/24)*lambda^8+(63/40)*lambda^10-(7/8)*lambda^12+(11/56)*lambda^14)*sigma^2+(1/215040-(1/6720)*lambda^2+(1/768)*lambda^4-(1/192)*lambda^6+(35/3072)*lambda^8-(7/480)*lambda^10+(7/640)*lambda^12-(1/224)*lambda^14+(11/14336)*lambda^16)*sigma^4+(-1/23224320+(1/860160)*lambda^2-(1/107520)*lambda^4+(1/27648)*lambda^6-(1/12288)*lambda^8+(7/61440)*lambda^10-(7/69120)*lambda^12+(1/17920)*lambda^14-(1/57344)*lambda^16+(11/4644864)*lambda^18)*sigma^6+O(sigma^8),sigma,8), 20, ( (series(sigma^6,sigma))^2, sigma ) = series(sigma^12,sigma), 20, ( (series(sigma,sigma))^30, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(lambda*sigma,sigma))^4, sigma ) = series((lambda^4)*sigma^4,sigma), 20, ( (series((lambda^17)*sigma^17,sigma))^2, sigma ) = series(+O(sigma^34),sigma,34), 20, ( sigma^12*(-(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8), sigma ) = series((-(1/239500800)*gamma+86021/13277924352000)*sigma^12+(1506353/8975876861952000-(1/12454041600)*gamma)*sigma^14+(1712273/1005298208538624000-(1/1394852659200)*gamma)*sigma^16+(1856417/180953677536952320000-(1/251073478656000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^10, sigma ) = series((lambda^10)*sigma^10,sigma), 20, ( (series(sigma,sigma))*(series(sigma^18,sigma)), sigma ) = series(sigma^19,sigma), 20, ( (series(lambda*sigma,sigma))^28, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series((lambda^9)*sigma^9,sigma))^2, sigma ) = series((lambda^18)*sigma^18,sigma), 20, ( (series(lambda*sigma,sigma))^19, sigma ) = series((lambda^19)*sigma^19,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^12)*sigma^12,sigma)), sigma ) = series((lambda^13)*sigma^13,sigma), 20, ( (series(lambda*sigma,sigma))^34, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(lambda*sigma,sigma))*(series((lambda^4)*sigma^4,sigma)), sigma ) = series((lambda^5)*sigma^5,sigma), 20, ( (series((lambda^16)*sigma^16,sigma))^2, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(sigma,sigma))^16, sigma ) = series(sigma^16,sigma), 20, ( (series(sigma^18,sigma))^2, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(sigma,sigma))*(series(sigma^16,sigma)), sigma ) = series(sigma^17,sigma), 20, ( (series(sigma,sigma))^12*(1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1)), sigma ) = series((1/479001600)*sigma^12+(1/24908083200)*sigma^14+(1/2789705318400)*sigma^16+(1/502146957312000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^13, sigma ) = series((lambda^13)*sigma^13,sigma), 20, ( (series(sigma,sigma))^40*O(1), sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series((lambda^19)*sigma^19,sigma))^2, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(lambda*sigma,sigma))^17, sigma ) = series((lambda^17)*sigma^17,sigma), 20, ( (series(sigma,sigma))^5, sigma ) = series(sigma^5,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^6)*sigma^6,sigma)), sigma ) = series((lambda^7)*sigma^7,sigma), 20, ( (series(sigma^9,sigma))^2, sigma ) = series(sigma^18,sigma), 20, ( (series(lambda*sigma,sigma))^12, sigma ) = series((lambda^12)*sigma^12,sigma), 20, ( (series((lambda^12)*sigma^12,sigma))^2, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(lambda*sigma,sigma))^38, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))^3, sigma ) = series(sigma^3,sigma), 20, ( (series((lambda^6)*sigma^6,sigma))^2, sigma ) = series((lambda^12)*sigma^12,sigma), 20, ( (series(lambda*sigma,sigma))^26, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(sigma^13,sigma))^2, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(lambda*sigma,sigma))^30, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(sigma,sigma))^28, sigma ) = series(+O(sigma^28),sigma,28), 20, ( (series(lambda*sigma,sigma))^5, sigma ) = series((lambda^5)*sigma^5,sigma), 20, ( (series((lambda^13)*sigma^13,sigma))^2, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(sigma^8,sigma))^2, sigma ) = series(sigma^16,sigma), 20, ( -(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8, sigma ) = series((-(1/239500800)*gamma+86021/13277924352000)+(1506353/8975876861952000-(1/12454041600)*gamma)*sigma^2+(1712273/1005298208538624000-(1/1394852659200)*gamma)*sigma^4+(1856417/180953677536952320000-(1/251073478656000)*gamma)*sigma^6+(3938059/92648282898919587840000-(1/64274810535936000)*gamma)*sigma^8,sigma), 20, ( 2048*(39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22)/sigma^12, sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10,sigma), 32, ( (series(lambda*sigma,sigma))^9, sigma ) = series((lambda^9)*sigma^9,sigma), 20, ( 1+(1/4)*(series(lambda*sigma,sigma))^2+(1/64)*(series(lambda*sigma,sigma))^4+(1/2304)*(series(lambda*sigma,sigma))^6+(1/147456)*(series(lambda*sigma,sigma))^8+(1/14745600)*(series(lambda*sigma,sigma))^10+(1/2123366400)*(series(lambda*sigma,sigma))^12+(1/416179814400)*(series(lambda*sigma,sigma))^14+(1/106542032486400)*(series(lambda*sigma,sigma))^16+(1/34519618525593600)*(series(lambda*sigma,sigma))^18+(1/13807847410237440000)*(series(lambda*sigma,sigma))^20+(1/6682998146554920960000)*(series(lambda*sigma,sigma))^22+(1/3849406932415634472960000)*(series(lambda*sigma,sigma))^24+(1/2602199086312968903720960000)*(series(lambda*sigma,sigma))^26+(1/2040124083669367620517232640000)*(series(lambda*sigma,sigma))^28+(1/1836111675302430858465509376000000)*(series(lambda*sigma,sigma))^30+(1/1880178355509689199068681601024000000)*(series(lambda*sigma,sigma))^32+(1/2173486178969200714123395930783744000000)*(series(lambda*sigma,sigma))^34+(1/2816838087944084125503921126295732224000000)*(series(lambda*sigma,sigma))^36+(1/4067514198991257477227662106371037331456000000)*(series(lambda*sigma,sigma))^38+(1/6508022718386011963564259370193659730329600000000)*(series(lambda*sigma,sigma))^40*O(1), sigma ) = series(1+((1/4)*lambda^2)*sigma^2+((1/64)*lambda^4)*sigma^4+((1/2304)*lambda^6)*sigma^6+((1/147456)*lambda^8)*sigma^8+((1/14745600)*lambda^10)*sigma^10+((1/2123366400)*lambda^12)*sigma^12+((1/416179814400)*lambda^14)*sigma^14+((1/106542032486400)*lambda^16)*sigma^16+((1/34519618525593600)*lambda^18)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma,sigma))^18, sigma ) = series(sigma^18,sigma), 20, ( (series(sigma,sigma))*(series(sigma^6,sigma)), sigma ) = series(sigma^7,sigma), 20, ( (series(lambda*sigma,sigma))^32, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(sigma,sigma))^11, sigma ) = series(sigma^11,sigma), 20, ( (series(lambda*sigma,sigma))^3, sigma ) = series((lambda^3)*sigma^3,sigma), 20, ( (series((lambda^15)*sigma^15,sigma))^2, sigma ) = series(+O(sigma^30),sigma,30), 20, ( (series(sigma^5,sigma))^2, sigma ) = series(sigma^10,sigma), 20, ( (series((lambda^4)*sigma^4,sigma))^2, sigma ) = series((lambda^8)*sigma^8,sigma), 20, ( (series(sigma,sigma))^38, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))*(series(sigma^4,sigma)), sigma ) = series(sigma^5,sigma), 20, ( (series(lambda*sigma,sigma))^24, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(sigma,sigma))^17, sigma ) = series(sigma^17,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^8)*sigma^8,sigma)), sigma ) = series((lambda^9)*sigma^9,sigma), 20, ( (series(lambda*sigma,sigma))*(series((lambda^14)*sigma^14,sigma)), sigma ) = series((lambda^15)*sigma^15,sigma), 20, ( (series(sigma^7,sigma))^2, sigma ) = series(sigma^14,sigma), 20, ( (series((lambda^5)*sigma^5,sigma))^2, sigma ) = series((lambda^10)*sigma^10,sigma), 20, ( (series(sigma,sigma))^12, sigma ) = series(sigma^12,sigma), 20, ( (series(sigma^19,sigma))^2, sigma ) = series(+O(sigma^38),sigma,38), 20, ( (series(sigma,sigma))*(series(sigma^10,sigma)), sigma ) = series(sigma^11,sigma), 20, ( (series(sigma,sigma))^32, sigma ) = series(+O(sigma^32),sigma,32), 20, ( (series(lambda*sigma,sigma))*(series((lambda^16)*sigma^16,sigma)), sigma ) = series((lambda^17)*sigma^17,sigma), 20, ( (series(sigma,sigma))^8, sigma ) = series(sigma^8,sigma), 20, ( (series(sigma,sigma))^20, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10,sigma))-ln((1/2)*sigma)*BesselI(12, sigma)+(1/8192)*sigma^12*(-(1/239500800)*gamma+86021/13277924352000+(1/24908083200)*(1506353/360360-2*gamma)*sigma^2+(1/2789705318400)*(1712273/360360-2*gamma)*sigma^4+(1/502146957312000)*(1856417/360360-2*gamma)*sigma^6+(1/128549621071872000)*(3938059/720720-2*gamma)*sigma^8), sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10+((1/1961990553600)*ln(2)-(1/1961990553600)*ln(sigma)-(1/1961990553600)*gamma+86021/108772756291584000)*sigma^12+((1/102023508787200)*ln(2)-(1/102023508787200)*ln(sigma)+1506353/73530383253110784000-(1/102023508787200)*gamma)*sigma^14+((1/11426632984166400)*ln(2)-(1/11426632984166400)*ln(sigma)+1712273/8235402924348407808000-(1/11426632984166400)*gamma)*sigma^16+((1/2056793937149952000)*ln(2)-(1/2056793937149952000)*ln(sigma)+1856417/1482372526382713405440000-(1/2056793937149952000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma,sigma))^4, sigma ) = series(sigma^4,sigma), 20, ( (1/2)*sigma, sigma ) = series((1/2)*sigma,sigma), 22, ( (series(sigma,sigma))^7, sigma ) = series(sigma^7,sigma), 20, ( (series(sigma,sigma))^14, sigma ) = series(sigma^14,sigma), 20, ( (series((lambda^8)*sigma^8,sigma))^2, sigma ) = series((lambda^16)*sigma^16,sigma), 20, ( (series(sigma^12,sigma))^2, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(+O(sigma^20),sigma,20))^2, sigma ) = series(+O(sigma^40),sigma,40), 20, ( (series(sigma,sigma))^6, sigma ) = series(sigma^6,sigma), 20, ( (series(lambda*sigma,sigma))^16, sigma ) = series((lambda^16)*sigma^16,sigma), 20, ( (series(sigma,sigma))^26, sigma ) = series(+O(sigma^26),sigma,26), 20, ( (series(lambda*sigma,sigma))^6, sigma ) = series((lambda^6)*sigma^6,sigma), 20, ( (series(sigma^4,sigma))^2, sigma ) = series(sigma^8,sigma), 20, ( BesselI(12, sigma), sigma ) = series((1/1961990553600)*sigma^12+(1/102023508787200)*sigma^14+(1/11426632984166400)*sigma^16+(1/2056793937149952000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))*(series((lambda^10)*sigma^10,sigma)), sigma ) = series((lambda^11)*sigma^11,sigma), 20, ( (series(lambda*sigma,sigma))^8, sigma ) = series((lambda^8)*sigma^8,sigma), 20, ( (1/4096)*(series(sigma,sigma))^12*(1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1)), sigma ) = series((1/1961990553600)*sigma^12+(1/102023508787200)*sigma^14+(1/11426632984166400)*sigma^16+(1/2056793937149952000)*sigma^18+O(sigma^20),sigma,20), 20, ( ln((1/2)*sigma)*BesselI(12, sigma), sigma ) = series((-(1/1961990553600)*ln(2)+(1/1961990553600)*ln(sigma))*sigma^12+(-(1/102023508787200)*ln(2)+(1/102023508787200)*ln(sigma))*sigma^14+(-(1/11426632984166400)*ln(2)+(1/11426632984166400)*ln(sigma))*sigma^16+(-(1/2056793937149952000)*ln(2)+(1/2056793937149952000)*ln(sigma))*sigma^18+O(sigma^20),sigma,20), 20, ( (series(sigma^3,sigma))^2, sigma ) = series(sigma^6,sigma), 20, ( (series(sigma,sigma))^13, sigma ) = series(sigma^13,sigma), 20, ( 1/479001600+(1/24908083200)*(series(sigma,sigma))^2+(1/2789705318400)*(series(sigma,sigma))^4+(1/502146957312000)*(series(sigma,sigma))^6+(1/128549621071872000)*(series(sigma,sigma))^8+(1/43706871164436480000)*(series(sigma,sigma))^10+(1/18881368343036559360000)*(series(sigma,sigma))^12+(1/10044887958495449579520000)*(series(sigma,sigma))^14+(1/6428728293437087730892800000)*(series(sigma,sigma))^16+(1/4860118589838438324554956800000)*(series(sigma,sigma))^18+(1/4276904359057825725608361984000000)*(series(sigma,sigma))^20+(1/4328227211366519634315662327808000000)*(series(sigma,sigma))^22+(1/4986117747494230618731643001634816000000)*(series(sigma,sigma))^24+(1/6481953071742499804351135902125260800000000)*(series(sigma,sigma))^26+(1/9437723672457079715135253873494379724800000000)*(series(sigma,sigma))^28+(1/15289112349380469138519111275060895154176000000000)*(series(sigma,sigma))^30+(1/27398089330089800696226247404909124116283392000000000)*(series(sigma,sigma))^32+(1/54029032158937086972958159882480792757310849024000000000)*(series(sigma,sigma))^34+(1/116702709463304107861589625346158512355791433891840000000000)*(series(sigma,sigma))^36+(1/274951583495544478121905157315549455110244618249175040000000000)*(series(sigma,sigma))^38+(1/703876053748593863992077202727806605082226222717888102400000000000)*(series(sigma,sigma))^40*O(1), sigma ) = series(1/479001600+(1/24908083200)*sigma^2+(1/2789705318400)*sigma^4+(1/502146957312000)*sigma^6+(1/128549621071872000)*sigma^8+(1/43706871164436480000)*sigma^10+(1/18881368343036559360000)*sigma^12+(1/10044887958495449579520000)*sigma^14+(1/6428728293437087730892800000)*sigma^16+(1/4860118589838438324554956800000)*sigma^18+O(sigma^20),sigma,20), 20, ( (series((lambda^3)*sigma^3,sigma))^2, sigma ) = series((lambda^6)*sigma^6,sigma), 20, ( (series(sigma,sigma))^24, sigma ) = series(+O(sigma^24),sigma,24), 20, ( (series(sigma,sigma))*(series(sigma^14,sigma)), sigma ) = series(sigma^15,sigma), 20, ( BesselK(12, sigma), sigma ) = series(81749606400*sigma^(-12)-1857945600*sigma^(-10)+23224320*sigma^(-8)-215040*sigma^(-6)+1680*sigma^(-4)-12*sigma^(-2)+1/12-(1/1680)*sigma^2+(1/215040)*sigma^4-(1/23224320)*sigma^6+(1/1857945600)*sigma^8-(1/81749606400)*sigma^10+((1/1961990553600)*ln(2)-(1/1961990553600)*ln(sigma)-(1/1961990553600)*gamma+86021/108772756291584000)*sigma^12+((1/102023508787200)*ln(2)-(1/102023508787200)*ln(sigma)+1506353/73530383253110784000-(1/102023508787200)*gamma)*sigma^14+((1/11426632984166400)*ln(2)-(1/11426632984166400)*ln(sigma)+1712273/8235402924348407808000-(1/11426632984166400)*gamma)*sigma^16+((1/2056793937149952000)*ln(2)-(1/2056793937149952000)*ln(sigma)+1856417/1482372526382713405440000-(1/2056793937149952000)*gamma)*sigma^18+O(sigma^20),sigma,20), 20, ( (series((1/2)*sigma,sigma))/sigma, sigma ) = series(1/2,sigma), 21, ( (series(sigma^15,sigma))^2, sigma ) = series(+O(sigma^30),sigma,30), 20, ( sigma*lambda, sigma ) = series(lambda*sigma,sigma), 20, ( 39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22, sigma ) = series(39916800-907200*sigma^2+11340*sigma^4-105*sigma^6+(105/128)*sigma^8-(3/512)*sigma^10+(1/24576)*sigma^12-(1/3440640)*sigma^14+(1/440401920)*sigma^16-(1/47563407360)*sigma^18+(1/3805072588800)*sigma^20-(1/167423193907200)*sigma^22,sigma), 32, ( (series(lambda*sigma,sigma))^15, sigma ) = series((lambda^15)*sigma^15,sigma), 20, ( (series(sigma,sigma))*(series(sigma^8,sigma)), sigma ) = series(sigma^9,sigma), 20, ( (series(sigma,sigma))^36, sigma ) = series(+O(sigma^36),sigma,36), 20, ( (series(lambda*sigma,sigma))^20, sigma ) = series(+O(sigma^20),sigma,20), 20, ( 2*(series((1/2)*sigma,sigma))/sigma, sigma ) = series(1,sigma), 21, ( (series((lambda^7)*sigma^7,sigma))^2, sigma ) = series((lambda^14)*sigma^14,sigma), 20, ( (series(lambda*sigma,sigma))^11, sigma ) = series((lambda^11)*sigma^11,sigma), 20, ( (series(sigma,sigma))^19, sigma ) = series(sigma^19,sigma), 20, ( (series(sigma^11,sigma))^2, sigma ) = series(+O(sigma^22),sigma,22), 20, ( (series(lambda*sigma,sigma))^14, sigma ) = series((lambda^14)*sigma^14,sigma), 20, ( (series(sigma,sigma))^34, sigma ) = series(+O(sigma^34),sigma,34), 20, ( (series(sigma^16,sigma))^2, sigma ) = series(+O(sigma^32),sigma,32), 20, ( ln((1/2)*sigma), sigma ) = series((-ln(2)+ln(sigma)),sigma), 20, ( (series(sigma^10,sigma))^2, sigma ) = series(+O(sigma^20),sigma,20), 20, ( (series(lambda*sigma,sigma))^2, sigma ) = series((lambda^2)*sigma^2,sigma), 20, ( (series(sigma,sigma))^22, sigma ) = series(+O(sigma^22),sigma,22), 20 ] ) end proc

series(81749606400*sigma^(-12)+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2+O(sigma^0),sigma,0)

and back to the original

forget(series); series(F, sigma = 0, 0)

series(+O(sigma^(-12)),sigma,-12)

PrincipalPart:=proc(expr,x)
        local ser,actualorder,requestorder;
        uses numapprox;
        requestorder := 0;
        do
                ser := laurent(expr, x, requestorder);
                actualorder := order(ser);
                requestorder := requestorder + 1;
        until actualorder >= 0;
        if actualorder > 0 then
                ser := select(z -> degree(z,indets(x)[]) < 0, 1 + convert(ser,polynom) ) #1+ forces type `+`
        else
                ser:=convert(ser, polynom)
        end if;
        ser
end proc:

forget(numapprox:-laurent, series)

PrincipalPart(F, sigma)

81749606400/sigma^12+(20437401600*lambda^2-1857945600)/sigma^10+(1277337600*lambda^4-464486400*lambda^2+23224320)/sigma^8+(35481600*lambda^6-29030400*lambda^4+5806080*lambda^2-215040)/sigma^6+(554400*lambda^8-806400*lambda^6+362880*lambda^4-53760*lambda^2+1680)/sigma^4+(5544*lambda^10-12600*lambda^8+10080*lambda^6-3360*lambda^4+420*lambda^2-12)/sigma^2

NULL

Download PrincipalPart.mw

Not sure how you want to label them, but here are a couple of simple possibilities, using the caption as a label.

restart;

Make some plots and store them in indexed names; the index is used as the label.

p[1] := plot(x^2):
p[2] := plot(x^3):

DisplayWithMyName:=(plt::uneval)->plots:-display(eval(plt),captionfont=[times,roman,15],caption=cat("Plot ",op(plt))):

DisplayWithMyName(p[2]);

DisplayWithMyName(p[1]);

An alternative that just numbers them in sequence

seqnum:=0;

0

DisplayWithSeqNum:=proc(plt) global seqnum; ++seqnum;
   plots:-display(plt,captionfont=[times,roman,15],caption=cat("Plot ",seqnum));
end proc:

DisplayWithSeqNum(p[2]);

DisplayWithSeqNum(p[2]);

NULL

Download Plotlabels.mw

@lcz For IsSubgraphIsomorphic, Maple uses a constraint algoritham and SAT solver, perhaps this algorithm? doi 10.1007/s10601-009-9074-3 or here? doi: 10.1016/j.artint.2010.05.002, but I'm not sure there is an equivalent for the induced case.

The VF2 algorithm and its (much) improved variants VF2plus, VF2++ and VF3, seem to be widely used. Here I only tried VF2, and didn't try to optimize the data structures (mainly sets straight from the paper); probably moving to one of the improved algorithms would be the next step. I didn't check it on a large number of cases; perhaps you have some other cases to test it.

[Edit2: Updated version here now implements some parts of the VF2++ algorithm, and removes redundancy in search tree]

It seems fast to find matches if there are some, but of course is slower to show there are no matches. Hope this is useful.

[Edit - full VF2++ below]

Download VF2conndegAlgorithm4.mw

I changed your code to

f := "this:///Images/Maple.jpg";
img := Read(f);

and it works - you then get some warnings later that rotation angles should be in radians, which I'm sure you can fix.

Although

diff(ln(GAMMA(x)), x)=Psi(x)

Using the chain rule we find

diff(ln(GAMMA(1/x)), x)=-Psi(1/x)/x^2;

which explains the missing -x^2.

I don't think there is a builtin command, but there an implementation of a heap, which allows it to be done easily. If you wanted the whole list partially sorted, then just sort the selected ones and follow with the rest. (The smallest ones are in decreasing order; the largest are in increasing order.)

restart;

partselect:=proc(data::list,k::posint,compare:=`<`)
  local h,i;
  h:=heap:-new(compare,data[1..k][]);
  for i from k+1 to numelems(data) do
    heap:-insert(data[i],h);
    heap:-extract(h);
  end do;
  [while not heap:-empty(h) do
     heap:-extract(h)
   end do
  ];
end proc:
  

ds:=[seq(rand(1..100)(),1..20)];

[93, 45, 96, 6, 98, 59, 44, 100, 38, 69, 27, 96, 17, 90, 34, 18, 52, 56, 43, 83]

partselect(ds,3); # select smallest 3

[18, 17, 6]

partselect(ds,3,`>`); # select largest 3

[96, 98, 100]

ds:=StringTools:-Explode("partialsortingisfun");

["p", "a", "r", "t", "i", "a", "l", "s", "o", "r", "t", "i", "n", "g", "i", "s", "f", "u", "n"]

partselect(ds,3,lexorder);

["f", "a", "a"]

NULL

Download partselect.mw

One solution to this error is to supply an approximate solution, and since you said tanh(x) was a known solution, I tried that. But then I realized tanh(x) goes to -1, not 0, as x->-infinity. If I change the boundary condition to z(-15)=-1 it works. But if you really wanted z(-infinity)=0, then you can try a better approximate solution.

dsolve.mw

See

https://www.mapleprimes.com/questions/235168-How-Do-I-Generate-Magic-And-Semi-Magic

for some solutions.

You can add a constant to each cell to get other ones, but not sure what exactly you mean by random.

For your first case, the initial conditions are specified as 

dsolve({DE, R(0) = 1, D(R)(0) = 1}, numeric, range = 0 .. 20)

I made up a value for the derivative in the second condition; you will no doubt have a better value. Or perhaps you wanted a boundary condition as your second condition.

And a similar problem applies for your second problem.

PS: In your second problem in defining F you probably wanted an explicit multiplication after the first ), so (...)*(...)

Your second problem doesn't seem well-posed at theta=0.

Here some progress:

DIFFERENTIAL_EQUATION.mw

restart

with(numapprox); Lr := add((-1)^((1/2)*i-1)*Pi^i*r^(i+1)/2^(i-1), i = 2 .. 10, 2)

(1/2)*Pi^2*r^3-(1/8)*Pi^4*r^5+(1/32)*Pi^6*r^7-(1/128)*Pi^8*r^9+(1/512)*Pi^10*r^11

The presence of Pi here is a problem (problem also if we have x instead of Pi). Not sure if this is a bug, but certainly it shouldn't throw a cryptic error messsage.

pade(Lr, r, [2, 2])

Error, (in convert/ratpoly) invalid subscript selector

Make a version without the Pi. let rPi=r*Pi. LrPi is Pi times Lr

LrPi := expand(Pi*(eval(Lr, r = rPi/Pi)))

(1/2)*rPi^3-(1/8)*rPi^5+(1/32)*rPi^7-(1/128)*rPi^9+(1/512)*rPi^11

padeLrPi := pade(LrPi, rPi, [2, 2])

(1/2)*rPi^3

So go back to in terms of r

padeLr := expand((eval(padeLrPi, rPi = r*Pi))/Pi)

(1/2)*Pi^2*r^3

NULL

Download pade2.mw

The degree 3 result here is also a problem - I'll submit an SCR.

First 26 27 28 29 30 31 32 Last Page 28 of 83